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Abstract

Prostate cancer is the second most diagnosed cancer in men and current treatment of advanced prostate cancer
is ineffective. Immunotherapy has emerged as a promising treatment option for metastatic prostate cancer but its
clinical application is still in the early stages of development. In order to treat metastatic prostate tumors, new
directions must be taken to improve current immunotherapeutic strategies. These include the identification of
effective tumor antigens (Ags), the induction of the HLA class II pathway for Ag processing and CD4+ T cell
activation, and the ability of tumor cells to act like Ag presenting cells. In this review, we suggest a model for tumor
Ag selection, epitope modification and self-processing for presentation by class II proteins as a means of restoring
immune activation and tumor clearance. We also outline the importance of a Gamma-IFN-inducible Lysosomal Thiol
reductase (GILT) in Ag and modified peptide processing by tumor cells, generation of functional epitopes for T cell
recognition, and inclusion of immune checkpoint blockers in cancer immunotherapy. Taken together, this review
provides a framework for the future development of novel cancer vaccines and the improvement of existing
immunotherapeutics in prostate cancer.
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Introduction
Prostate cancer is the second most common diagnosed cancer in

men with close to 200,000 new cases reported in the US annually [1,2].
Strategies employed for treatment include hormone therapy, surgery,
radiation, and chemotherapy [2-4]. Though useful, these therapies
only allow temporary relief and have minimal long-term impact on
late-stage metastatic prostate cancer. This lack of effective treatment
opens the door to new options like immunotherapy, and combination
of chemotherapy and immunotherapy for the treatment of metastatic
prostate tumors [5,6]. Recently, US Food and Drug Administration
(FDA) approved a promising immunotherapeutic regimen for treating
metastatic hormone-refractory prostate cancer, the dendritic cell
therapy Provenge (Sipuleucel-T, Dendreon) [7-10]. Unfortunately, this
treatment strategy has shown only minimal increases in survival
outcomes limited to about 4 months, and has a hefty price tag
associated with it that isn’t without critique [11-13]. Some of the issues
associated with Provenge’s efficacy will be addressed in this review.
Recently, a phase 3 clinical trial assessing ipilimumab efficacy in
castration-resistant disease also showed no clear efficacy [14,15]. In
order to more effectively treat prostate cancer with immunotherapy
there are many factors that need to be addressed and improved before
it becomes a viable option [16]. These factors include the identification
of effective tumor associated antigen (TAA) that can activate both the
innate and adaptive immune system resulting in a strong immune
response and the development of immunological memory. Currently
most if not all immunotherapeutics are designed to induce antigen
(Ag)-specific cytotoxic CD8+ T cells (CTL). Less attention has been
given to the activation of CD4+ T cells although these cells play a

major role in initiating and maintaining CTL activity [17-19]. New
immunotherapeutic approaches must also address the problems
associated with Ag induced T cell tolerance, how to overcome cancer
cells’ poor Ag presentation capability, and how to prevent or reverse
the immune evasion mechanisms employed by prostate cancer cells.

First, an effective tumor derived Ag must be identified before a
suitable immunotherapeutic treatment can be established. Fortunately,
there are many good candidates for prostate tumor Ags; including
prostate specific antigen (PSA), prostatic acid phosphatase (PAP),
prostate specific membrane antigen (PSMA), telomerase, and survivin
[20-31]. Each Ag will be discussed in this review with the main focus
on PSMA and survivin. Our laboratory has previously shown cysteine
containing Ags are susceptible to cysteinylation which may lead to Ag
induced T cell tolerance [32], this topic will be discussed in more detail
in this review.

One of the pitfalls of current immunotherapeutic strategies is that
the therapies largely focused on the HLA class I pathway and CD8+ T
cell recognition of tumor cells. While this pathway is of great
importance as it is responsible for direct tumor killing through
cytotoxic lymphocyte activity, it cannot sustain a long-term immune
response and prolonged killing of tumors by itself, accounting for the
sporadic results of class I cancer vaccine trials [33]. Thus, the HLA
class II pathway should be considered in designing immunotherapy in
order to have a complete and sustained anti-tumor response. While
the importance of the HLA class II pathway has been well defined in
autoimmune diseases [34], cancer immunotherapeutics designed to
improve this system have been few and far between, with few
exceptions [26,35]. We have recently shown that prostate cancer cells
express HLA class II molecules that can be recognized by CD4+ T cells
[36]. In this review, we propose a framework for including both class I
and class II pathways in future prostate cancer immunotherapy
through careful selection of tumor Ags, understanding of
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cysteinylation in epitope modification, and the presence of gamma-
interferon-inducible lysosomal thiol reductase (GILT) in tumor Ag
processing and presentation. We have previously shown that the
induction of GILT into melanoma cells increases their ability to
behave like professional antigen presenting cells (APCs) [37], and if
prostate cancer cells could be likewise effectively turned into APC
through the introduction of GILT, then the efficiency of
immunotherapy would improve greatly. This information when put
together may provide a good framework for the design of new
generation immunotherapeutics against metastatic prostate cancer.

Prostate Cancer Associated Ags
There are many identified potential prostate tumor associated

antigens (TAA) that could be exploited for immunotherapy. Table 1
highlights a few important prostate TAAs that have received attention
for use in prostate cancer immunotherapy [26,28,31,38,39]. PSA is one
of the first discovered prostate tumor derived Ags, and has direct
implications in the clinical setting as PSA levels are monitored as a
means of staging cancer progression and testing therapy efficacy.
However, PSA-based prostate staging and detection is not perfect as
there are issues with false positive results [40,41]. Much research has
been directed at manipulating PSA, including the prostate cancer
vaccine PSA-TRICOM (Prostvac), which showed an improvement of
overall survival in a phase II clinical trial [42,43], and a phase III
randomized trial is underway. PAP also has clinical significance and
has been used recently in Ag loaded APC immunotherapy clinical
trials [44]. PAP is found in both secretory and cell-associated forms
and is present in normal prostate tissue, and to some extent in other
body tissue [24]. Cellular PAP is down-regulated in carcinomas while
the serum concentration of PAP increases dramatically and until the
advent of PSA as a better marker, PAP was used as a serum marker for
prostate cancer [39]. It is thought that PAP has growth suppressing
factors that cancer cells down regulate to improve division increasing

the amount of shed PAP in serum through malignant disruption of
prostate epithelium [45]. PAP is also used as a fusion protein coupled
with GM-CSF in the dendritic cell (DC) therapy Provenge [7]. Though
results of Provenge clinical trials display a 4 month survival advantage
over chemotherapy alone, there are some issues with its design and
application. The procedure requires isolation of patient DC for co-
stimulation ex vivo with the PAP-GM-CSF protein where GM-CSF
targets the GM-CSF-receptor expressing DC allowing for
internalization and processing of PAP for display when re-injected
into the patient [42]. Upon re-injection, this DC-presented PAP
peptide can stimulate T cells mounting an antitumor immune
response. However, this response is not seen in every patient and the
durability of the immune response is also questionable given the low
time to progression (TTP) rates observed (Provenge TTP 11months,
control arm 10 months) [42]. Possibly, the selection of PAP as the
target Ag may limit this technique’s efficacy and through selection of
more immunogenic peptides, or through the application of multiple
prostate specific peptides, a more substantial response might be
observed. Prostate stem cell antigen (PSCA) has also been investigated
as TAA or biomarker for diagnosis and therapy of malignant prostate
tumors [46]. PSCA is a cell-surface glycosylphosphatidylinositol-
anchored protein expressed in prostate as well as other malignancies.
Studies suggest that PSCA is highly expressed in majority of human
prostate cancer, and could be associated with transformation of
prostate cells and tumorigenesis [47,48]. Thus, PSCA is thought to be
an important target in advanced prostate cancer. Recently, PSCA has
shown clinical potential in immunotherapy because this TAA is
presented by dendritic cells to induce strong antitumor immunity.
PSCA antibody-based immunotherapy has also shown some promise
in mouse model of prostate cancer [49]. While HLA class I-restricted
PSCA epitopes have been identified and shown to enhance CD8+ T cell
responses [50], the nature of HLA class II-restricted PSCA epitopes in
eliciting CD4+ T cell responses remain unclear.

Name Functions

Prostate Specific Antigen (PSA)

Used as detection marker for prostate cancer.

Tried in multiple immunotherapy vaccines.
HLA class II epitopes have been identified in mouse models.

Prostatic Acid Phosphatase (PAP, PAcP)

Predates PSA as screening marker, particularly in cases of bone metastasis.
HLA class II epitopes have been identified.
Used as fusion protein with GM-CSF in Provenge DC therapy.

Prostate Specific Membrane Antigen (PSMA)

Membrane bound protein with increased expression in prostate cancer. Used as target for in vivo imaging and
therapy techniques using monoclonal antibodies.
HLA class II immunodominant epitope identified.

Telomerase (TERT, hTERT)

Increases telomere length leading to tumor progression and unchecked cell division.
TERT protein has been identified as immunoreactive in TRAMP mouse model of prostate cancer.
No HLA class II epitopes identified at this point.

Survivin (SVN, SUR)

Inhibitor of apoptosis in prostate cancer leading to increased cell division. HLA class II epitopes have been
identified.
Subject of multiple ongoing immunotherapy vaccine strategies.

Prostate stem cell antigen (PSCA)

Cell-surface, glycosylphosphatidylinositol-anchored protein expressed in prostate cancer.
PSCA is a target for peptide and antibody based therapy.

No HLA class II epitopes identified at this point.

Table 1: Prostate cancer tumor associated antigens for immunotherapy.

PSMA is produced by normal prostate epithelial cells at low levels
[20], but is over- expressed in metastatic prostate carcinomas. PSMA is
a ubiquitous cancer Ag expressed in many different cancers not just

prostate; such as breast, ovary, kidney, and lung making it a good
target for immunotherapy as it has broad specificity [26]. The
immunodominant epitope of PSMA, PSMA459, has also been isolated
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and shown to induce both CD4+ and CD8+ responses [26]. These
factors make PSMA a good target for prostate cancer immunotherapy.
Work performed by Schroers and Shen et al. identified the class II-
restricted dominant epitope of PSMA and it represents an ideal
method for Ag selection [26]. In their study, TEPITOPE software was
used to predict potential promiscuous HLA-DR- binding regions [26].
From this, six sequences with the PSMA amino acid structure were
found to have promiscuous HLA-DR binding: PSMA17, PSMA100,
PSMA206, PSMA459, PSMA576, and PSMA730 [26]. These peptides were
then synthesized and analyzed for their ability to elicit a CD4+ T cell
response from Peripheral Blood Mononuclear Cells, (PBMCs) donated
by varying DR typed healthy individuals, including DR1, DR4, DR7,
and DR11 [26]. All six peptides were found to be reactive but under
statistical scrutiny only four of the six peptides, PSMA206, PSMA459,
PSMA576, and PSMA730, were selected as potential CD4+ T cell
epitopes [26]. From this study, the group found that only PSMA459
represented a naturally processed HLA class II-restricted epitope
defining it as the immunodominant epitope [26]. This strategy of Ag/
epitope discovery could be exploited for other prostate tumor Ags that
may have a better defined role in tumor survival such as telomerase
and survivin.

Telomerase is a transcriptase responsible for telomere length that is
found in about 90% of all cancers [30]. Telomerase has been shown to
be vital to the immortalization of cancer cells as it allows tumors to
proliferate without undergoing apoptosis or cell degradation [51].
When present in tumor cells the telomerase generated protein TERT is
processed and presented through the HLA class I pathway and is
capable of stimulating CD8+ T cells [38]. The telomerase vaccine
GV-1001 has seen the most widespread testing of a telomerase based
immunotherapy, displaying a preferential toxicity profile in stage I/II
clinical trials in pancreatic cancer patients [51]. Unfortunately, results
have only shown a 50-80% response rate, with little clinical benefits
[51]. However, these results are preliminary and given TERT’s almost
exclusive expression in tumor cells make telomerase an ideal target for
prostate cancer therapy but more work is needed, as current
investigation is in its infancy [38]. Like telomerase, survivin is a vital
element to cancer cell survival and a good target for prostate cancer
immunotherapy. Survivin is an anti-apoptotic protein overexpressed
by many different cancers, including breast, brain, melanomas, many
leukemias and lymphomas, colorectal, and prostate [52,53]. Survivin is
also extremely low or undetectable in normal healthy tissues and is
mainly found in thymocytes, bone marrow derived hematopoietic
cells, basal colonic epithelial cells, and activated endothelial cells [54].
Survivin acts by blocking mitochondrial-dependent caspase 9 activity,
preventing programmed cell death [27,54].

Through inhibition of apoptosis and increased cell division,
survivin also plays an important role in the formation of a tumor’s
mass and ultimately advanced staging of prostate cancer with a poor
prognosis [54]. However, since survivin seems to play such an
important role in cell division and appears to be necessary to tumor
cell survival, if it can be exploited then immunotherapy aimed at
survivin would be effective at any stage of prostate cancer and in many
different types of cancer [55]. Unlike PSMA, the immunodominant
epitope of survivin has yet to be defined. Much work has been done to
find immunodominant epitope(s) in cancer and there are many
potential candidates [27]. Survivin also possesses HLA class I and II-
restricted epitopes, and have been shown induce robust CD4+ T-cell
responses in the majority of vaccinated cancer patients [56,57]. In
studies carried out by Wang et al. [57], given survivin’s short length
(142 amino acids), a set of 27 overlapping peptides encompassing the

entire sequence was synthesized and analyzed through binding assays
specific to HLA-DR and HLA-DP4 molecules [27]. In order to
improve epitope binding potential each peptide overlap was designed
to contain one aliphatic or aromatic residue in one of its first 5
positions as DR and DP4 binding specificity calls for [27]. The study
then rated each peptides binding capacity for specific DR and DP4
alleles, illustrating that some peptides were allele specific and others
had broad specificity across DR alleles [27]. Next, alleles with broad
specificity were assessed for their ability to elicit a T cell response in
healthy donor PBMCs. This study showed that specific class II-
restricted survivin epitopes were able to generate a CD4+ T cell
response, but an immunodominant epitope was not identified as the
study focused more on immune prevalence than dominance [27].
Instead, a list of potential peptides (survivin peptides 17-31, 90-104,
96-110, 128-142) to be included in cancer vaccine studies was given
based on their immune prevalence and ability to elicit both a CD4+

and CD8+ response [27]. Whether or not these specific peptides prove
to be the immunodominant epitope is less relevant than the fact that
this study identified potential class II-restricted epitopes that could be
exploited in prostate cancer immunotherapy. This initial work on
immune regulation could serve as the foundation for potential prostate
cancer vaccine trials that look to elicit a complete HLA class I and
HLA class II immune response.

Cysteine Reduction of Tumor Ags and Peptides
In order to be fully effective, some antigenic peptides must be

internalized and processed by APCs. These peptides seem to have a
common feature, in that they usually contain one or more cysteine
residues [58]. Cysteines in antigenic proteins or peptides are
susceptible to cysteinylation reactions which occur spontaneously
when the cysteine interacts with cystine in body fluid forming a cystine
dimer. These reactions can take place outside of the cell prior to
internalization into endocytic compartments. Cysteinylation is an
oxidation reaction that changes the conformation of the protein/
peptide through the formation of disulfide bonds which expose new
binding domains of HLA class II Ags to APCs. This phenomenon has
been investigated previously by our group, showing that the cysteine-
containing protein Ags/peptides alter T cell response to class II
epitopes [59].

Cancer cells load their surface HLA molecules with cysteinylated
peptides as ligands as a way to avoid T cell recognition inducing
tolerance. Once this occurs, the peptide is effectively muted and once
loaded onto the HLA molecules, cysteinylation is irreversible. Our
laboratory has documented that cancer cells display deficient Ag
processing capability [60], potentially leading to their poor Ag
presentation and minimal T cell response to tumor derived Ags that
contain cysteine residues [61]. PSMA459 is one such peptide that
contains a central cysteine residue and could be cysteinylated by
cystine in body fluid. The presence of a reductase, GILT, in cancer cells
may reduce the cysteinylated PSMA peptide(s) back to its functional
form, leading to enhanced immune recognition and tumor clearance
(Figure 1). We have recently shown that prostate cancer cell lines as
well as primary prostate tumors express detectable levels of class II
molecules. As shown in Figure 1, prostate cancer cells that naturally
express PSMA may interact with free floating cystine in body fluid as
PSMA is a membrane bound protein. Following internalization of this
peptide and endosomal processing, bound cysteine residues will fail to
be reduced in the absence of the thiol-reductase GILT. This could
result in the presentation of cysteinylated peptides that are unable to
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stimulate CD4+ T cells aiding in immune avoidance. The cysteinylated
peptide that binds to HLA class II molecules with a higher affinity is
nearly impossible to modify or reverse. However, as seen in other
tumors, the introduction of GILT in prostate cancer cells may
overcome inefficient processing of cysteinylated peptide(s) by
reducing peptides in the acidic endosomal and lysosomal
compartments. A functional class II- PSMA complex may then be
formed on the cell surface to elicit a better CD4+ T cell response. This
finding suggests that a novel method of tumor Ag derivation could be
achieved through the introduction of GILT in prostate cancer cell lines
or in primary prostate tumors. These cells could then process prostate
tumors Ags either endogenously during culture or through co-
incubation with target Ags. Peptides derived from this Ag would differ
from the naturally occurring tumor Ags and could be re-introduced
into the patient following cancer cell irradiation to prevent further
growth or division as a means of stimulating an immune response.
This whole-cell cancer vaccine approach has been utilized in the past,
most notably in the form of the GVAX vaccine. In this approach,
transfected prostate cancer cell lines (PC-3 and LNCaP) have been
used to express high levels of GM-CSF that could non-specifically
boost DC anti-tumor activity when re-introduced into the patient [42].
Following promising phase I/II clinical trials, GVAX was tested in a
large phase III clinical trial in combination with chemotherapy against
conventional chemotherapy alone [42]. Unfortunately, GVAX clinical
trials were halted due to an increased number of deaths observed in
the GVAX arm versus the chemotherapy control arm [42,62]. To
avoid these issues with whole-cell cancer vaccines, an alternative use of
GILT-transfected cells could be explored with identification of novel
tumor Ags derived from GILT-expressing cells that could be used in
protein/peptide vaccine strategies.

Figure 1: A schematic diagram showing possible cysteinylation of
PSMA protein and reductive cleavage of PSMA by GILT in prostate
cancer cells. The prostate specific membrane protein PSMA or its
peptides can be oxidized in the presence of cystine in bodily fluid
and that Ags/peptides remain non-functional in the absence of
reductive processing by GILT. The results of which could be a
differential selection and display of HLA class II-peptide complexes
on the surface of prostate cancer cells, lowering CD4+ T cell
recognition. The introduction of GILT in prostate cancer cells may
lead to reduction and processing of the cysteinylated Ags/peptides,
restoring functional PSMA presentation and improved CD4+ T cell
recognition of prostate tumors.

HLA Class II Processing in Prostate Cancer Cells
HLA class II protein expression in prostate cancer cells has been an

issue of contention in recent years, adding to the limited study of class
II vaccine strategies for prostate cancer. Previous study by Nanda et al.
showed variable HLA class I and class II expression in human and
mouse prostate tumors as well as localized to the tumor
microenvironment [63]. Their study also showed strong correlation
between HLA class I and class II expression rates between transgenic
andenocarcinoma of the mouse prostate (TRAMP) tumors and human
prostate tumors [63]. They concluded that while HLA class I is
expressed on tumors, HLA class II is only present in hematopoietic
lineage cells in the microenvironment [63]. These results could be due
to differences in altered expression of the HLA class II master
regulatory gene, class II transactivator (CIITA), which also governs
HLA-DM and invariant chain (Ii) expression, and are also altered in
prostate cancer cells [36]. Mishra et al. recently found aberrant CIITA
gene expression in prostate cancer cell lines related to increased
methylation rates, potentially leading to the observed changes in HLA
class II protein expression [64]. However, our own study reported
stable class II protein expression in human prostate cancer cell lines
capable of directly activating T cells, suggesting that the HLA class II
pathway should be taken into consideration for future prostate cancer
vaccine design [36].

The class II molecule itself is an αβ heterodimer synthesized in the
endoplasmic reticulum and expressed on the surface of professional
APCs and to some degree on cancer cells [63]. The HLA complex is
transported from the endoplasmic reticulum through the trans-Golgi
apparatus to the acidic endosomal and lysosomal compartments where
class II is processed and loaded with antigenic peptides. These acidic
compartments are home to a variety of cathepsins and reductases that
further refine antigenic peptides into smaller ligands that are now
capable of HLA class II loading and presentation by APCs to CD4+ T
cells [37,65,66]. This is also the site where reduction of cysteinylated
peptides may occur and where GILT’s influence improves Ag
processing and epitope generation. Once the class II-peptide complex
is formed, it is transported to the cell surface for presentation to CD4+

T cells. Our laboratory has recently shown that class II protein
expression is significantly increased in prostate cancer cells if they are
cultured in hormone enriched media [36]. Thus, HLA class II-
restricted prostate tumor Ags must be selected for therapy that can
also induce a helper response not just a HLA class I response. Tumor
cells themselves also need to be manipulated in order to improve their
HLA class II processing and direct presentation ability. Cancer cells
cannot functionally process and present antigenic peptides in the same
way that professional APCs do, this is thought to aid in the immune
evasion of cancer cells. The majority of cancer cells do not express or
express very low levels of GILT, altering their Ag processing capability
[36]. Cancer cells also lack co-stimulatory molecules like CD80 and
CD86 that are vital to improving the fit of T cell receptors with the
class II-ligand complex [17]. The absence of these factors inhibits the
effect of CD4+ T cells and limits the efficacy of immunotherapy [67].

HLA class II-restricted CD4+ T cells play a vital role in providing
help to B cells in immunoglobulin switching and affinity maturation,
activation and prolonged stimulation of CD8+ cytotoxic lymphocytes,
and in expanding and persisting memory cells [68]. CD4+ T cells can
also directly kill pathogens through release of cytokines and through
cell-mediated cytotoxicity [69]. The most important characteristic of
CD4+ T cells in immunotherapy being their ability to sustain a
cytotoxic CD8+ T cells response, as shown in Figure 2.
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Figure 2: HLA class II-restricted helper CD4+ T cell responses can
prolong CD8+ CTL activity. (A) CD8+ T cells recognize HLA class
I-peptide complexes on tumor cells and directly kill cancer cells,
reducing tumor burden. However, this reaction is not sustained for
very long and the remaining tumor mass may continue to divide
and progress. (B) Tumor cells that express HLA class II proteins or
are induced to express class II proteins, can stimulate CD4+ T cells
resulting in prolonged CD8+ CTL response and sustained tumor
killing through the release of cytokines and immune stimulatory
molecules.

After a brief CTL response, CD8+ T cells die off and their tumor
killing ability is lost until a new re- stimulation incident occurs. When
CD4+ cells are stimulated and maintained, the CD8+ responses are
sustained for long periods of time, improving the anti-tumor response,
and potentially leading to the development of long-lasting
immunological memory against tumor Ags. Recent studies have also
shown the direct requirement for competent HLA class II pathway
stimulation in the reduction of HLA class I-mediated response for an
effective immunotherapy approach [18,70,71]. Furthermore,
secondary stimulation following HLA class II-T cell receptor binding
through co-stimulatory molecules is required for complete T cell
stimulation. Strategies to boost co-stimulatory molecules in tumor
vaccines would aid in T cell activation improving tumor reduction.
One prostate cancer vaccine known as PROSTVAC (which consists of
viral vectors expressing PSA) has recently been used to induce an
immune response followed by a TRICOM vaccination for co-
stimulatory signals that boost the anti-tumor immune response [42].
Clinical trials using PROSTVAC-TRICOM showed proof of principal
with increased immune activation and a limited toxicity profile
[42,43]. However, some issues arise from anti- vaccinia immune
responses which could be counterproductive and may limit the use of
viral vectors in vaccine design. Also, work performed in the laboratory
of Susan Ostrand-Rosenberg has highlighted the importance of HLA
class II vaccination strategies with increased expression of CD80
costimulatory molecules [17,72]. In their studies, tumor cells
transduced with costimulatory molecules in the presence or absence of
additional HLA class II molecules and the invariant chain (Ii), were
capable of producing novel tumor-derived Ags and subsequent
stimulation of CD4+ T cells [67]. Following the same vaccine design,
GILT could also be transfected into HLA class II-positive prostate
cancer cells with or without co-stimulatory molecules for the

generation of tumor Ags due to GILT’s ability to increase acidic
protease activity and Ag processing [37]. These studies also support
the idea of modifying HLA class II pathway molecules as a means of
generating novel pool of antigenic peptide repertoire. While prostate
tumors express extremely low to undetectable levels of GILT,
professional APCs express moderate to high levels of this protein in
the host, which may alter HLA class II Ag presentation in the tumor
microenvironment. The expression of GILT in the tumor
microenvironment could also be altered upon chemotherapy or
radiation therapy, and this should be analyzed carefully when
designing immunotherapeutics. In any case, direct Ag presentation by
tumor cells is very important and could be improved by upregulation
of GILT and HLA class II proteins in the tumor as well as APCs in the
tumor microenvironment. Alternatively, GILT DNA could be inserted
in HLA class II positive prostate tumors and be tested as a whole-cell
vaccine in boosting antitumor immune responses in the host.

GILT’s Role in Ag Processing and T cell Recognition
Present throughout this review is the idea that tumor cells

themselves add to the difficulty in developing effective
immunotherapeutics. Their immune evasion mechanisms are so
complex and diverse, and this review has only focused on remaking
tumors as better targets for T cells. We have previously discussed how
cysteinylation plays a role in immune evasion through oxidation
reaction and differential display of peptides to T cells. Once this
occurs, a reducing agent is needed to restore peptide functionality, one
such reducing agent is GILT [73]. We and others have shown that
GILT is an enzyme abundantly expressed by professional APC but is
almost completely absent or expressed at very low levels in cancer cells
[58,74]. The absence of GILT could result in incomplete processing of
endogenous and exogenous Ags resulting in the display of a
differential Ag repertoire on the surface of cancer cells [37,66].
Furthermore, the presence of GILT in tumor cells may enhance
processing of cysteinylated peptides and aid in improved T cell
activation and cancer cell recognition. GILT accomplishes this in the
acidic endosomal and lysosomal compartments where HLA class II Ag
processing and loading of peptide takes place [66,75]. In this
compartment, GILT acts by enhancing and localizing the activity of
cysteinyl and aspartyl cathepsins which are important proteases in
peptide cleavage and folding [37,73]. Studies in melanoma have shown
GILT’s ability to increase cathepsin activity and enhance Ag
processing and presentation resulting in increased CD4+ T cell
stimulation [37]. Though prostate tumors present more issues to
immunotherapy than melanoma, preliminary studies in our laboratory
have shown GILT insertion enhances HLA class II- restricted Ag
presentation in prostate cancer cell lines (unpublished data). Given
GILT’s role as a key element to Ag processing and epitope generation,
if GILT can be effectively transfected into or upregulated by other
means in prostate cancer cells then cancer cells could be restored back
to their normal Ag presentation capability, increasing the effectiveness
of prostate cancer immunotherapeutics and decreasing tumor immune
evasion. Our laboratory is currently investigating this hypothesis and
developing the strategies necessary for improved cancer
immunotherapy. Although activation of the HLA class II pathway is
important, the expression of immune-checkpoint proteins such as
CTLA-4, PD-1 and PD-L1 [76,77] can be dysregulated by prostate
tumors and escape immune recognition. Thus, inhibitors of these
immune checkpoints specially monoclonal antibodies that block these
proteins could be combined in designing prostate cancer
immunotherapy. This review suggests that a combination therapy
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using timulants of the HLA pathways and immune checkpoint
blocker(s) could be useful in inducing trong antitumor immune
responses in the host.

Conclusions
In this review, we have discussed several immune evasion and

restoration strategies that would definitely advance the field of prostate
cancer immunobiology and immunotherapy. An outline for the
selection of prostate tumor associated Ags is illustrated, highlighting
the need for HLA class II-restricted tumor Ags inclusion in cancer
vaccine studies. We have shown the importance of cysteinylation and
its role in HLA class II-restricted epitope modification and Ag-
induced T cell tolerance. The importance of the HLA class II pathway
in designing novel immunotherapeutics has also been discussed and a
case is made for its inclusion in future vaccine studies. GILT’s role in
Ag processing and presentation has been reviewed to suggest how its
manipulation could restore the Ag presenting characteristics of tumor
cells. Inclusion of immune checkpoint blockers in designing
immunotherapeutics is also discussed. Finally, these factors when
taken together can be applied to improve the efficacy of immune
responses against prostate cancer and may help shape new directions
for future cancer vaccine development.
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