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ABSTRACT
The exact etiology of prostate cancer is unknown. Prostate cells alter their DNA, which is how doctors know prostate 
cancer starts. The instructions that inform a cell what to do are encoded in its DNA. The adjustments instruct the cells 
to multiply and develop faster than usual. In the U.S., 98% of men with prostate cancer survive five years after diagnosis. 
The survival rate after ten years is similarly 98%. Prostate cancer is only detected in the prostate and adjacent organs in 
around 84% of cases. The local or regional level is what is being discussed here. Many men may pass away from other 
illnesses before prostate cancer becomes a serious concern because of its sluggish growth. However, many prostate cancers 
are more dangerous and may extend beyond the prostate gland because they are more aggressive. They were considering 
the importance of prostate cancer, in this article, using machine learning algorithms and features of sampled prostate 
tissues, 100 men, healthy and sick people were classified.
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DESCRIPTION 

The second-leading cause of cancer-related mortality in males is 
Prostate Cancer (PCa) [1]. Even though prostate imaging and genetic 
testing have come a long way in recent years, PCa is still diagnosed 
by measuring the total serum prostate-specific antigen, using a digital 
rectal exam as a screening method, and using ultrasound-guided [2]. 
In the last 20 years, ultrasound-based elastography has developed into 
a fascinating technique for evaluating organ stiffness [3]. The analyses 
of Mitterberger and Junker have demonstrated that a 50% reduction 
in the number of biopsy cores using elastography offered the same 
prostate cancer detection rate as the conventional randomized TRUS-
guided biopsy, leading to the development of elastographic targeted 
prostate biopsy as an alternative to traditional ultrasound-guided 
systematic biopsy in more recent years [4-7]. Deep learning algorithms 
were successfully applied in urology for the diagnosis of prostate 
cancer, the correlation of mp-MRI images with prostate biopsy results, 
and the prediction of the prognosis following robot-assisted radical 
prostatectomy, resulting in an average performance improvement of 
30-80% in comparison to conventional diagnostic standards [8,9].

Research algorithms

Random forest: An ensemble learning method called Random Forest 
has been presented. One of the most reliable all-purpose learning 

algorithms is Radom Forest (RF). While just using a small number 
of computing resources, and Random Forest has been demonstrated 
to perform quite effectively RF significantly outperforms single-tree 
algorithms like CART in terms of performance. It is quick and has error 
rates equivalent to more time- and resource-consuming algorithms.

This method includes the prostate of 100 men was tested [10]. The 
prostate of some people had a benign gland, and some had a malignant 
prostate gland. The characteristics of diagnosis result, radius, texture, 
perimeter, area, smoothness, compactness, symmetry, and fractal 
dimension of the prostate glands of these 100 men were investigated. 
With the help of the Random Forest machine learning algorithm, 
healthy and sick people were identified. The 10-fold cross-validation 
approach [11,12] was utilized in the simulations, with 80 percent of the 
data taken into account for training, 10 percent for testing, and the 
remaining 10 percent for validation. The suggested Random Forest 
algorithm's hyperparameters were then adjusted. In Table 1, some 
tuned hyperparameters are presented (Table 1 and Figure 1).

Table 1: Hyper parameters of random forest for predicting prostate cancer.

Algorithm Hyper parameters

Random forest
ccp_alpha=0, min_impurity_decrease=0, min_

samples_leaf=1, min_samples_split=2
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Naive 
bayes

0.7875 0.9317 0.687 0.983 0.781 0.602 0.664 0.01

Dummy 
classifier

0.6375 0.5 1 0.638 0.778 0 0 0.009

CONCLUSION

This article examined the prostate tissues of 100 healthy and sick 
people. The proposed Random Forest Classifier algorithm examined 
healthy and ill people. 91% accuracy in identifying healthy and sick 
people by examining 100 healthy and ill people is an excellent accuracy. 
Also, comparing the results of the proposed Random Forest Classifier 
algorithm with other machine learning algorithm methods, the results 
of the proposed Random Forest Classifier method are very suitable, 
there were several methods.

REFERENCES

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global
cancer statistics. CA Cancer J Clin. 2011;61(2):69-90.

2. Van Poppel H, Roobol MJ, Chapple CR, Catto JW, N’Dow J, Sønksen 
J, et al. Prostate-specific antigen testing as part of a risk-adapted early
detection strategy for prostate cancer: European Association of Urology 
position and recommendations for 2021. Eur Urol. 2021;80(6):703-
711.

3. Itoh A, Ueno E, Tohno E, Kamma H, Takahashi H, Shiina T, et al.
Breast disease: clinical application of US elastography for diagnosis.
Radiology. 2006;239(2):341-350.

4. Pallwein L, Mitterberger M, Struve P, Horninger W, Aigner F,
Bartsch G, et al. Comparison of sonoelastography guided biopsy with
systematic biopsy: impact on prostate cancer detection. Eur Radiol.
2007;17(9):2278-85.

5. König K, Scheipers U, Pesavento A, Lorenz A, Ermert H, Senge T.
Initial experiences with real-time elastography guided biopsies of the
prostate. J Urol. 2005;174(1):115-117.

6. Cosgrove D, Barr R, Bojunga J, Cantisani V, Chammas MC, Dighe
M. WFUMB guidelines and recommendations on the clinical use
of ultrasound elastography: part 4. Thyroid. Ultrasound Med Biol.
2017;43(1):4-26.

7. Aigner F, Pallwein L, Junker D, Schäfer G, Mikuz G, Pedross F, et
al. Value of real-time elastography targeted biopsy for prostate cancer
detection in men with prostate specific antigen 1.25 ng/ml or greater
and 4.00 ng/ml or less. J Urol. 2010;184(3):913-917.

8. Hameed BZ, S. Dhavileswarapu AV, Raza SZ, Karimi H, Khanuja HS,
Shetty DK, et al. Artificial intelligence and its impact on urological
diseases and management: A comprehensive review of the literature. J
Clin Med. 2021;10(9):1864.

9. Checcucci E, Autorino  R, Cacciamani  GE, Amparore  D, De Cillis
S, Piana A, et al. Artificial intelligence and neural networks in urology: 
current clinical applications. Minerva Urol Nefrol. 2020; 72(1):49-57.

10. Prostate Cancer

11. Malakouti SM, Ghiasi AR, Ghavifekr AA, Emami P. Predicting
wind power generation using machine learning and CNN-LSTM
approaches. Wind Eng. 2022;46(6).

12. Malakouti SM, Ghiasi AR. Evaluation of the application of
computational model machine learning methods to simulate wind
speed in predicting the production capacity of the Swiss basel wind
farm. IEEE.2022;31-36.

The final results are shown in Figure 1 the Validation Curve for 
detecting prostate cancer. According to the shape of the accuracy of the 
training curve, it started from 0.925, and after the 4th stage of training, 
it reached 100 accuracies. The accuracy of the validation curve in all 
stages was about 91%. This showed that the proposed Random Forest 
algorithm detects sick and healthy people with a reasonable accuracy 
of 91%.

91% accuracy in diagnosing healthy and sick people by examining 100 
healthy and ill people is an outstanding accuracy.

Evaluating the suggested random forest algorithm's 
performance in comparison to other algorithms

The Table 2 classification of prostate cancer using the proposed 
Random Forest algorithm and other techniques was discovered that 
the suggested Random Forest Classifier algorithm provided superior 
classification results for prostate cancer than other techniques 
by contrasting its output with that of different machine learning 
algorithms.

Table 2: The categorization of prostate cancer using the suggested random 
forest algorithm and other methods.

Model Accuracy AUC. Recall Prec. F1 Kappa MCC
Time 
(Sec)

Random 
forest 

classifier
0.9125 0.9467 0.943 0.93 0.933 0.807 0.822 0.447

Ada boost 
classifier

0.9 0.9133 0.923 0.933 0.921 0.782 0.805 0.071

K 
neighbors 
classifier

0.875 0.915 0.867 0.947 0.895 0.743 0.768 0.113

Light 
gradient 
boosting 
machine

0.8625 0.9333 0.903 0.897 0.889 0.703 0.731 0.022

Figure 1: Validation curve for detecting prostate cancer with random 
forest. Note: ( ): Training score; ( ): Cross validation score.
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