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Introduction
Prodrugs, soft drugs, targeted drugs, and metabolites of drugs are 

common terms that are used in the pharmaceutical field. The term 
“prodrug” was first introduced by Albert to signify pharmacologically 
inactive chemical moieties that can be used to temporarily alter the 
physiochemical properties of drugs in order to increase their usefulness 
and decrease their associated toxicity [1]. The use of the term usually 
implies a covalent link between a drug and a chemical moiety. 
Generally, prodrugs can be enzymatically or chemically converted in 
vivo to provide the parent active drug to exert a therapeutic effect. 
Ideally, the prodrug should be converted to the parent drug as soon as 
its goal is achieved, followed by the subsequent rapid elimination of the 
released linker group [2-5]. 

On the other hand, soft drugs (antedrugs) are drugs that are readily 
degraded to inactive derivatives to prevent or reduce activity. Targeted 
drugs are drugs or prodrugs that exert their biological action only in 
specific cells or organs such as in the administration of omeprazole 
and acyclovir. The active metabolite term refers to the degradation 
of the drug by the body into a modified form that has a biological 
effect. Usually these effects are similar to those of the parent drug 
but are weaker yet still significant. Examples of such metabolites are 
11-hydroxy-THC and morphine-6-glucuronide. In certain drugs, such
as codeine and tramadol, the corresponding metabolites are more
potent than the parent drug (morphine and O-desmethyltramadol
respectively) [6-8].

The rationale behind the use of prodrugs is to optimize the 
Absorption, Distribution, Metabolism, and Excretion properties 
(ADME). In addition, the prodrug strategy has been used to increase the 
selectivity of drugs for their intended target. Development of a prodrug 
with improved properties may also represent a life-cycle management 
opportunity. Unfortunately, prodrugs are often considered only 
when problems are encountered with the parent drug. The design of 
an appropriate prodrug should be considered in the early stages of 
preclinical development and should not be viewed as a last resort. 

Modifying the ADME properties of the parent drug requires a 
comprehensive understanding of the physicochemical and biological 
behavior of the drug candidate. Although prodrug design is very 
challenging, it can still be more feasible and faster than searching 
for an entirely new biologically active molecule with suitable ADME 
properties. The prodrug approach is becoming more popular and 
successful. To date, prodrugs comprise around 10% of the world’s 
marketed medications and 20% of all small molecular medications 
approved between 2000-2008 [9,10]. 

The prodrug approach is a very versatile strategy to increase the 
utility of biologically active compounds, because one can optimize any 
of the ADME properties of potential drug candidates. In most cases, 
prodrugs contain a promoiety (linker) that is removed by an enzymatic 
or chemical reaction, while other prodrugs release their active drugs 
after molecular modification such as an oxidation or reduction reaction. 
The prodrug candidate can also be prepared as a double prodrug, where 
the second linker is attached to the first promoiety linked to the parent 

drug molecule. These linkers are usually different and are cleaved by 
different mechanisms. In some cases, two biologically active drugs can 
be linked together in a single molecule called a codrug. In a codrug, 
each drug acts as a linker for the other [9,10]. The prodrug approach 
has been used to overcome various undesirable drug properties and 
to optimize clinical drug application. Recent advances in molecular 
biology provide direct availability of enzymes and carrier proteins, 
including their molecular and functional characteristics. Prodrug 
design is becoming more elaborate in the development of efficient and 
selective drug delivery systems. The targeted prodrug approach, in 
combination with gene delivery and controlled expression of enzymes 
and carrier proteins, is a promising strategy for precise and efficient 
drug delivery and enhancement of the therapeutic effect. 

The prodrug design can be utilized in the following: (1) improving 
active drug solubility and consequently bioavailability; dissolution of 
the drug molecule from the dosage form may be the rate-limiting step 
to absorption [10]. It has been reported that more than 30% of drug 
discovery compounds have poor aqueous solubility [11]. Prodrugs 
are an alternative way to increase the aqueous solubility of the parent 
drug molecule by improving dissolution rate via attached ionizable 
or polar neutral functions, such as phosphates, amino acids, or sugar 
moieties [2,5,10,12]. These prodrugs can be used not only to enhance 
oral bioavailability but also to prepare parenteral or injectable drug 
delivery; (2) increasing permeability and absorption; membrane 
permeability has a significant effect on drug efficacy [13]. In oral drug 
delivery, the most common absorption routes are unfacilitated and 
largely nonspecific passive transport mechanisms. The lipophilicity 
of poorly permeable drugs can be enhanced by hydrocarbon moiety 
modification. In such cases, the prodrug strategy can be an extremely 
valuable option. Improvement of lipophilicity has been the most 
widely investigated and successful field of prodrug research. It has been 
achieved by masking polar ionized or non-ionized functional groups 
to enhance either oral or topical absorption [14]; (3) modifying the 
distribution profile; before the drug reaches its physiological target and 
exerts the desired effect, it has to bypass several pharmaceutical and 
pharmacokinetic barriers. 

Today, one of the most promising site-selective drug delivery 
strategies is the prodrug approach that utilizes target cell- or tissue-
specific endogenous enzymes and transporters. One of the few 
examples that were designed to increase the efficiency of a drug by 
accumulation into a specific tissue or organ is the antiparkinson agent 
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L-DOPA. Because of its hydrophilic nature, the neurotransmitter 
dopamine is not able to cross the blood-brain barrier and distribute 
into brain tissue. However, the prodrug of dopamine, L-DOPA, 
enables the uptake and accumulation of dopamine into the brain via 
the L-type amino acid transporter 1 [2,15]. After L-type amino acid 
transporter 1-mediated uptake, L-DOPA is bioactivated by aromatic 
L-amino acid decarboxylase to hydrophilic dopamine, which is 
concentrated in dopaminergic nerves. Because L-DOPA is extensively 
metabolized in the peripheral circulation, DOPA decarboxylase 
inhibitors (carbidopa, benserazide, methyldopa) and/or catechol-O-
methyltransferase inhibitors (entacapone, tolcapone, nitecapone) are 
co-administered with levodopa to prevent the unwanted metabolism 
[16,17]; (4) prevent fast metabolism and excretion; the first-pass 
effect in the gastrointestinal tract and liver may greatly reduce the 
total amount of active drug reaching the systemic circulation and 
consequently its target. This problem has been overcome by sublingual 
or buccal administration or by controlled release formulations. Fast 
metabolic drug degradation can also be prevented by a prodrug 
strategy. This is usually done by masking the metabolically labile but 
pharmacologically essential functional group(s) of the drug. In the 
case of the bronchodilator and β2-agonist terbutaline, sustained drug 
action has been achieved by converting its phenolic groups, which 
are susceptible to fast and extensive first pass metabolism, into bis-
dimethylcarbamate. The prodrug bambuterol is slowly bioactivated to 
terbutaline predominantly by nonspecific butyrylcholinesterase outside 
the lungs [18-20]. As a result of the slower release and prolonged action, 
once-daily administration of bambuterol provides relief of asthma with 
a lower incidence of adverse effects than terbutaline [21]; (5) reducing 
toxicity; adverse drug reactions can change the structure or function 
of cells, tissues, and organs and can be detrimental to the organism. 
Reduced toxicity can sometimes be accomplished by altering one or 
more of the ADME barriers but more often is achieved by targeting 
drugs to desired cells and tissues via site-selective drug delivery. A 
successful site-selective prodrug must be precisely transported to 
the site of action, where it should be selectively and quantitatively 
transformed into the active drug, which is retained in the target tissue 
to produce its therapeutic effect [2,22]. The ubiquitous distribution of 
most of the endogenous enzymes that are responsible for bioactivating 
prodrugs diminishes the opportunities for selective drug delivery and 
targeting. Therefore, exogenous enzymes are selectively delivered via 
antibody-directed enzyme prodrug therapy or as genes that encode 
prodrug activating enzymes. This approach is particularly used with 
highly toxic compounds such as anticancer drugs to reduce the toxicity 
of the drugs at other sites in the body [23,24].

There are two major challenges facing the prodrug approach 
strategy: (a) hydrolysis of prodrugs by esterases; the most common 
approaches for prodrug design are aimed at prodrugs undergoing 
in vivo cleavage to the active parent drug by catalysis of hydrolases 
such as peptidases, phosphatases, and carboxylesterases [14]. The less 
than complete absorption observed with several hydrolase-activated 
prodrugs of penicillins, cephalosporins, and angiotensin-converting 
enzyme inhibitors highlights yet another challenge with prodrugs 
susceptible to esterase hydrolysis. These prodrugs typically have 
bioavailabilities of around 50% because of their premature hydrolysis 
during the absorption process in the enterocytes of the gastrointestinal 
tract [14]. Hydrolysis inside the enterocytes releases the active parent 
drug, which in most cases is more polar and less permeable than 
the prodrug and is more likely to be effluxed by passive and carrier-
mediated processes back into the lumen than to proceed into blood, 
therefore limiting oral bioavailability; (b) bioactivation of the prodrug 

by cytochrome P450 enzymes. The P450 enzymes are superfamily 
enzymes that account for up to 75% of all enzymatic metabolisms of 
drugs, including several prodrugs. There is accumulating evidence 
that genetic polymorphisms of prodrug-activating P450s contribute 
substantially to the variability in prodrug activation and thus to the 
efficacy and safety of drugs using this bioactivation pathway [25,26]. 

Bioconversion of prodrugs is perhaps the most vulnerable link 
in the chain, because there are many intrinsic and extrinsic factors 
that can influence the process. For example, the activity of many 
prodrug activating enzymes may be decreased or increased due to 
genetic polymorphisms, age-related physiological changes, or drug 
interactions, leading to adverse pharmacokinetic, pharmacodynamic, 
and clinical effects. In addition, there are wide interspecies variations 
in both the expression and function of the major enzyme systems 
activating prodrugs, and these can pose challenges in the preclinical 
optimization phase. Nonetheless, developing a prodrug can still be a 
more feasible and faster strategy than searching for an entirely new 
therapeutically active agent with suitable ADMET properties. 

An ideal drug candidate needs to have specific properties, including 
chemical and enzymatic stability, solubility, low clearance by the liver 
or kidney, permeation across biological membranes, potency, and 
safety. 

The conversion of a prodrug to the parental drug at the target site is 
crucial for the prodrug approach to be successful. Generally, activation 
involves metabolism by enzymes that are distributed throughout the 
body [14,27,28]. The major problem with these prodrugs is the difficulty 
in predicting their bioconversion rates, and thus their pharmacological 
or toxicological effects. Moreover, the rate of hydrolysis is not always 
predictable, and bioconversion can be affected by various factors such 
as age, health conditions and gender [29-31].

The novel prodrug approach to be reported in this editorial 
implies prodrug design based on enzyme model (mimicking enzyme 
catalysis) that has been utilized to understand how enzymes work. 
The tool used in the design is a computational approach consisting 
of calculations using molecular orbital and molecular mechanics 
methods and correlations between experimental and calculated 
values of intra molecular processes that were used to understand the 
mechanism by which enzymes might exert their high rates catalysis. 
In this approach, no enzyme is needed for the catalysis of the intra 
conversion of a prodrug to its parent drug. The release of the drug from 
the corresponding prodrug is solely dependent on the rate limiting step 
for the intra conversion reaction. 

In the past few decades, the use of computational chemistry 
for calculating physicochemical and molecular properties has 
been a progressive goal of organic, organometallic, inorganic, and 
pharmaceutical chemists. Thermodynamic and kinetic energy-based 
calculations for biological systems that have pharmaceutical/medicinal 
interest are a great challenge to the medical community. Nowadays, 
quantum mechanics such as ab initio, a semi-empirical and Density 
Functional Theory (DFT), and Molecular Mechanics (MM) are 
increasingly being utilized and widely accepted as tools that provide 
structure-energy calculations for the prediction of potential drugs and 
prodrugs [32].

The ab initio molecular orbital methods (quantum mechanics) such 
as HF, G1, G2, G2MP2, MP2 and MP3 are based on rigorous utilization 
of the Schrodinger equation with a number of approximations. Use of 
the ab initio method is restricted to small systems that do not have 
more than thirty atoms due to the extreme cost of computation time 
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[33-35]. MINDO, MNDO, MINDO/3, AM1, PM3 and SAM1, are 
semi-empirical methods based on the Schrodinger equation with 
the addition of terms and parameters to fit experimental data and 
have afforded vast information for practical application [36-39]. 
Calculations of molecules exceeding 50 atoms can be done using such 
methods. Density functional theory (DFT) is a semi-empirical method 
used to calculate structures and energies for medium-sized systems 
of biological and pharmaceutical interest and is not restricted to the 
second row of the periodic table [40]. Contrary to quantum mechanics, 
molecular mechanics is a mathematical approach used for the 
computation of structures, energy, dipole moment, and other physical 
properties, and is widely used in calculating many diverse biological 
and chemical systems such as proteins, large crystal structures, and 
relatively large solvated systems. However, this method is limited by 
the determination of parameters such as the large number of unique 
torsion angles present in structurally diverse molecules [41]. 

Recently we have been investigating the mechanisms for some 
intramolecular processes that have been used to gain a better 
understanding of enzyme catalysis and have been exploited for design 
of novel prodrug linkers [42-60]. Using molecular mechanics, DFT, 
and ab initio methods, we studied various intramolecular processes in 
order to assign factors affecting the rate-determining step. Among these 
processes are the following: (1) proton transfer between two oxygen in 
Kirby’s acetals [61] and proton transfer between nitrogen and oxygen 
in Kirby’s enzyme models [61]; (2) intra molecular acid-catalyzed 
hydrolysis in Kirby’s maleamic acid amide derivatives [61]; (3) proton 
transfer between two oxygen in rigid systems as investigated by Menger 
[62-65] arriving at the following conclusions: (i) rate accelerations in 
intra molecular processes are a result of both entropy and enthalpy 
effects. In intra molecular cyclization processes where enthalpic 
effects were predominant, steric effects were the driving force for the 
acceleration, whereas proximity orientation was the determining factor 
in the case of proton transfer reactions. (ii) The distance between the 
two reacting centers is the main factor that determines whether the 
reaction type is intermolecular or intra molecular. In the cases where 
the distance exceeded 3 Å, an intermolecular engagement was preferred 
due to the involvement of a water molecule (solvent), whereas an 
intra molecular engagement prevailed when the distance between the 
electrophile and nucleophile was less than 3 Å. (iii) The efficiency of 
proton transfer between two oxygen and between nitrogen and oxygen 
in Kirby’s enzyme models is attributed to relatively strong hydrogen 
bonding in the products and the transition states leading to them. 

The information from our studies on enzyme models was used 
to design an efficient chemical moiety to be utilized as a prodrug 
linker with the potential to release the parent drug in a slow or fast 
manner. Unraveling the mechanism of Kirby’s enzyme model (proton 
transfer in acetals) has led to the design of prodrugs of aza-nucleoside 
derivatives for the treatment of myelodysplastic syndromes, where the 
prodrug linker (the acetal moiety) was linked to the hydroxyl group 
of the nucleoside moiety [66]. In addition, prodrugs of the pain killer 
paracetamol that are capable of masking the bitter taste of the parental 
drug were also designed such that the linker is covalently linked to the 
phenolic group of paracetamol, which is believed to be responsible for 
the bitter taste of the drug [67]. 

Different linkers were also investigated for the design of several 
prodrugs that might be efficient in releasing their corresponding parent 
drugs at various rates that are dependent on the nature or the structural 
features of the linkers. Selected examples of these prodrugs include 
the anti-Parkinson’s agent dopamine [68], anti-viral agent acyclovir 
[69], anti-malarial agent atovaquone [70], antihypertensive atenolol 

[71], antibacterial cefuroxime [72], ant-psoriasis monomethyl maleate 
[73], and the anti osteoporosis agents raloxifene and alendronate 
[74]. Successful synthesis of most of the prodrugs mentioned above 
was reached and in vitro kinetic results at different pH values have 
shown promising results for obtaining novel prodrugs that might 
have enhanced dissolution, membrane penetration, and thus better 
bioavailability than their corresponding drugs.

In the past, the prodrug approach was viewed as a last resort after 
all other methods were exhausted. Nowadays, the prodrug approach 
is being considered in the very early stages of the drug development 
process. While the classic prodrug approach was focused on altering 
various physiochemical parameters, the modern computational 
approach considers using a design of linkers with drugs that have poor 
bioavailability to release the parent drugs slowly and thus improve 
their bioavailability. With the possibility of designing prodrugs 
with different linkers, the rate of release of the parental drugs can be 
controlled. In addition, since the linkers used in the studies described 
above are relatively small, it is expected that the prodrugs themselves 
might have considerable biological effects before intraconversion to 
their parent drugs. The future of prodrug technology is exciting and yet 
challenging. Advances must be made in understanding the chemistry 
of many organic reactions that can be effectively utilized to enable 
the development of even more types of prodrugs. The understanding 
of organic reaction mechanisms of certain processes, particularly 
intramolecular reactions, will be the next major milestone in this field. 
It is envisioned that the future of prodrug technology holds the ability 
to create safe and efficacious delivery of a wide range of active small 
molecules and biotherapeutics.
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