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Introduction
A drug is defined as a substance which is used in the cure, relief, 

diagnosis, treatment, or prevention of disease. The development of 
any potential drug commences with the study of the biochemistry and 
physiology behind a disease for which pharmaceutical intervention 
is feasible [1]. Prodrug is a term that was first introduced by Albert 
to signify a pharmacologically inactive chemical moiety that can be 
used to temporarily alter the physicochemical properties of a drug to 
increase its usefulness and decrease its associated toxicity [2]. The use of 
the term usually implies a covalent link between a drug and a chemical 
promoiety. Prodrugs can be enzymatically or chemically converted 
in vivo to provide the parent active drug which exerts a therapeutic 
effect. Ideally, the prodrug should be converted to the parent drug 
once its goal is achieved, followed by rapid elimination of the released 
promoiety group [3-6]. 

Drug discovery is a lengthy interdisciplinary endeavor. It is a 
consecutive process that commences with target and lead discovery, 
followed by lead optimization and pre-clinical in vitro and in vivo 
studies to evaluate if a compound satisfies a number of pre-set criteria 
to start clinical development [7-8]. The number of years it takes to 
introduce a drug to the pharmaceutical market is about 10 years with a 
cost of up to $1 billion dollars. Traditionally, drugs were discovered by 
a time-consuming multi-step synthetic process which was followed by 
in vivo biological screening and further investigation for the promising 
compounds in terms of their Absorption, Distribution, Metabolism, 
Excretion (ADME) properties, and potential toxicity. Such drug 
development processes have resulted in high attrition rates with 
failures attributed to poor pharmacokinetic properties, lack of efficacy, 
toxicity, side effects in humans, and various commercial factors [7-8].

Nowadays, the process of drug discovery has been revolutionized 
with the advent of genomics, proteomics, bioinformatics, and efficient 
technologies including combinatorial chemistry, High Throughput 
Screening (HTS), virtual screening, de novo design, in vitro, in silico 
ADME screening, and structure-based drug design [9-11]. Structure-
based drug design is widely considered one of the most innovative and 
powerful approaches in drug design. It is an approach that requires 
a 3D structure of the target protein with or without a hosted ligand, 
where binding mode, affinity, and confirmation of ligand binding can 
be discerned. Various computational methods are used to design a 
high-affinity inhibitor either via virtual computer screening of large 
compound libraries or through design and synthesis of novel ligands. 
These methods can also be utilized to analyze the target structures for 
possible binding/active sites, generate candidate structures, check for 
their drug-likeness, dock structures with the target, rank according to 
their binding affinities, and optimize the molecules to improve binding 
properties.     

As structures of more protein targets become available via 
crystallography, NMR and bioinformatics methods have provided 
the opportunity for computational methods to use the structure of 
the protein target as a tool to develop novel lead compounds. The 
computational methods include: (i) De novo design, (ii) Virtual 

screening, and (iii) Fragment based discovery. (i) De novo design 
attempts to use the structure of the protein without a ligand to generate 
a novel chemical structure that can bind. There are varying algorithms, 
most of which depend on identifying initial sites of interaction that 
develop into complete ligands. (ii) Virtual screening refers to the 
computational screening of large libraries of chemicals for structures 
that complement targets of known compounds that can be tested 
experimentally. Since virtual screening takes place in the 3D active site 
of the target, it is also called a structure-based virtual screening. (iii) 
Fragment based discovery is based on the premise that most ligands 
that bind strongly to a protein active site can be considered as a number 
of smaller fragments or functionalities. Fragments are identified by 
screening a relatively small number of molecules (400-20,000) by X-ray 
crystallography and NMR spectroscopy. The molecules of the fragment 
binding to the protein can be used to design new ligands by adding 
functionality to the fragments or by incorporating features of the 
fragment into existing ligands [12-20].

Studies have indicated that poor pharmacokinetics and toxicity 
are the most important causes of high attrition-rates in the drug 
development process, and it has been widely accepted that these 
areas should be considered as early as possible in drug discovery to 
improve the efficiency and cost-effectiveness of the industry. Resolving 
the pharmacokinetic and toxicological properties of drug candidates 
remains a key challenge for drug developers [21]. The most efficient 
approach for overcoming these negative drug characteristics is the 
prodrug approach. The rationale behind the use of prodrugs is to 
optimize the ADME properties and to increase the selectivity of drugs 
for their intended target. Development of a prodrug with improved 
properties may also represent a life-cycle management opportunity. 
Unfortunately, prodrugs have often been considered only when 
obstacles are encountered with the parent drug. However, it has 
become increasingly important to consider the design of an appropriate 
prodrug in the early stages of preclinical development and not as a last 
resort [22].

Modifying the ADME properties of an active drug requires 
a complete understanding of the physicochemical and biological 
behavior of the drug candidate [23-26].  This includes comprehensive 
evaluation of drug-likeness involving prediction of ADME properties. 
These predictions can be attempted at several levels: (1) in vitro–in 
vivo using data obtained from tissue or recombinant material from 
human and pre-clinical species, and (2) in silico or computational 
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predictions projecting in vitro or in vivo data involving the evaluation 
of various ADME properties using computational approaches such 
as Quantitative Structure Activity Relationship (QSAR) or molecular 
modeling [22-26]. 

Prodrug design can be utilized in the following: (1) improving 
active drug solubility and consequently bioavailability; dissolution of 
the drug molecule from the dosage form may be a rate-limiting step 
to absorption, (2) increasing permeability and absorption; membrane 
permeability has a significant effect on drug efficacy, and (3) modifying 
the distribution profile; before the drug reaches its physiological target 
and exerts the desired effect [22-26]. In this editorial, prodrug design 
based on a computational approach consisting of calculations using 
Molecular Orbital (MO) and Molecular Mechanics (MM) methods 
and correlations between experimental and calculated values of 
intramolecular processes is used. In this prodrug approach, no enzyme 
is needed for the catalysis of the intraconversion of a prodrug to its 
parent drug. The interconversion of the prodrug is solely dependent on 
the rate-limiting step for the intramolecular reaction. 

Thermodynamic and kinetic energy-based calculations for 
biological systems that have pharmaceutical and medicinal interests 
are a great challenge to the health community. Nowadays, quantum 
mechanics (QM) such as ab initio, a semi-empirical and Density 
Functional Theory (DFT), and molecular mechanics (MM) are 
increasingly being utilized and widely recommended as tools for 
providing structure-energy calculations for potential drugs and 
prodrugs alike [27]. Ab initio quantum methods are computational 
chemistry methods based on quantum chemistry. The ab initio 
molecular orbital methods (quantum mechanics) such as HF, G1, G2, 
G2MP2, MP2 and MP3 are based on rigorous use of the Schrodinger 
equation with a number of approximations. The disadvantage of ab 
initio methods is their computational cost. They often take a lot of 
computer time, memory, and disk space [28-30].

Semi-empirical quantum chemistry methods are based on the 
Hartree-Fock formalism with many approximations and some 
parameters from empirical data. Among the semi-empirical methods 
commonly used are MINDO, MNDO, MINDO/3, AM1, PM3 and 
SAM1. The semi-empirical methods have provided rich information 
for practical application [31-34]. Calculations of molecules exceeding 
60 atoms can be completed using such methods. Density Functional 
Theory (DFT) is a quantum mechanical method used to investigate 
the electronic structure (principally the ground state) of many-body 
systems, particularly atoms, molecules, and the condensed phases. With 
this theory, the properties of many electron systems can be determined 
by using functional, i.e. functions of another function, which in this 
case is the spatially dependent electron density. DFT is among the most 
popular and versatile methods available in condensed-matter physics, 
computational physics, and computational chemistry.  The DFT 
method is used to calculate structures and energies for medium-sized 
systems (30-60 atoms) of biological and pharmaceutical interest and is 
not restricted to the second row of the periodic table [35]. 

On the other hand, molecular mechanics is a mathematical 
approach used for the computation of structures, energy, dipole 
moment, and other physical properties. It is widely used in calculating 
many diverse biological and chemical systems such as proteins, large 
crystal structures, and relatively large solvated systems. However, this 
method is limited by the determination of parameters such as the 
large number of unique torsion angles present in structurally diverse 
molecules [36]. Ab initio is an important tool to investigate functional 

mechanisms of biological macromolecules based on their 3D and 
electronic structures. The system size which ab initio calculations can 
handle is relatively small despite the large sizes of bio macromolecules 
surrounding solvent water molecules. Accordingly, isolated models 
of areas of proteins such as active sites have been studied in ab 
initio calculations. However, the disregarded proteins and solvent 
surrounding the catalytic centers have also been shown to contribute 
to the regulation of electronic structures and geometries of the regions 
of interest. 

To overcome these discrepancies, Quantum Mechanics/Molecular 
Mechanics (QM/MM) calculations are utilized, in which the system is 
divided into QM and MM regions where QM regions correspond to 
active sites to be investigated and are described quantum mechanically. 
MM regions correspond to the remainder of the system and are 
described molecular mechanically. The pioneer work of the QM/
MM method was accomplished by Warshel and Levitt [37], and since 
then, there has been much progress on the development of a QM/MM 
algorithm and applications to biological systems [38, 39].

Recently, we have been investigating the mechanisms of some 
intramolecular processes that have been used to gain a better 
understanding of enzyme catalysis and the design of novel prodrug 
linkers [40-58].  Using molecular mechanics, DFT, and ab initio 
methods, we studied various intramolecular processes in order to 
assign factors affecting the rate-determining step. Among the processes 
studied are: (1) proton transfer between two oxygens in Kirby’s acetals 
[59] and proton transfer between nitrogen and oxygen in Kirby’s 
enzyme models [59]; (2) intramolecular acid-catalyzed hydrolysis 
in Kirby’s maleamic acid amide derivatives [59]; (3) proton transfer 
between two oxygens in rigid systems in Menger’s enzyme model [60-
63]. 

The information from our studies on enzyme models was used to 
design an efficient chemical moiety to be utilized as a prodrug linker 
with the potential to release the parent drug in a slow or fast manner. 
Unraveling the mechanisms of the enzyme models mentioned above 
has led to the design of several prodrugs for the treatment of various 
diseases such as myelodysplastic syndromes, Parkinson’s, malaria, 
hypertension, psoriasis, and osteoporosis. Successful synthesis of most 
of the prodrugs for the treatment of these diseases was achieved and in 
vitro kinetic results at a wide pH range have shown promising results 
for obtaining novel prodrugs that might have enhanced dissolution, 
membrane penetration, and thus better bioavailability than their 
corresponding drugs [64-77]. The modern computational approach has 
the capability to provide a design for both drugs and prodrugs. Drug 
design involves multi-step procedures to resolve obstacles stemming 
from pharmacodynamic and pharmacokinetic characteristics, whereas 
prodrug design is limited to resolving only pharmacokinetic issues 
related to a drug candidate. 
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