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Introduction
Protein structure is determined by experimental methods including 

X-ray crystallography and NMR. There are about 83000 structures in
the repository of Protein Data Bank as of August, 2012. However, this
number still lags from the number of revealed protein sequences of
more than 1 million. Analysis of experimentally determined structure
and theoretical modeling of three-dimensional structure from
protein sequence are, thus, fields of strong concern in computational
biology. There exist many types of discrimination methods including
homology searches and local structure delineations. The classification
of the currently known structures of proteins provides preliminary
information for the further detailed theoretical analyses. Classified
information of protein folds might be utilized for the structural
alignments while fold class predictions might help ab inito prediction
of protein structures.

Protein local structure adopts typical secondary structural topology 
within the specific region of the whole protein. These structures usually 
adopt cork-screw like helical structure or zig-zag patterned extended 
structures while any other structures are called as “others” structure. 
The most common helical structure is α-helix, while the most common 
extended structure is β-strand. Many protein structure databases, 
including PROSITE [1-3], PRINTS [4], Blocks [5], Pfam [6], ProDom 
[7], SCOP [8], CATH [9], InterPro [10] and Swiss-Prot [11], refer 
information of the local secondary structure as important criteria for 
classification. Most of common protein structure databases classify 
folds according to the content of α-helix and β-strand structure as 
all-α, all-β, and α-and-β in the top level of the hierarchy. SCOP [8] is 
the hierarchical structure database with Class, Fold, Superfamily and 
Family levels. SCOP classifies folds into all-α, all-β, α/β, and α+β classes, 

where α/β and α+β classes are different in their matter of segregation of 
α and β structural moieties. 

While most of the classifications of folds are conducted based on 
the observation of experimentally determined structures, protein fold 
structure classes are usually anticipated from sequence properties 
including amino acid composition, hydrophobicity, polarity, and van 
der Waals volume. Recently, Ding and Dubchak [12] devised support 
vector machine and neural network method to predict fold class from 
sequence data and Tan et al. [13] applied ensemble learning algorithm 
to the prediction of the fold class. Ding and Dubchack [12] tried to 
remedy two classes (one-versus-others) approach by additionally 
utilizing all-versus-all model of multiclass discrimination method. 
Most datasets would be imbalanced in one-versus-others approach 
in multi-class problems for discriminations and this imbalance would 
contribute to the poor accuracy as typically in the case of decision 
trees. Tan et al. [13] investigated if their ensemble learning classifier 
would show improvements for imbalanced datasets and if pattern level 
combination of data would be useful. 

The three dimensional structure of proteins are possible to be 
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represented with torsion angle system. The conformational change of 
proteins follow rotational movements along covalent single bond axes 
for the lack of significant change of the length and angle of covalent 
bonds for high energy barriers. The topology of the backbone of 
proteins could be relatively represented with backbone torsion angles 
only. The robustness of structural representation of proteins using 
backbone torsion angles was partly presented with previous structure 
alignment study [14]. Here, all-versus-all approach using multiclass 
LDA (Linear Discrimination Analysis) was conducted for secondary 
structural fold class predictions (Figure 1). Three-dimensional atomic 
coordinates from PDB (Protein Data Bank) and classification of the 
SCOP database were utilized for the training and validation of the 
algorithm. Backbone dihedral angle values were obtained from this 
information and applied to find the probable secondary structure 
content of protein folds. This new approach performs LDA on query 
folds referring mean and covariance matrices of secondary structure 
contents of reference classes. Fold class anticipations usually yield 
better accuracy in the predictions than residue-wise anticipations for 
the consideration of much larger numbers of informative sites. The 
better accuracy of fold class discriminations might support the validity 
of the consideration of longer segments in the secondary structure 
predictions. New method that predicts secondary structure using 
backbone torsional characteristics and LDA could be developed by 
utilizing the merit of longer segments for frame shifting window.

Materials and Methods
Prediction of the fold class of proteins was performed based on the 

tripeptide secondary structure profile library which was constructed 
from non-redundant protein structures. The probable secondary 
structure content of each protein of training set and validation sets was 
predicted from this library. The mean and covariance matrices of the 
reference fold classes of the training set were derived from the probable 
secondary structure content of proteins of each class. Based on this 
information and the probable secondary structure content information 
of query proteins, classification of the fold class of a protein was 
conducted using multi-class LDA. The error rate and accuracy was 
measured for the validation sets from SCOP domains and CASP7 
target models.

Secondary structure classification based on backbone torsion 
angles

The φ angle is the torsion angle of C-N-Cα-C atoms of protein 
backbones. The ψ angle is the torsion angle of N-Cα-C-N atoms 
of protein backbones. Secondary structure determination for each 
residue of training and validation set proteins was conducted referring 
the predicted characteristics derived from these two backbone torsion 
angles of non-redundant structures. Calculation of the torsion angle 
of A-B-C-D exploited the inner product of the normal vectors of the 
planes of A-B-C and B-C-D. The secondary structure of an amino 
acid residue was classified as α-helix if the backbone torsion angles 
belong to the range of (φ, ψ)=(-155°~-47°, -62°~-52°), (-104°~-47°, 
-52°~-37°) and (-117°~-104°, -52°~-37°). A residue was classified as 
β-sheet secondary structure if the backbone torsion angles belong to 
the range of (φ, ψ)=(-155°~-138°, 90°~155°), (-140°~-64°, 90°~180°) 
and (-64°~-53°, 90°~100°) or 110°~168°). Residues of backbone 
torsion angles belonging to other ranges were considered to be others 
secondary structures. Typical Ramachandran plot was exploited for the 
classification scheme of the secondary structures.

Tripeptide secondary structure profile library

Amino acid trimer secondary structure profile library was 
constructed for the calculation of probable secondary structure content 
from the sequence of proteins of training set and validation sets. Profile 
of each tripeptide consists with three values of percent content of each 
secondary structure of α-helix, β-sheet, and others. Among many 
possible values of k for the k-mers, tripeptide was chosen by considering 
both the wealth of information and the amenability of smallness. The 
dihedral angles of the bonds between amino acids of tripeptides were 
first calculated. Tripeptides were collected from the proteins of PDB 
database with sequence homology of 90% or more were removed. 
The dihedral angles of numerous tripeptides were averaged for each 
case of occurrences. Thus, each case of tripeptide has average value of 
dihedral angles. This dihedral angle was used for the classification of 
the secondary structure of the middle residue of the tripeptide. The 
tripeptides with known secondary structure of the middle residue were 
used for the assignments of the secondary structures of the residues of 
a protein fold following the correspondence of the types of tripeptides. 
The proportions of a secondary structure within a fold were, then, used 
for the multiclass linear discriminant analysis. 

LDA for classification of protein secondary structure

Protein fold class prediction was performed using multi-class 
LDA with probable secondary structure content variables, which was 
derived from backbone torsion angles. Each protein has three types 

Figure 1: Flow diagram of the process of secondary structural fold class 
prediction. The flow of the secondary structural protein fold class prediction 
is described. An 8000 (203) tripeptide library of the probable secondary 
structure content was built from non-redundant PDB entries. Training sets of 
all-α, all-β and others (α+β) class members were collected referring SCOP 
classifications. Relevant PDB entries were used to generate information of 
the reference classes. LDA was conducted using the covariance matrices 
of reference classes and the secondary structure content of a query protein. 
Accuracy analysis as error rate calculation was conducted after the prediction 
of the secondary structural fold class by LDA.
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of variables of α-helix (S1), β-sheet (S2), and others content (S3). A 
reference class with members of folds has means of S1, S2, and S3 values 
and a covariance matrix derived from these variables. Multi-class 
LDA was used to determine to which reference group an unknown 
protein belongs. LDA is a type of multivariate analysis that enables the 
statistical discrimination of a query group among multiple reference 
groups. This analysis utilizes the assumptive normal distribution of 
the Mahalanobis distances of observations of reference groups. The 
classification of queries of unknown groups can be performed with this 
statistical method [15]. 

Secondary structural content are represented in the form Si,j, where 
i and j denote the observation number and secondary structure content 
type (α-helix (1), β-sheet (2), and others (3)), respectively. Three 
variables of secondary structure content of a fold were calculated as the 
sums of respective contents from trimer library that corresponds with 
the sequence of a given fold. Two flanking terminal residues which are 
impossible to be matched into the trimer secondary structure profile 
library as the middle residue were omitted in this process. The matrix 
of secondary structure content of group k with l entries is as follows, 
where k denotes the number of each of the three groups of α-fold (1), 
β-fold (2) and others-fold (3).
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Each group has three-dimensional average vectors of secondary 
structure content. Calculation of mth element of average vector of 
group k with l elements is as follows,

,
1

1
=

 
=  

 
∑

l
k k

m i m
i

S S
l

where m denotes the type number of secondary structure content of 
α-helix (1), β-sheet (2), and others structure (3).

Covariance of variables of each group is needed for the calculation 
of the Mahalanobis distance. SAS (ver. 9.1) was used for the calculation 
of covariance of each group. The averages calculated as described above 
were used for the calculation of the covariance values. Each entry of 
the covariance matrix of the reference group k is calculated as follows,
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where j1 and j2 denotes the type of the secondary structure content 
variable. The square of the Mahalanobis distance (D2) of an observation 
from the reference group k is as follows,

( ) ( )2 1−= − −k T k
k kD X S C X S

where X is a three-dimensional vector of the secondary structure 
content of an observation, kS is the mean vector of the secondary 
structure content and Ck is the covariance matrix of group k. Under 
the assumption of normal distribution of the Mahalanobis distances of 
observations, the likelihood of an observation to belong to the reference 
group k is as follows,
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LDA assumes the covariance matrices to be identical among the 
reference groups. Thus, the comparison of likelihood may be reduced 
into the comparison of the squares of the Mahalanobis distances by 
applying logarithm and numerical operations. Here, the group to which 
a protein belongs was determined as the group that shows the lowest 
D2 value. The accuracy of the discrimination function can be calculated 
with the error rate (ERR) which is the probability of misclassification 
which can be expressed as follows,

ERR= n
N

×100(%)

where n signifies the number of proteins that are erroneously predicted 
out of N total predictions. The accuracy (ACC) of protein secondary 
structure prediction is also measured as follows,

ACC= 1− n
N

×100%

LDA analyses and calculations were conducted with codes written 
in JAVA language.

Data sets

SCOP folds of all-α class were classified into α-fold group and folds 
of all-β class were classified into β-fold group. DNA-containing files 
were omitted among the 7621 all-α structures and the 10,047 all-β 
structures. 11,037 domains of the α+β SCOP class were classified into 
others-fold group. The α+β class was used as the reference for the 
others class because of their rather even helix/extended/others content. 
A similar class of α/β was omitted to level the number of entries among 
the reference classes. 50 folds from each of these three reference groups 
were used for the validation set. 90 SCOP folds from 42 proteins of 
CASP7 models were also used to test the accuracy.

Results 
Fold class prediction of proteins was performed using a tripeptide 

secondary structure profile library based on backbone torsion angles 
with LDA. Each query protein of the validation sets was assigned to 
α-fold, β-fold or others-fold class. The result was highly accurate 
with low error rate of the classification of validation sets. General 
concordance between secondary structure content and the assigned 
fold class was observed in α-fold and β-fold classes. Insignificant 
inclination toward any specific secondary structure of α-helix and 
β-sheet was observed in the others-fold class.

Backbone torsion angle based prediction of probable 
secondary structure content

The magnitude of the percent contents of the probable secondary 
structures of each of α-helix and β-sheet of query folds showed a 
highly concordant tendency to the corresponding classes. The α-fold 
class proteins showed a much higher proportion of α-helix structures 
than β-sheet structures, and the β-fold class showed a much higher 
proportion of β-sheet structures than α-helix structures. The others-
fold class of SCOP α+β class, however, showed rather even proportions 
of the three types of secondary structure. These rather common results 
partly suggest that the secondary structure classification based on 
backbone dihedral angles is appropriate. Test set proteins with rather 
high others secondary structure content were classified as others-fold 
class for its longer distance from α-fold class and β-fold class originated 
from the large difference from the mean α-helix and β-sheet contents 
of each class.
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Prediction of fold classes using LDA

LDA was performed with the predicted percent content values of 
the secondary structures of a query fold and mean values and covariance 
matrices of the probable secondary structure contents of reference 
classes. The predictions of secondary structure contents of both the 
query and reference group proteins were made referring the 8000 (203) 
tripeptide secondary structure profile library. LDA of the validation set 
was performed and showed high accuracy with a very low error rate of 
6.67% (i.e. accuracy of 93.33%; Table 1). Ten erroneous classifications 
were observed from the test set of 150 SCOP test folds. Similar results 
of error rate of 8.89% (i.e. accuracy of 91.11%) were observed from the 
analysis of the 90 SCOP folds from 42 proteins of CASP7 targets (Table 
1). Eight erroneous classifications were observed out of 90 folds in this 
test set. Mean accuracy of 92.5% was observed from the total of 240 
test queries. This high accuracy may have partly originated from the 
rather concentrated distribution of secondary structure proportions of 
the folds to the mean values of each corresponding group. The high 
accuracy of the prediction also arises from the accurate representation 
of the tripeptide secondary structure profile library of the states of 
local structures. This also indicates that secondary structure states of 
tripeptides are rather conserved. A more detailed reference profile 
library including longer peptide library and Markovian library with 
series of tripeptides might be helpful to improve incorrect protein 
structure class predictions. Iterative k-fold or leave k-out validations 
were not performed considering the narrow distribution of secondary 
structure contents among the members of the three fold classes.

The percent accuracy of this fold class prediction and the Q3 
values of the secondary structure predictions of numerous methods are 
compared in Table 2. EVA server results of the accuracies of secondary 
structure prediction algorithms of DBNN, which uses dynamic 
Bayesian networks, PSIPRED, JPRED, PHD, and PROSITE, which 
uses DA (Discriminant Analysis), are illustrated in Table 2 [16]. The 
mean percent accuracies of fold class predictions from the validation 
set of 150 folds and 90 CASP7 target folds were also listed in the Table 
2 for comparison. The higher accuracy of the fold class predictions 
than typical secondary structure predictions might be responsible for 
the larger scope of the reference of information. Secondary structure 
prediction generally concerns about 5 to 10 local residues to determine 
the local structure of a single amino acid residue. The classification 
of a fold, however, usually incorporates information on more than 
50 residues. This point is also possible to be explained in terms of 
probability. Average tendency of 60% and 70% of α-helix would 
signify a definitively different fold of odds ratio in the case of long 
polypeptides according to the multiplied probability with Markovian 
dependency, while it would be similar in the local structure prediction 
of short amino acid residues. The error rate might be reduced by the 
larger difference in actual probability from the same average tendency 
difference in the case of fold-wise predictions. The better accuracy of 
fold class prediction possibly implies the benefit of larger scope of the 

analysis window. The high accuracy of this fold class prediction method 
also partly signifies the appropriateness of the backbone torsion angle 
system for the representation and analysis of local structures. The 
method of LDA with backbone dihedral angles might be utilized in 
the secondary structure predictions by focusing into the vicinity of the 
subject residues while exploiting the scheme of larger windows than 
those in typical algorithms.

Conclusions
Although structural studies of proteins have been an area of concern 

for more than 50 years, the accuracy of predictions has been limited to 
certain degrees despite of scientific and technological developments 
and various statistical applications. Considering that correct secondary 
structure anticipation is quite necessary for the prediction of the three-
dimensional structure of proteins, the limitations of the accuracy of 
the secondary structure prediction might be considered to be the one 
that makes the decipherment of biological phenomena difficult. A 
library of α-helix, β-sheet and others secondary structure profile of 
8000 (203) tripeptides was constructed referring the backbone torsion 
angles. Trimer polypeptide was selected considering both the wealth 
of information and amenable smallness. Nonredundant PDB entries 
with 90% sequence similarity cutoff were used to calculate backbone 
torsion angles to build the secondary structure profile library of the 
central residue of 8000 tripeptides. The proportions of three secondary 
structures of folds from validation sets and reference set were predicted 
using this library. The mean and covariance matrices were derived for 
each of the three reference fold classes from the predicted secondary 
structure proportions. LDA was exploited for the prediction of fold 
classes of queries from test sets. In the present study using LDA, the 
classification of query folds with unknown structure showed an accuracy 
of over 90%. Erroneous classifications of the members between α-fold 
and β-fold classes were rare, while the misclassifications of the others-
fold group was more frequent, partly indicating the necessity of more 
definite references for the others-fold class. 

The fold class prediction might be applied to the secondary 
structure prediction with modifications and also might be utilized in 
the prediction of the tertiary structure of a protein. Secondary structure 
prediction methods have been used in the prediction of tertiary structure 
by predicting local topologies, which partly indicates the importance 
of secondary structure information in numerous fields of theoretical 
biology. Three-dimensional structure information of protein might be 
exploited for the anticipation of protein functions and other relevant 
properties, including protein-protein interactions. Secondary structure 
and fold class information also could be utilized in the prediction 

Validation set Error proportion* Error rate (%) Accuracy (%)

Spared training set 10/150 6.67 93.33

CASP7 set 8/90 8.89 91.11

total 18/240 7.5 92.5

error count*Error proportion 
total number

=

Table 1: Result of class predictions of validation sets using LDA.

Method Q3 (%) Accuracy (%)

Secondary Structure Prediction

DBNN 77.8

PSIpred 77.8

PROFsec 76.7

PHDpsi 75.0

PROSITE 78.0

Fold Class Prediction

Backbone Torsional Tripeptide Library LDA 92.5

Q3: three-state per-residue accuracy (percentage of correctly predicted residues)
Table 2: Performances of torsional LDA fold class prediction and residue structure 
predictions.
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of diverse biological phenomena including epidemiological issues. 
Knowledge based anticipation of the possibility of zoonosis [17] based 
on the property of host cell receptors might utilize local and fold-wise 
secondary structure properties. Anticipation of pandemic outbreaks 
might also utilize the secondary structural properties of host cell 
receptor proteins. Further study based on our work might perform 
the secondary structure predictions implementing the benefit of larger 
scope of scrutinized residues, which might be helpful for relevant 
protein structural studies.
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