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The ever-increasing populations in developing countries like 
India adversely affecting the agro-ecosystem, due to unsustainable 
agricultural practices. The problem of salinity is of global concern but it 
is more conspicuous in arid and semi-arid regions of the world, which 
are characterized by limited rainfall, high transpiration, and high 
temperature [1]. Salinity affects almost every aspect of the physiology 
and biochemistry of plants and significantly reduces their yield [2]. 
Salt stress causes an imbalance of cellular ions resulting in ion toxicity 
(primary effect), and osmotic stress (secondary effect) while high salinity 
induces the production of severe toxic oxygen derivatives (ROS) such 
as superoxide radicals (O2˙ˉ), singlet oxygen (1O2), hydrogen peroxide 
(H2O2) and consequently formation of the most toxic hydroxyl radicals 
(•OH) through fenton reaction in plants, and may interact with many 
essential macromolecules and metabolites causing cellular damage 
[3,4]. In order to protect cells and tissue from oxidative damage, plants 
must produce low molecular weight non-enzymatic antioxidants such 
as proline, glutathione and ascorbate as well as enzymatic antioxidants 
including peroxidase, superoxide dismutase, ascorbate peroxidase and 
catalase to defend against oxidative stress [3,4]. One of the efficient 
protection mechanisms of plant against hyperosmotic stress is the 
increasing endogenous level of compatible solutes such as proline, 
ectoine, glycine betaine and sorbitol [3]. In many plants, free proline 
accumulates in response to the imposition of a wide range of biotic 
and abiotic stresses. Most attempts have been taken into consideration 
on the ability of proline to mediate osmotic adjustment, stabilise 
subcellular structures and scavenge toxic oxygen derivatives. High 
levels of proline synthesized during stress conditions and also maintain 
the NAD(P)+/NAD(P)H ratio [5]. 

Proline is multifunctional amino acids and also a signalling molecule 
acting as a plant growth regulator by triggering cascade signalling 
processes [6]. Proline preferred as a common osmolyte in plants and get 
up-regulated against different stresses [4,7]. Its accumulation in plants 
provides protection against salinity and drought stress. Exogenous 
application of proline improves the crop tolerance against various 
abiotic stresses particularly salinity by protecting them from the severe 
effects of ROS [7]. Plants tend to enhance its endogenous level with 
continuously increasing levels of salinity [8]. This editorial focused on 
adverse impact of NaCl stress on plants, and how plants survive under 
salt affected land by increasing their endogenous level of proline. 

The biosynthesis and degradation of proline, and its accumulation 
in plants is regulated by different abiotic stresses and salinity has the 
great concern [6]. Proline synthesis in plants consists two different 
cycles. First of them is glutamate cycle, in which, glutamate is 
phosphorylated to ϒ-glutamyl phosphate and reduced to glutamate-ϒ-
semialdehyde (GSA), which is spontaneously cyclized to ∆1-pyrroline-
5-carboxylate (P5C). The second is the ornithine cycle, in which
ornithine is transaminated to GSA by ornithine ϒ-aminotransferase
(OAT) [6]. Proline biosynthesis from glutamate consist two enzyme
reactions involving ∆1-pyrroline-5-carboxylate synthetase (P5CS)
and glutamate dehydrogenase (GDH). On the other hand, the proline
accumulation depends on its degradation rate, which is catalysed by the 

mitochondrial enzyme proline dehydrogenase (PDH) [6]. In plants, 
both PDH and ∆1-pyrroline-5-carboxylate dehydrogenase (P5CDH) 
are attached to the matrix side of the inner mitochondrial membrane 
[5]. Proline synthesis initiates the generation of NADP+, which acts 
as the backbone for ribose 5-phosphate required for the purines 
synthesis, and proline oxidation yields the reduced electron carriers, 
which provide energy for the numbers of biochemical reaction such as 
nitrogen fixation [9]. Exogenous application of proline may be a good 
approach to decrease the undesirable effects of salinity stress on plants 
[6,10] and metal stress [11]. It was also reported that, the exogenous 
application of proline alleviates the adverse effects of salt by reducing 
the accumulation of Na+ and Cl− in plants [10].

Proline provides tolerance against different abiotic stresses by 
increasing their endogenous level and their intermediate enzymes in 
plants. It was also reported that, the exogenous application of proline 
increases the endogenous level of proline in bean (Phaseolus vulgaris 
L.) [11]. Proline regulates expression of number of genes related to 
antioxidant enzymes under salt stress. Among different genes, one 
of the gene ∆1-pyrroline-5-carboxylate synthetase is responsible for 
up-regulating the stress-induced proline accumulation under salinity 
stress [9].

Finally, salt stress imposed the severe effects on plant growth and 
productivity by interrupting the normal metabolic processes and 
the proline may alleviate the negative impact of salt by decreasing 
osmotic stress that consequently maintain the membrane integrity 
and its function. The exogenous application of proline could offer a 
simple and an economical approach for farmers to reduce the crop 
loss risk in salt contaminated land. However, further studies are 
needed at physiological and molecular levels to gain deeper insight 
in understanding interaction of NaCl induced oxidative stress and 
alleviation mechanism of exogenous proline in crops.
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