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Abstract 

Elliptic Curve Cryptography provides a secure means of exchanging keys among 

communicating hosts using the Diffie Hellman Key Exchange algorithm. Encryption and 

Decryption of texts and messages have also been attempted. In the paper[15], the authors 

presented the implementation of ECC by first transforming the message into an affine point on 

the EC, and then applying the knapsack algorithm on ECC encrypted message over the finite 

field GF(p). The kanp sack problem is not secure in the present standards and more over in the 

work the authors in their decryption process used elliptic curve discrete logarithm to get back the 

plain text. This may form a computationally infeasible problem if the values are large enough in 

generating the plain text. In the present work the output of ECC algorithm is provided with 

probabilistic features which make the algorithm free from Chosen cipher text attack. Thus by 

having key lengths of even less than 160 bits, the present algorithm provides sufficient strength 

against crypto analysis and whose performance can be compared with standard algorithms like 

RSA.   

 Key words: ECC, Probabilistic encryption, Multiple ciphers, chosen cipher text attack. 
 

1.  Introduction 

 

Historically, encryption schemes were the first central area of interest in 

cryptography[18]. They deal with providing means to enable private communication over an 

insecure channel. A sender wishes to transmit information to a receiver over an insecure channel 

that is a channel which may be tapped by an adversary. Thus, the information to be 

communicated, which we call the plaintext, must be transformed (encrypted)to a cipher text, a 

form not legible by anybody other than the intended receiver. The latter must be given some way 

to decrypt the cipher text, i.e. retrieve the original message, while this must not be possible for an 

adversary. This is where keys come into play; the receiver is considered to have a key at his 

disposal, enabling him to recover the actual message, a fact that distinguishes him from any 

adversary. An encryption scheme consists of three algorithms: The encryption algorithm 

transforms plaintexts into cipher texts while the decryption algorithm converts cipher texts back 

into plaintexts. A third algorithm, called the key generator, creates pairs of keys: an encryption 

key, input to the encryption algorithm, and a related decryption key needed to decrypt. This work 

mainly deals with the algorithm which generates sub keys which provides sufficient strength to 

the encryption mechanism.  

 

Any symmetric encryption scheme uses a private key for secure data transfer. In their 

work on “ A simple algorithm for random number generation [7], the authors presented a simple 
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algorithm which generates random numbers. In [8-11] the authors presented a probabilistic 

algorithm which generates multiple cipher texts for one plain text which is relatively free from 

chosen cipher text attack.   

 

Most of the products and standards that use public-key cryptography for encryption and 

digital signatures use RSA today. Recently, Elliptic Curve Cryptography [1-6, 12-20] has begun 

to challenge RSA. The principal attraction of  ECC, compared to RSA, is that it appears to offer 

better security for a smaller key size, thereby reducing processing overhead. Elliptic curve 

cryptography makes use of elliptic curves in which the variables and coefficients are all 

restricted to elements of a finite field. In ECC we normally start with an affine point called 

Pm(x,y). These points maybe the Base point (G) itself or some other point closer to the Base 

point. Base point implies it has the smallest x,y co-ordinates, which satisfy the EC. A character 

in a message is first transformed into an affine point of the elliptic curve by using it as a 

multiplier of Pm. That is, if the ASCII value of a character is A, then we determine P0 

m=A(Pm). This is one step towards introducing sophistication and complexity in the encryption 

process. The newly evaluated P0 m is a point on the EC, determined by applying the addition 

and doubling strategy of ECC technique. Then as per ECC algorithm, P0 m is added with kPB, 

where k is randomly chosen secret integer and PB is the public key of user B, to yield (P0 

m+kPB). This now constitutes second part of the encrypted version of the message. The other 

part, namely, kG, which is the product of the secret integer and the Base point, constitutes the 

first part. Thus the encrypted message is now made up of two sets of coordinates, namely, (kG, 

P0 m+ kPB). In this paper we have assigned kG=(x1,y1) and (Pm+kPB)=(x2,y2). Not satisfied 

with the complexity involved in determining the encryption, we wish to introduce further 

complexity by applying time stamp, a variable nonce value concept to the encrypted version. The 

whole idea behind these rigorous exercises is to make decryption totally impossible, even if the 

Base Point G, secret integer k, the affine Point Pm is known to the crypt analyst. Now to recover 

the information from the encrypted version, first the new model with time-stamp has to be 

reversed. Then we apply the decryption process of ECC, by applying the private key of recipient 

(nB) on the first element (kG). This is subtracted from the second element to recover P0 m. This 

promises to afford maximum security from intruders and hackers. Another public key algorithm, 

namely RSA, is used to encrypt/decrypt the same message. Unlike the ECC procedure, this 

yields only one integer for each character of the message. The time and space implications for 

both the schemes are discussed and analyzed. The paper justifies that despite the harsher 

requirements of time and space for the ECC methods, it is far superior due to the resistance it 

offers to any brute force attack. 

 

Some recent works on application of ECC are cited here.Aydos et al. [1] Discusses the 

results of implementation of ECC over the field GF(p) on an 80 MHz, 32 bit RAM 

microprocessor. Kristin et al. [8] provides an overview of ECC for wireless security. It focuses 

on the performance advantages in the wireless environment by using ECC instead of the 

traditional RSA cryptosystem. Ray et al. [3] explains the design of generator, which 

automatically produces a customized ECC hardware that meets user-defined requirements. 

Cilardo et al. [4] explains the engineering of ECC as a complex interdisciplinary research field 

encompassing such fields as mathematics, computer science and electrical engineering.  [2] 

presents a high performance EC cryptographic process for general curves  over GF(p). The 
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standard specifications for public key cryptography are defined in [5 ].  

 

2.   Proposed Method Description 

The Weiestrass equation defining an elliptic curve over GF(p), for q > 3, is as follows:  :  

y2 = x3 + ax + b,                                                                   (1) 

where x, y are elements of GF(p), and a, b are integer modulo p, satisfying  

4a3 + 27b2 6= 0 mod p                                                              (2) 

Here p is known as modular prime integer. An elliptic curve E over GF(p) consist of the 

solutions (x, y) defined by Equations (1) and (2), along with an additional element called O, 

which is the point of EC at infinity. The set of points (x, y) are said to be affine coordinate point 

representation. The basic Elliptic curve operations are point addition and point doubling. Elliptic 

curve cryptographic primitives [13] require scalar point multiplication. Say, given a point P(x, y) 

on an EC, one needs to compute kP, where k is a positive integer. This is achieved by a series of 

doubling and addition of P. Say, given k = 386, entails the following sequence of operations P, 

2P, 3P, 6P, 12P, 24P, 48P, 96P, 192P, 193P, 386P. 

Let us start with P(xP , yP ). To determine 2P, P is doubled. This should be an affine point on 

EC. Use the following equation, which is a tangent to the curve at point P. 

 

S = [(3x2P + a)/2yP ] mod p. 

Then 2P has affine coordinates xR, yR given by 

 

xR = (S2 − 2xP ) mod p, 

yR = [S(xP − xR) − yP ] mod p. 

 

Now to determine 3P, we use addition of points P and 2P, treating 2P = Q. Here P has 

coordinates (xP , yP ) and Q = 2P has coordinates (xQ, yQ). Then 

 

xR = (S2 − xP − xQ) mod p, 

yR = (S(xP − xR) − yP ] mod p. 

 

Therefore we apply doubling and addition depending on a sequence of operations determined for 

k. Every point xR, yR evaluated by doubling or addition is an affine point (points on the Elliptic 

Curve). 

 

We add probabilistic features to output of ECC which generates multiple cipher texts for one 

plain text which makes the cipher text free from Chosen Cipher text attack. 

 

2.1 Implementation Details of the Proposed Algorithm 

Once the defining EC is know, we can select a base point called G. G has [x, y] 

coordinates which satisfy the equation y
2
 = x

3
 +ax+b. The Base point has the smallest x, y values 

which satisfy the EC. 
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The ECC method requires that we select a random integer k(k < p), which needs to be 

kept secret. Then kG is evaluated, by a series of additions and doublings, as discussed above. For 

purpose of this discussion we shall call the source as host A, and the destination as host B. We 

select the private key of the host B, called nB. k and nB can be generated by random number 

generators to give credibility. That would be digressing away from the main discussion. Hence 

we make suitable assumptions for these two parameters. The public key of B is evaluated by PB 

= nBG. (3) 

 

Suppose A wants to encrypt and transmit a character to B, he does the following. Assume 

that host A wants to transmit the character „S‟. Then the ASCII value of the character „S‟ is used 

to modify Pm as follows:  

P0m= SPm 

  

Pm we said is an affine point. This is selected different from the Base point G, so as to preserve 

their individual identities. P0m is a point on the EC. The coordinates of the P0m should fit into 

the EC. This transformation is done for two purposes. First the single valued ASCII is 

transformed into a x,y co-ordinate of the EC. Second it is completely camouflaged from the 

would-be hacker. This is actually intended to introduce some level of complexity even before the 

message is encrypted according to ECC. As the next step of ECC, we need to evaluate kPB, here 

PB is a public key of user B. Determining this product involves a series of doubling and 

additions, depending on the value of k. For a quick convergence of the result, we should plan for 

optimal number of doubles and additions. The encrypted message is derived by adding P0m with 

kPB, that is, P0m+kPB. This yields a set of x2, y2 coordinates. Then kG is included as the first 

element of the encrypted version. kG is another set of x1, y1 coordinates. Hence the entire 

encrypted version for purposes of storing or transmission consists of two sets of coordinates as 

follows: Cm = (kG, P0m + kPB) kG −! x1, y1 P0 m + kPB −! x2, y2. 

 

2.2 Probabilistic features 

Probabilistic features are added to output of ECC to make free from Chosen Cipher text 

attack [7-11]. It involves following steps. 

1. Algorithm for generating sequence. 

2. Generating Basins with unequal values based on equality of values. 

3. Mapping the basins to output of ECC. 

 

 2.2.1 Algorithm for generating the sequence 

1. Consider the sequence for 0 to n values where n is a positive integer. 

2. Convert each element of the sequence into ternary form of a given digit number. 

3. Represent the values of step 2 in a matrix form of (n+1) * (digit number). 

4. Subtract 1 from each element of the matrix specified in step 3. 

5. Consider a random matrix key of size (digit number*digit number). 

6. Multiply the output of step 4 with the output of step 5. 

7. Convert all positive values of matrix to 1, negative values to -1 and zero by 0. 

8. Add 1 to each element of output of step 7. 
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9. Convert ternary values of step 8 into decimal form. A sequence is generated. 

 

 2.2.2 Algorithm for generating Basins from sequence generated 

         1. Consider the sequence of values starting from 0 to n where n be an integer. 

2.  Read the sequence generated from algorithm 1. 

3. Read the starting element of step 1 and store the first element of step 1 and the 

corresponding first element of step 2 in a separate basin. 

4.1 Compare the element of step 3 with the elements of step 2. If there is a match, store 

the corresponding elements of step 1 in the basin specified in step 3. Neglect already 

visited elements. 

4.2 Repeat step 4.1 with the remaining elements of the basin of step 3 and store them in 

the same basin. This will form one basin. 

5.  Go to next element of step 1 which is not visited earlier.  

 

 

3.   Implementation of the Proposed Algorithm 

 

3.1: The Elliptic Curve is y2 mod 487 = (x3 − 5x + 25) mod 487. The base point G is selected as 

(0, 5). Base point implies that it has the smallest x, y co-ordinates which satisfy the EC. Pm is 

another affine point, which is picked out of a series of affine points evaluated for the given EC. 

We could have retained G itself for Pm. However for the purpose of individual identity, we 

choose Pm to be different from G. Let Pm =(1,316). The choice of Pm is itself an exercise 

involving meticulous application of the ECC process on the given EC,  the secret integer k, and 

the private key nB of the recipient B. We have at our disposal a series of random number 

generators. But that would be digressing from the main path of thought. Hence we shall assume 

that k = 225, and nB = 277. Plaintext is “S”, whose ASCII value is 83. Therefore, 

PB = nBG = 277(0, 5) = (260, 48) 

P0m = 83(1, 316) = (475, 199) 

kPB = 225(260, 48) = (212, 151) 

P0m + kPB = (475, 199)+ (212, 151) = (51, 58) 

kG = 225(0, 5) = (99, 253). 

Encrypted version of the message is: ((99, 253),(51, 58)), where x1 = 99, y1 = 253, x2 = 51, and 

y2 = 58. 

 

 

3.2: 

Step1: 

            Consider the sequence for n= 0 to 26 values. 

Step2:    

            Convert the sequence to ternary form of a 3 digit number 

            i.e. 0 ------- 000 

                  1-------- 001 

                  2-------- 002 

                       . 
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                       . 

                 . 

                26-------- 222 

 

Step3: 

 

          Represent above ternary form in 27x3 matrix  

 





























































































222

122

022

212

112

012

202

102

002

221

121

021

211

111

011

201

101

001

220

120

020

210

110

010

200

100

000

R
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Step 4: 

          Subtract 1 from each element of the above matrix and the resulting matrix R is 

  

 



































































































































111

011

111

101

001

101

111

011

111

110

010

110

100

000

100

110

010

110

111

011

111

101

001

101

111

011

111

R

 
 

Step5:  

            Consider a random matrix  
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





















324

313

652

A

 
 

Step6: 

        R= R X A 

 

 









































































































































171

247

5113

164

432

708

359

623

913

541

215

1211

336

000

336

1211

215

541

913

623

359

708

4312

164

5113

247

171

R
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Step7: 

 

          Convert all positive values to 1, negative values to -1 and zero to 0 of the resulting matrix 

of step 6. 









































































































































111

111

111

111

111

101

111

111

111

111

111

111

111

000

111

111

111

111

111

111

111

101

111

111

111

111

111

R

 
 

Step8:   Add 1 to each element of the matrix R 



International Journal of Advancements in Technology         http://ijict.org/            ISSN 0976-4860 

 

Vol 2, No 2 (April 2011) ©IJoAT  266  





























































































022

222

222

220

222

212

220

220

202

020

022

202

020

111

202

020

200

202

020

002

002

010

000

002

000

000

200

R

 
Step9: 

 

        Convert each row of the matrix R to decimal form to generate sequence i.e. 0 0 2 will form 

0*3 
2
+0*3 

1
+2*3 

0
 = 2  

 

The sequence formed is  =   2   0    0    18   0    3   18   18  6  20  2     6    20  13   6   20  24   6   

20    8   8   23   26   8   26   26   24. 

 

3.3 For example 

1. n [27]= 0      1      2      3     4       5……………………………………………...26 

2. r [27] = 2     0      0     18   0       3   18   18  6  20  2     6    20  13   6   20  24   6   20    8   8   23   

26   8   26   26   24. 

3. Read n[0]=0. Store the values of n[0],r[0] in  a basin. ie b(0)=(0,2). 

4.1. n[0] ie. „0‟ is compared with r[27] values. There is a match at r[1],r[2] & r[4]. Neglect 

already visited elements. Thus b(0)=[0,1,2,4). 

4.2 Step 4.1 is repeated with other elements of basin ie. 1, 2 & 4 values. For elements 1& 4, there 

is no match of values in r[27]. For element 2, there is a match at r[10]. Thus the basin b(0) is 

updated to (0, 1, 2, 4&10). 

5. The procedure is repeated for the next element of the sequence of step 1 which is not visited 

earlier. The other basins formed are  

b(1)=(3,5,6,7,8,9,11,12,14,15,17,18,19,20,21,23) 

b(2)=(13) 
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b(3)=(16,22,24,25,26) 

 

3.4 Mapping the basins on to the output of ECC 

Since 4 Basins are formed in the given example, each value of ECC output is represented 

by a 2 digit number with a base vlaue of 4. 

For example 

01 is represented as b(0)b(1), 02 as b(0)b(2), 03 as b(0)b(3), 04 

asb(1)b(1),........................................................8 as b(2)b(2), 9 as b(2)b(3) and so on. 

The output for S from ECC[15] for the given example is (99 253), (51 58). Each of the values 

like 9 9, 2 5 3 and so on are repaced with random values from the corresponding basins which 

generates multiple cipher texts from one plain text. 

9   is represented as b(2)b(3)  Taking random values from basins this can form  (13 16) or (13 

22) or (13 24) or (13 26). Similarly each value of output of ECC can be mapped to multiple 

values of basins in random fashion. 

This procedure generates multiple cipher texts for plain text. 

for S=83 , Cipher text bu ECC = (99 253), (51 58) 

                        =b(2)b(3) b(2)b(3)  b(0)b(2) b(1)b(2) b(0)b(3),  b(1)b(2) b(0)b(1) b(1)b(2) 

b(2)b(2).  

Cipher text 1= (13 22  10 13 06 13  02 22), (09 13  00 22  15 13  13 13). 

Cipher text 2= (13 26  01 13  11 13  10 16), (17 13  10 16 03 13  13 13). 

Cipher text 3= (13 16  01 13  05 13  00 22), (20 13  01 16  19 13  13 13). 

Similarly by randomly selecting values from basins multiple cipher texts can be generated for 

one plain text. Any one cipher text is used for transmission.  

During the decryption process, every  value of generated cipher text is mapped to the basin 

values which in turn can be converted to output of Encryption of ECC algorithm. By using the 

private key of the receiver , Plain text can be retrieved back. 

 

4.  Conclusion & Future Work 

ECC itself is a very secure algorithm for encryption. However, not satisfied with it the 

algorithm is provided with Probabilistic features which help to generate multiple cipher texts for 

one plain text.  The advantage with this model is it is not only free from linear and differential 

cryptanalysis but also free from chosen cipher text attacks. But the data overhead of the plain 

text to cipher text is increased by 1:2. Thus the given model supports the important properties 

like authentication, security and confidentiality at less computing resources when compared with 

algorithm like RSA. The model can be used not only for text it can also be used for different 

media like audio, image & video. 
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