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neoplastic disease in children [29] and is well characterized in this 
age group. Stromal precursor cells of ALL patients have also been 
studied and their functional changes were previously identified [14,15]. 
However, the state of the stromal microenvironment in adult ALL 
patients has not been studied in detail.

This study examines the elements of the MSCs compartment 
including the multipotent mesenchymal stromal cells (MMSCs) [30] 
and CFU-F in patients with ALL before and after allo- HSCT.

Materials and Methods
ALL patients and healthy donors

This study included 15 ALL patients (Table 1) with the following 
immunophenotypes: Pro-B (1 patient), Pre-B (4 patients), B common 
(5 patients), Mature B (2 patients), T (1 patient), and Pro -T (2 patients). 
The age of the patients ranged from 18 to 39 years (median age 28.6 
years). Bone marrow (BM) was obtained during routine diagnostic 
aspiration after receiving the patients’ informed consent. The routine 
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Introduction
Hematopoiesis is supported in adults by a stromal microenvironment 

consisting of mesenchymal stem cells (MSCs) and their descendants 
that include fibroblast Colony-Forming Unit (CFU-F) progenitors 
of intermediate maturity and specialized differentiated cells. MSCs 
are stem cells with the capacity to differentiate into all elements 
of the stromal microenvironment [1]. More mature descendants 
of MSCs such as CFU-F are able to maintain hematopoiesis by 
differentiating into osteogenic and adipogenic lineages [2,3]. The 
stromal microenvironment has higher radio- and chemoresistance than 
hematopoietic cells because of its low self-renewal frequency [4].

The stromal microenvironment is often damaged in patients with 
hematological diseases [5-8]. The following changes in the stromal 
microenvironment of acute leukemia patients were previously 
described: disturbances of signaling pathways [9], genetic abnormalities 
[10-12] and functional changes [13-15]. Alterations in the stromal 
microenvironment were also observed in chronic leukemia patients 
[16,17], myelodysplastic syndrome patients [18,8,12,19], and multiple 
myeloma patients [7]. However, other investigators have not found 
pathological changes in the stromal microenvironment of acute and 
chronic leukemia patients [20,21]. The treatments for patients with 
hematological malignancies include high doses of cytotoxic drugs 
and allogeneic hematopoietic stem cell transplantation (allo-HSCT). 
Both chemotherapy and pretransplant conditioning affect stromal 
progenitor cells [22-25]. A damaged stromal microenvironment may 
impair hematopoiesis in patients after allo-HSCT [26-28].

Acute lymphoblastic leukemia (ALL) is the most common 
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Abstract
The bone marrow stromal microenvironment that regulates normal hematopoiesis suffers during leukemia 

development and its treatment. In this study, we examined Multipotent Mesenchymal Stromal Cells (MMSCs) 
and fibroblast colony-forming units (CFU-F) derived from the Bone Marrow (BM) of 15 adult patients with acute 
lymphoblastic leukemia (ALL) before and after allogeneic hematopoietic stem cell transplantation (allo-HSCT). The 
time points assessed after allo-HSCT were defined by the treatment protocol. The analogous cells obtained from 
the BM of 64 healthy donors were used as controls. The ability of MMSCs to proliferate, concentration of CFU-F in 
BM, and gene expression in both cell types were assessed. The data indicate that MMSCs of ALL patients before 
allo-HSCT did not differ from MMSCs of healthy donors either in cumulative cell production or in gene expression 
except for SDF1. The SDF1 expression was decreased 2-fold in the MMSCs of ALL patients. The MMSC cumulative 
cell production from ALL patients was significantly decreased during 1 year after allo-HSCT. The expression level 
of SDF1 was also downregulated during the observation period. We identified changes in the FGF2 and PDGF 
signaling pathways. The CFU-F analysis revealed that its concentration in the BM of ALL patients had been 
profoundly decreased for the whole year after allo-HSCT. This decrease was accompanied by the downregulation 
of FGFR1 and slight upregulation of differentiation marker gene expression. Thus the number of stromal precursor 
cells decreased and their ability to regenerate was depressed after allo-HSCT. These changes were accompanied 
by an increase of more mature precursor cells with reduced proliferative potential.
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Analysis of CFU-F
Mononuclear BM cells were seeded at 106 and 5 × 105 per T25 flask in 
alpha -MEM with 20% fetal calf serum (Hyclone), 2 mM L- glutamine 
(ICN), 100 U/ml penicillin (Ferein), 50 mg/ml streptomycin (Ferein) 
and analyzed after 14 days. The colony count was performed using a 
microscope (Opton, Oberkochen , Germany) after staining the cells 
with 1% crystal violet in 20% methanol.

RNA isolation and quantitative reverse transcription-
polymerase chain reaction

Total RNA was extracted from the MMSCs at passage 1 using 
the standard guanidine isothiocyanate method [32]. The cDNA was 
synthesized using a mixture of random hexamers and oligo(dT) primers. 
Gene expression levels were quantified by real-time quantitative PCR 
(qRT-PCR) using hydrolysis probes (Taqman) on a Rotor-Gene 6000 
(Corbett Research, Concorde, USA). The gene-specific primers were 
designed by the authors and synthesized by Syntol R&D (Moscow, 
Russia). The primers and probes are provided in (Table 2). The relative 
gene expression levels were determined by normalizing the expression 
of each target gene to the levels of BACT (beta- actin) and GAPDH 
(glyceraldehyde -3- phosphate dehydrogenase) and calculated using the 
ΔΔCt method [33] for each MMSC sample. The reaction was conducted 
using the following PCR protocol: initial denature at 95 oC for 10 min, 
cyclic denaturation at 95 oC for 20 sec, hybridization with primers and 
template extension at 60 °C for 60 sec. 

Statistical analysis
All values are expressed as the means ± SEM. The data were analyzed 

using independent Student’s t-tests in Microsoft Excel.

Results and Discussion
Cell production in MMSC cultures from ALL patients

The total cell production of MMSCs derived from ALL BM prior 
to allo-HSCT conditioning was not significantly different than BM 
from healthy donors (Figure 1). At the moment of allo-HSCT, 14 of 15 
studied patients were in remission after treatment with the standard 
protocol ALL-2009 and 1 patient was in relapse. There were 2 patients 
with Ph+ ALL that received additional tyrosine kinase inhibitor therapy. 
Thus, the treatment protocol used did not inhibit MMSC proliferation. 
Notably the total MMSCs cell production from the patient in relapse 

diagnostic aspiration was performed prior to conditioning and at +30, 
60, 90, 120, 180 and 365 days after allo- HSCT.

BM samples were analyzed from 64 healthy donors and included 
34 men and 30 women aged from 18 to 59 years (median-34 years). All 
BM samples were obtained during exfusion for allo-HSCT in the FGBU 
Hematological Scientific Center after receiving the patients’ signed 
informed consent. These samples were used as controls. Characteristics 
of ALL patients are shown in (Table 1).

MMSCs cultivation

MMSCs were derived from 5-10 ml of the BM cells. To obtain 
mononuclear cells the BM was mixed with an equal volume of alpha-
МЕМ (ICN, Costa Mesa, USA) media containing 0.2% methylcellulose 
(1500 cP, Sigma-Aldrich, St. Louis, USA). After 40 min, the erythrocytes 
and granulocytes had precipitated and the mononuclear cells remained 
in suspension. The suspended (upper) fraction was aspirated and 
centrifuged for 10 minutes at 450 × g. 

The cells from the sediment were resuspended in a standard 
cultivation medium composed of alfa-MEM supplemented with 
10% fetal calf serum (Hyclone, Waltham, USA), 2 mМ L-glutamine 
(ICN), 100 U/ml penicillin (Ferein, Moscow, Russia) and 50 mg/ml 
streptomycin (Ferein). The cells were cultured at 3 × 106 cells per T25 
cm2 culture flask (Corning-Costar, Tewksbury, USA). When a confluent 
monolayer of cells had formed (passage 0), the cells were washed with 
0.02% EDTA (ICN) in a physiologic solution (Sigma-Aldrich) and then 
trypsinized (ICN) with 0.25% trypsin (ICN). The cells were seeded at 
4 х 103 cells per cm2 in culture flasks. The cultures were maintained at 
37°C in 5% CO2.  MMSCs were cultured until the second passage.  

All MMSCs were immunophenotyped as described [31] with the 
following markers: CD105, CD73, CD45, CD34, CD14, and HLA-
DR using standard protocols. The antibodies were purchased at BD 
Pharmingen, Franklin Lakes, USA (CD105, CD59, CD73, CD90, CD31, 
CD34 and CD14), Sigma, St. Louis, USA (CD45, FSP) and DAKO, 
Glostrup, Denmark (HLA-DR). The level of nonspecific antibody 
binding was analyzed using a mouse immunoglobulin IgG1 isotype 
control (BD Pharmingen, Franklin Lakes, USA). To assess viability the 
cells were stained with 7 -aminoactinomycin D (7-AAD), (Sigma). The 
analysis was performed on a FACSCanto II (BD Biosciences, Franklin 
Lakes, USA) and the results were analyzed with BD FACSDiva 6.1.3 
software (Franklin Lakes, USA).

Patient Age/gender Diagnosis Treatment before allo-HSCT Conditionoing regimen
1 Sch 36/female Pre-B* ALL-2009+ glivek Busulfan+cyclophosphan
2 Elm 22/male T ALL-2009 Busulfan+cyclophosphan
3 Gor 35/male T ALL-2009 Busulfan+cyclophosphan
4 Nic 39/male B * ALL-2009+ glivek Busulfan+cyclophosphan
5 Vas 24/male B com ALL-2009 Busulfan+cyclophosphan
6 Zey 37/male B com ALL-2009 FLAMSA mod
7 Теs 18/male ALL-BFM-90m Busulfan+flurad+ATG
8 Bor 29/male Pre-B ALL-2009 Busulfan+cyclophosphan
9 Che 28/male Pre-B ALL-2009 Busulfan+cyclophosphan
10 Isi 22/male Pro-B ALL-2009 Busulfan+cyclophosphan
11 Chr 33/female Pre-B ALL-2009 Busulfan+cyclophosphan
12 Bul 24/male B com* Hoeltzer95 Busulfan+cyclophosphan +ATG
13 Kor 25/female B with myeloid markers ALL-2009 Busulfan+cyclophosphan
14 Rak 38/male Pro-T ALL-2009 Busulfan+cyclophosphan
15 Vor 24/male B com ALL-2009 Busulfan+cyclophosphan

Table 1: Characteristics of acute lymphoblastic leukemia (ALL) patients
*Indicate Ph+ positive patients; FLAMSA (consisting of one dose of fudarabine, amsacrine and ara-C for four days), ATG (Anti-thymocyte globulin), Flurad (fluradabine).
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Gene  Sequence

b-ACTIN
Forward primer CAA CCG CGA GAA GAT GAC C
Reverse primer CAG AGG CGT ACA GGG ATA GC

Probe ROX-AGACCTTCAACACCCCAGCCATGTACG-RTQ2

GAPDH
Forward primer GGT GAA GGT CGG AGT CAA CG
Reverse primer TGG GTG GAA TCA TAT TGG AAC A

Probe ROX CTC TGG TAA AGT GGA TAT TGT TGC CAT CA RTQ2

BMP-4 
Forward primer ACAGCACTGGTCTTGAGTATC
Reverse primer TGGGATGTTCTCCAGATGTTC

Probe FAM- AACACCGTGAGGAGCTTCCACCA -RTQ1

IL6
Forward primer ACCTGAACCTTCCAAAGATG
Reverse primer CTCCAAAAGACCAGTGATGA

Probe FAM-ATTCAATGAGGAGACTTGCCTGGTG-RTQ1

CFH
Forward primer TTACCCTTACAGGAGGAAATGT
Reverse primer GCTGTCACTGGTAAACACTTC

Probe FAM-CTTCACATATAGGAATATCATTGGTCCAT-RTQ1

IDO1
Forward primer AGCGTCTTTCAGTGCTTTG
Reverse primer GGATTTGACTCTAATGAGCACA

Probe FAM-ACATGCTGCTCAGTTCCTCCAGG-RTQ1

PTGES
Forward primer CTGGTCATCAAGATGTACGTG
Reverse primer CTCCGTGTCTCAGGGCAT

Probe FAM- CTTCTTCCGCAGCCTCACTTGG-RTQ1

CSF1
Forward primer AGGAACTCTCTTTGAGGCTG
Reverse primer CATTCTTGACCTTCTCCAGCA

Probe FAM-CTTGTCATGCTCTTCATAATCCTTGG-RTQ1

FABP4
Forward primer ATGATAAACTGGTGGTGGAAT
Reverse primer TCAATGCGAACTTCAGTCC

Probe FAM-TGGCTTATGCTCTCTCATAAACTCTCG-RTQ1

PPARG
Forward primer TACTGTCGGTTTCAGAAATGC
Reverse primer CAACAGCTTCTCCTTCTCG

Probe FAM-CCATCAGGTTTGGGCGGATGCC-RTQ1

SPP1 
Forward primer ATAGTGTGGTTTATGGACTGAG
Reverse primer ATTCAACTCCTCGCTTTCC

Probe FAM-CCAGTACCCTGATGCTACAGACGAG-RTQ1

BGLAP
Forward primer GCAGCGAGGTAGTGAAGAG
Reverse primer GAAAGCCGATGTGGTCAG

Probe FAM-CTCCCAGCCATTGATACAGGTAGC-RTQ1

JAG1
Forward primer ATAAAGTCCTTCCCGCTG
Reverse primer TTATCTTCTCCCATCATTAAG

Probe FAM-AGACAACAGACAAATCACCATTCGT-RTQ1

FGFR1
Forward primer CAGAATTGGAGGCTACAAGG
Reverse primer TGATGCTGCCGTACTCATTC

Probe FAM- CATCATAATGGACTCTGTGGTGC-RTQ1

FGFR2
Forward primer GCAGCGAGGTAGTGAAGAG
Reverse primer GAAAGCCGATGTGGTCAG

Probe FAM-CTCCCAGCCATTGATACAGGTAGC-RTQ1

LGALS1
Forward primer CCAGCAACCTGAATCTCA
Reverse primer CGAAGCTCTTAGCGTCAG

Probe FAM-CACTCGAAGGCACTCTCCAGGT-RTQ1

Il1B
Forward primer ATTCTCTTCAGCCAATCTTCA
Reverse primer AAGGAGCACTTCATCTGTTTA

Probe FAM-AGAACAAGTCATCCTCATTGCCAC-RTQ1

IL1R1
Forward primer CTAATGAGACAATGGAAGTAGAC
Reverse primer AGCACTGGGTCATCTTCATC

Probe FAM- CAGTTGAGTGACATTGCTTACTGGAA -RTQ1

PDGFRA
Forward primer TGGCTAAGAATCTCCTTGGA
Reverse primer ACCAGGACAATAAGTGAGATG

Probe FAM-CAATCACCAACAGCACCAGGACT-RTQ1

PDGFRB
Forward primer CTCCCTTATCATCCTCATCA
Reverse primer TCCACGTAGATGTACTCATG

Probe FAM-TCACAGACTCAATCACCTTCCATC-RTQ1
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was substantially reduced. These results are consistent with the data on 
cell production in MMSC cultures from newly diagnosed ALL patients 
[34]. However, studies of ALL in children at the time of diagnosis 
[35] and after chemotherapy [14,15] demonstrated that MMSCs were 
strongly suppressed. This result might occur because in children the 
disease developed simultaneously with the formation and growth of 
the hematopoietic microenvironment. In adults with acute myeloid 
leukemia (AML) [36], chronic myeloid leukemia (CML) [20] and B-cell 
chronic leukemia (B-CLL) [13] growth characteristics of MMSCs were 
not changed.

The pretransplant conditioning significantly reduced the 
proliferative potential of MMSCs (Figure 1). There was no recovery 
of MMSCs proliferation observed during the year after allo- HSCT. 
There was a significant increase in the time needed to reach a confluent 
monolayer of MMSCs from ALL patients compared with cultures of 
control MMSCs. However, in the subsequent passages there were no 
significant differences in the time to confluence (Table 3).

These data suggested that in the BM of ALL patients the number 
of MMSCs had been reduced after allo-HSCT. It was previously 

IL8
Forward primer ACCATCTCACTGTGTGTAAAC
Reverse primer GTTTGGAGTATGTCTTTATGC

Probe FAM-CAGTTTTGCCAAGGAGTGCTAAAG-RTQ1

SOX9
Forward primer AGCAAGACGCTGGGCAAG
Reverse primer GTTCTTCACCGACTTCCTC

Probe FAM-CTGGAGACTTCTGAACGAGAGC-RTQ1

VEGFA
Forward primer AGG CGA GGC AGC TTG AGT TA
Reverse primer ACC CTG AGG GAG GCT CCT T

Probe FAM-CCT CGG CTT GTC ACA TCT GCA AGT ACG T-RTQ1

FGF2
Forward primer GAAGAGCGACCCTCACATCAAG
Reverse primer TCCGTAACACATTTAGAAGCCAGTA

Probe FAM-TCATAGCCAGGTAACGGTTAGCACACACTCCT-RTQ1

SDF
Forward primer CTACAGATGCCCATGCCGAT
Reverse primer TAGCTTCGGGTCAATGCACA

Probe FAM-CAGTTTGGAGTGTTGAGAATTTTGAG-RTQ1

Table 2: Primers and probes.
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Figure 1: Alterations in cumulative cell production in MMSC cultures from ALL patients before and after allo-HSCT. Cumulative MMSC production after 3 passages 
is presented as the mean ± SEM. The data summarize the results of MMSCs production from 64 BM donors and 15 patients with ALL before and after allo-HSCT. 
*indicates a significant difference (p<0.05) between MMSC production after allo-HSCT and MMSC production both from donors and patients before allo-HSCT. 
Time point “0” indicates MMSC samples obtained before the start of pretransplant conditioning, and time points “30-365” indicate samples of MMSCs derived from 
BM of ALL patients obtained on corresponding days after allo-HSCT.

Number of 
passage Donors

ALL patients, days after allo-HSCT
0 30 60 90 120 180 365

Ро 12.9 ± 0.9 13.9 ± 1.3 18.6 ± 1.5* 19.2 ± 1.2* 17.7 ± 1.1* 17.0 ± 1.8 19.1 ± 1.9* 16.4 ± 0.6*
Р1 4.1 ± 0.2 5.0 ± 0.7 8.7 ± 2.1 4.5 ± 0.5 6.1 ± 0.7* 7.3 ± 1.7 6.5 ± 1.0 5.8 ± 1.1
Р2 4.3 ± 0.1 4.4 ± 0.6 4.0 ± 0.5 7.4 ± 0.3* 6.4 ± 0.9 4.0 ± 0.5 5.7 ± 1.1 7.0 ± 0.7
Р3 4.5 ± 0.4 5.5 ± 0.8 7.3 ± 0.9 8.0 ± 1.0 7.5 ± 1.3 3.8 ± 0.1 5.5 ± 0.8 5.7 ± 0.6
Р4 5.4 ± 0.4 5.5 ± 0.6 6.0 ± 0. 5 7.0 ± 0.6 7.5 ± 1.3 6.0 ± 0.5 9.5 ± 1.6 4.7 ± 0.5
Р5 5.4 ± 0.5 4.7 ± 0.4 4.3 ± 0.6 6.0 ± 0.5 6.7 ± 0.7 5.0 ± 0.5 5.0 ± 0.4 5.7 ± 0.6

Table 3: Time needed to achieve confluence of the layer of MMSCs 
P0 is the time since seeding of 3x106 BM cells in a flask to confluent monolayer.  P1 – P5 is the time between passages. (*) significant differences with donor MMSCs 
(p<0.05) Data presented as M ± SEM.
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shown that the total cell production of MMSCs was also reduced in 
patients with various hematological malignancies after allo-HSCT 
[31]. Therefore, the observed decline in proliferative potential of 
MMSCs was not associated with the disease itself and was caused by 
the pretransplant conditioning. The standard conditioning protocol 
included busulfan and cyclophosphamide. Studies using an animal 
model demonstrated that busulfan impaired stromal progenitor cells 

(CFU-F) and their function was not subsequently restored. However, 
the mesenchymal stem cells were insensitive to cytostatic treatments 
[23]. The data indicating that human MMSCs were sensitive to high 
doses of cytotoxic drugs used in transplantation once again confirmed 
that the population of MMSCs was not the population of true stem 
cells. Thus, MMSCs consist of more mature stromal precursor cells [37]. 
The growth characteristics of MMSCs from ALL patients in remission 
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Figure 2: a,b,c,d,e,f: Relative expression level of genes in MMSCs from donors and ALL patients before and after allo-HSCT. Gene expression was analyzed by 
qRT-PCR with TaqMan probes. The relative expression level was calculatedusing the ΔΔCt method. The results were normalized according to the expression of 
BACT and GAPDH. Genes analyzed are shown as follows: A-FGFR1, B-FGFR2, C- PDGFRA, D-PDGFRB, E-IL1R1, F-SDF1.
* indicates a significant difference (p<0.05) between MMSC production before and after allo-HSCT and MMSC production from donors. 
Time point “0” indicates MMSC samples obtained before the start of pretransplant conditioning, and time points “30-365” indicate samples of MMSCs derived from 
BM of ALL patients obtained on corresponding days after allo-HSCT.
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before allo-HSCT were slightly changed. So one can conclude that 
the pretransplant conditioning led to prolonged damage to MMSCs 
proliferation and reduced MMSCs number in the BM of patients.

Gene Expression

We next examined the expression levels of several genes regulating 
stromal cell division in the MMSCs of ALL patients because of the 
observed changes in their ability to proliferate. Prior to allo-HSCT, 
we observed reduced expression levels of FGFR1, FGFR2, PDGFRA 
and PDGFRB genes (Figure 2 A,B,C,D). However, in some cases the 
reduction was not significant. After allo-HSCT the expression level 
of these genes remained significantly reduced. These genes encode 
receptors for growth factors regulating the proliferation of MMSCs. It 
has been shown that the inhibition of at least one of these signaling 
pathways leads to MMSC growth reduction [38]. The reduction of gene 
expression in MMSCs of ALL patients indicates a possible dysregulation 
of signal transduction in the FGF2 and PDGF pathways. This result may 
explain the observed decline in total cellular production of MMSCs. 
The expression level of FGF2 did not vary significantly between the 
donors and ALL patients before and after allo-HSCT (Table 4). It is 
known that IL-1 beta is involved in the growth regulation of stromal 
progenitor cells [39-41]. Moreover, IL-1 beta is expressed by fibroblasts 
[42]. The expression level of the IL-1 beta receptor in MMSCs from 
ALL patients was reduced during the entire observation period. 
However, the changes were significant only at 60 and 180 days after allo- 
HSCT (Figure 2E). The expression of IL -1 beta itself was not altered 
significantly (Table 4).

A reduction in gene expression of receptors for growth factors, but 
not growth factors themselves, was identified. This result suggested 
that autocrine secretion of these growth factors did not determine the 
proliferative ability of MMSCs from ALL patients. These pathways could 
be important for the proliferation of MMSCs due to the coincident 
reduction in receptor expression and cells proliferation. Conversely, the 
expression of all these genes tended to decrease in MMSCs before allo-
HSCT, while total cell production in these cultures was not reduced. 
Probably the genes we examined were not vital for the proliferation 
of MMSCs, and there still were some other regulatory mechanisms of 
their division that had not been included in this study.

The expression level of the chemokine SDF1 was significantly 
reduced in MMSCs of ALL patients before and after allo-HSCT (Figure 
2F). A similar effect was also described in patients with AML [43]. This 
chemokine plays a key role in the homing of hematopoietic cells to 
the BM niche [44]. Following autologous and allogeneic HSCT both 
hematopoietic dysfunction and long-term cytopenia are often observed 
in patients [45–47]. We predict that these disorders are associated with 
the changes in the interaction between hematopoietic stem cells and 
the elements of the stromal microenvironment. These changes may be 
specifically related to the decrease in SDF1 expression.

Characteristics of CFU-F in ALL patients

The concentration of CFU-F in the BM of ALL patients before 
allo-HSCT slightly but insignificantly increased (p=0.15) compared to 
donors (Figure 3). This result might be caused by the mild differences 
in the mean age as ALL patients which ranged from 18 to 39 years 

Genes
ALL patients, days after allo-HSCT

0 30 60 90 120 180 365
IL1b 0.8 ± 1.0 30.2 ± 56.1 1.5 ± 2.6 0.4 ± 0.6 6.3  ± 10.8 7.0 ± 12.1 0.4 ± 0.6

VEGF 1.3 ± 0.4 2.5 ± 1.4 1.4 ± 0.6 2.1  ± 0.9 0.7 ± 0.3 1.2 ± 0.5 1.1 ± 0.5
FGF2 0.7 ± 0.4 4.1 ± 4.1 1.1 ± 0.8 0.8 ± 0.5 1.2 ± 0.9 1.9 ± 1.6 0.8 ± 0.5

TGFB1 0.9 ± 0.2 0.9 ± 0.3 0.8 ± 0.3 0.6 ± 0.2 0.6 ± 0.2 1.1 ± 0.4 1.4 ± 0.6
TGFB2 2.0 ± 1.2 4.9 ± 4.4 2.0 ± 1.8 1.5 ± 1.3 2.7 ± 2.8 2.0 ± 1.6 0.6 ± 0.5

Table 4: Alterations of relative expression level of gene expression in MMSCs of ALL patients compared to donor’s MMSCs.

Concentration of CFU-F in the BM of ALL patients

C
FU

-F
 c

on
ce

nt
ra

tio
n 

pe
r 1

06
 B

M
 c

el
ls

days after allo-HSCT

60

50

40

30

20

10

0
donors             0                30                60               90              120              180               365

*
* *

* * *

Figure 3: Alterations in CFU-F concentration in BM of donors and ALL patients before and after allo-HSCT
* indicates the significant difference (p<0.05) between CFU-F concentration after allo-HSCT and CFU-F concentration both from donors and patients before allo-
HSCT. 
Time point “0” indicates MMSCs samples obtained before the start of pretransplant conditioning and time points “30-365” indicate samples of CFU-F derived from 
BM of ALL patients obtained on corresponding days after allo-HSCT.
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(median - 28.6 years), whereas the donors ranged from 18 to 59 years 
(median - 34 years). It is known that the CFU-F concentration decreases 
significantly with the age of the donor [48,49]. Several authors have 
analyzed BM before chemotherapy and did not find differences in 
CFU-F concentration between patients and healthy donors [50,51]. 
Other studies have revealed a decline or complete exhaustion in CFU-F 
concentration in the BM of patients with acute leukemia [52-54,24]. 
The same result was observed in mice injected with acute leukemia 
cells [55,56]. However, it is unclear whether chemotherapy treatment 
occurred in the human studies and the protocol followed was not 

described. This information is crucial when analyzing the changes in 
the stromal microenvironment [25,57,58].

After allo-HSCT the concentration of CFU-F in the BM ALL 
patients was reduced by more than 10-fold and was not restored during 
the subsequent year (Figure 3). The results were consistent with the 
changes in the concentration of CFU-F caused by the transplantation 
protocol and are likely not reparable in patients more than 5 years 
old [48]. The effect could be associated with the significant decrease 
in the expression level of FGFR1 in CFU-F of ALL patients after allo-

(a)                                                                                   (b)

(c)                                                                                   (d)

(e)                                                                                   (f)

donors       0            30          60           90         120        180         365 donors        0             30           60            90          120         180         365

donors      0          30         60          90        120       180       365

donors        0             30           60            90          120         180         365

donors          0             30            60              90           120           180          365 donors         0              30             60              90           120          180           365

days after allo-HSCT days after allo-HSCT

days after allo-HSCT

days after allo-HSCT

days after allo-HSCT days after allo-HSCT

1,5
1,4
1,3
1,2
1,1
1,0
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1
0,0

12,0

10,0

8,0

6,0

4,0

2,0

0,0

20,0

15,0

10,0

5,0

0,0

20,0

15,0

10,0

5,0

0,0

20,0

15,0

10,0

5,0

0,0

1,0

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,0

re
la

tiv
e 

ex
pr

ss
io

n 
le

ve
l

re
la

tiv
e 

ex
pr

ss
io

n 
le

ve
l

re
la

tiv
e 

ex
pr

ss
io

n 
le

ve
l

re
la

tiv
e 

ex
pr

ss
io

n 
le

ve
l

re
la

tiv
e 

ex
pr

ss
io

n 
le

ve
l

re
la

tiv
e 

ex
pr

ss
io

n 
le

ve
l

CFU-F-FGFR1 CFU-F-FGF2

CFU-F-SPP1CFU-F-BGLAP

CFU-F-PPARG CFU-F-SOX9

Figure 4: a,b,c,d,e,f: Relative expression level of genes in CFU-F derived colonies from donors and ALL patients before and after allo-HSCT. Gene expression was 
analyzed by qRT-PCR with TaqMan probes. The relative expression level was calculated using the ΔΔCt method. The results were normalized by the expression 
of BACT and GAPDH.
Genes analyzed are shown as follows: A-FGFR1, B-FGF2, C- BGLAP, D-SPP1, E-PPARG, F-SOX9.
*indicates a significant difference (p<0.05) between gene expression levels in CFU-F colonies before and after allo-HSCT and in CFU-F from 
donors.
Time point “0” indicates CFU-F samples obtained before the start of pretransplant conditioning, and time points “30-365” indicate samples of CFU-F derived from 
BM of ALL patients obtained on corresponding days after allo-HSCT.
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recovery of the bone marrow microenvironment. Int J Exp Pathol 93: 104-114.
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HSCT (Figure 4A). The autocrine expression of FGF2 was significantly 
upregulated before allo-HSCT, but it was not reduced significantly after 
transplantation (Figure 4B). We found a range of expression levels for 
this gene in the MMSCs from different patients. Due to the low total 
number of patients we cannot make a straightforward conclusion. The 
observed effect was consistent with the finding that FGF2 was described 
as the growth factor for stromal progenitor cells [59,60]. We found the 
simultaneous decrease in the expression of FGF2 and its receptors in 
CFU-F cells. This result suggests the reduced concentration of CFU-F in 
the BM after allo-HSCT was associated with impaired FGF2 signaling. 
The reduced number of stromal precursor cells could be caused by the 
changes in their proliferative potential. The decrease in proliferative 
capacity reflected the loss of undifferentiated status of precursor cells 
and was accompanied by increased expression of differentiation-
associated genes. In this study, we analyzed 2 markers for osteogenic 
differentiation (BGLAP, SPP1) and one for each of adipogenic (PPARG) 
and chondrogenic (SOX9) lineages. The expression of SOX9 only was 
changed in CFU-F from BM of ALL patients before allo-HSCT. We 
found that SOX9 was increased, but the changes were not significant 
(Figure 4F). The expression level of this gene remained slightly and non-
significantly increased up to 120 days after allo-HSCT. The expression 
then decreased to nearly zero before returning to baseline one year after 
allo-HSCT. The expression level of osteogenic and adipogenic markers 
of differentiation tended to increase with time after allo-HSCT (Figure 
3 C, D, E). The non-significant changes were associated with a range 
of values in CFU-Fs from ALL patients. Nevertheless, we suppose a 
shift towards more differentiated cells had occurred in the population 
of CFU-F derived colonies after allo-HSCT. It was shown that the 
conditioning before allo-HSCT was accompanied by the accumulation of 
reactive oxygen species in the cells of the organism [61,62], which could 
cause premature “aging” of the cells and tissues [63]. The reduction of 
the MMSCs and CFU-F number in BM of ALL patients after allo-HSCT 
suggest the damage to those stromal precursor cells that were attributed 
to the top of the mesenchymal stem cells hierarchy. It is known that 
the HSCT patients suffer from disorders of the musculoskeletal system 
including bone loss and osteoporosis [45,46,64]. The results of this 
study revealed possible mechanisms of bone marrow stroma damage 
after allo-HSCT in ALL patients. The number of stromal precursors was 
reduced and their growth and regeneration were inhibited after allo-
HSCT. These changes were accompanied by an increased number of 
more differentiated progenitors with decreased proliferative potential. 
The damage to stromal cells by different protocols for treatment of 
leukemia should be taken into consideration.
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