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Abstract

Cardiac arrhythmias, in particular life-threatening Torsades de Pointes (TdP) are serious adverse effects
associated with a number of pharmaceuticals belonging to different classes. It is therefore critical to have reliable
biomarkers for assessing this risk during pre-clinical testing of new compounds. Prolongation of cardiac action
potential and consequently of the QT interval of the ECG is generally considered as indicative of a risk of arrhythmia.
Evaluation of drug effects on QT in preclinical studies is therefore requested by ICH (International Conference on
Harmonization) guideline (S7B). However there is now growing evidence that the prolongation of mean QT interval
is not an accurate indicator of the risk of arrhythmia and that other parameters of cardiac repolarization are more
predictive. They include instability of action potential duration and increase in transmural heterogeneity of myocardial
repolarization (spatial variability), which can be investigated in specific in vitro tests. We have conducted a number
of experiments in dogs for evaluating the ECG correlates of both markers in studies testing the effects of
isoproterenol, cisapride, astemizole and hypokaliemia, which are known to be associated with a proarrhythmic risk.
Instability of action potential duration is associated with an increase in the beat-to-beat (temporal) variability of the
QT interval that is evaluated by calculating the coefficient of variation of this parameter or by plotting QT from each
beat versus QT of previous beat. Spatial variability of repolarization correlates with changes in the morphology of the
T wave, in particular increase in the interval between the peak and the end of the T wave and notching of this wave.
In these experiments, we have therefore established a simple method for in vivo assessment of spatial and temporal
variability of cardiac repolarization, which may help in the evaluation the pro-arrhythmic risk of drugs.
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Introduction
Prolongation of the QT interval of the ECG corresponding to a

delayed cardiac repolarization is produced by a number of drugs, in
laboratory animals and humans and is generally considered as
indicative of a risk of arrhythmia. Evaluation of drug effects on QT in
preclinical studies is therefore requested by the ICH (International
Conference on Harmonization) guideline S7B [1].

However there is now growing evidence that the prolongation of
QT interval as such is not an accurate indicator of pro-arrhythmic risk
and that other parameters of cardiac repolarization are more
predictive [2-5]. They include time-related and spatial variability of
cardiac action potential duration (CAPD) [6,7]. Time related
variability of CAPD can be evaluated in vitro in isolated rabbit heart or
in vivo as changes in beat-to-beat variability of the QT interval [8,9].

Spatial variability of CAPD, can be assessed in vitro in cardiac
wedges preparation or in vivo by changes in the morphology of the T
wave of the ECG [10].

We have established the methodology for these in vivo
investigations in a few studies testing the effects of astemizole,
cisapride, isoproterenol, and hypokaliemia, which are known to be
associated with a proarrhythmic risk. Studies were conducted in dogs,
which is the most frequent non-rodent species used in preclinical
toxicity and safety pharmacology studies.

In vitro evaluation of time-related variability of CAPD
associated instability of cardiac action potential

One of the best ways for this investigation is to use the Screenit
model developed by Pr. Hondeghem [8]. Cardiac action potentials are
recorded in situ in isolated rabbit heart. In addition to time-related
variability (instability) of CAPD, two additional parameters,
triangulation and reverse use dependency are recorded and constitute
together a so called TRIad, which give critical information on the
proarrhythmic risk.

Instability of action potential consists of increased beat-to-beat
variability of CAPD. When it reaches a critical level it can lead to
chaotic behavior of the myocardium and consequent arrhythmias [5].
Instability can be evaluated by plotting each action potential duration
against the preceding one (Pointcaré plot). Proarrhythmic drugs
produce instability as indicated by increased degree of scattering of the
successive points [11]. Instability of the cardiac action potential is
considered as one of the most sensitive predictors of proarrhythmia,
since it frequently precedes the arrhythmic event and occurs at a much
lower drug concentration than a prolongation of the action potential
duration.

Triangulation of the action potential is a more oblique
repolarization phase. It is considered to be proarrhythmic because it
increases the duration of the vulnerable period of repolarization
during which early after-depolarizations may occur and trigger
Torsade de Pointes (TdP) [12].

Hanton., J Clin Toxicol 2014, 4:3
DOI: 10.4172/2161-0495.1000202

Research Article Open Access

J Clin Toxicol
ISSN:2161-0495 JCT, an open access journal

Volume 4 • Issue 3 • 1000202

Jo
ur

na
l o

f Clinical Toxicology

ISSN: 2161-0495

Journal of Clinical Toxicology

mailto:gilles.hanton@yahoo.fr


Reverse-use dependence is characterized by more marked effects of
compounds on the action potential at lower than at higher stimulation
rates and therefore reflects the likelihood of TdP.

In vivo evaluation of time-related (beat-to-beat) variablility
of CAPD

The variability of CAPD over time can be evaluated from the
temporal variability QT intervals measured on ECG tracings. After
recording individual QT intervals over 15 sec to 1 min, mean (mean
QT) and standard deviation (SDQT) are calculated and the coefficient of
variation CVQT=SDQT/mean QT is established as an evaluator of beat-
to-beat variability of QT, especially in dog studies. The formula of QT
temporal dispersion QTtd=log10 (CVQT/CVRR)2, which is used in
clinic, is not adapted to dogs because of the marked sinus arrhythmia
in this species and consequently high value of CVRR [13].

Another way for evaluating the temporal variability of QT is to
establish the Poincaré plot in which the QT value from each beat is
plotted against the following one. The spreading of the individual
points gives the degree of variability of QT interval [9].

In vitro evaluation of spatial variability of CAPD
For evaluating the variability of CAPD in the different layers of the

ventricle (transmural heterogeneity of myocardial repolarization), the
arterially perfused cardiac wedge is one of the best models. Action
potentials are recorded on the endocardium, epicardium and mid
myocardium, in dogs.

This preparation allows evaluation of differences in CAPD across
the ventricle wall. Indeed the different cardiomyocytes layers
repolarize at different rates, the endocardium being the first and the
mid-myocardium the latest to repolarize.

An increase in this transmural heterogeneity of repolarization has
been assumed to be a key trigger of arrhythmias since it may result in
reentry and subsequent TdP [14]. Notably, most pro-arrhythmic IKr
blockers have a more marked effect on mid-myocardial cells in dogs
(M cells) than on epicardial or subendocardial cells, and thus
accentuate the heterogeneity of myocardial repolarization [6].

In vivo evaluation of spatial variability of cardiac
repolarization

Transmural heterogeneity of repolarization times can be evaluated
in dog toxicity studies from ECG tracings by assessing the changes in
the morphology of the T wave. The T wave is the result of 2 opposing
voltage gradients, between mid-myocardium M cell and epicardium.
The full repolarization of epicardial cell corresponds to the peak of T
wave whereas the full repolarization of M cells corresponds to end of T
wave. An increased heterogeneity of repolarization of these different
cell layers produced an increase in the interval between the peak and
the end of the T wave interval (Tp –Te), which is considered in the
clinic as a marker of the risk for ventricular arrhythmias [15]. When
the transmural dispersion of repolarization is still more pronounced, it
may lead to a notching of the T wave [16].

Experimental Assessment

Designs of studies
Effects on astemizole: Using a cross-over design, we treated 9 dogs/

group with a single intravenous injection of astemizole at doses of 0, 1
or 3 mg/kg. ECGs were recorded before treatment, then 0.5 and 1 hour
after treatment (100 beats).

Another group of 3 dogs received single intravenous injections of
astemizole at increasing doses (6, 9 and 15 mg/kg.) over 3 successive
days. ECGs were recorded before treatment, then 15 minutes, 30
minutes, 1 hour and 3 hours after treatment (40 beats).

Effects of cisapride: Using a cross-over design, we treated 9 dogs/
group with a single intravenous injection of cisapride, at doses of 0, 1.5
or 6 mg/kg. ECGs were recorded before treatment, then 0.5 and 1 hour
after treatment (100 beats).

Effects of hypokalemia: Hypokalemia was induced by oral
treatment of 12 dogs with furosemide at increasing doses (5-60 mg/kg)
over 12 days. ECGs were recorded before furosemide dosing, then 1.5
and 3.5 hours after each dosing (over 1 minute).

Effects of isoproterenol: A group of 3 dogs received increasing doses
(2.5, 5 and 10 μg/kg) of isoproterenol by the subcutaneous route.
ECGs were recorded before treatment, then 15 min, 30 min, 1 h, 3 h
and 5 h after treatment (over 20 seconds).

ECG recording
Standard bipolar limb leads I, II, III, unipolar limb leads aVR, aVL,

aVF and precordial leads CV6LL, CV5RL, CV6LU, V10 were
recorded. T wave morphology and QT interval were assessed from
CV5RL lead, since this lead gives the most accurate evaluation of end
of T wave, which is monophasic and positive in untreated animals.

Evaluation of temporal variability of QT
QT values were recorded from individual beats and the coefficient

of variation of QT: CVQT=SDQT/mean QT was calculated.

Evaluation of the morphology of the T wave
Modifications of the T wave were recorded from precordial lead

CV5RL. In particular notching was noted. It consists in presence of 2
peaks on the wave. A grading system has been established as:

0: no notching.

1: minimal notching, mild rupture of continuity in ascending part
of the T wave.

2: mild notching, plateau but single peak of the T wave.

3: moderate notching, second peak on the descending part of the
wave, less than 0.1 mV between peak and trough, mild flattening

4: marked notching, second peak, with 0.1 to 0.3 mV between peak
and trough, moderate flattening

5: severe notching, second peak with more than 0.3 mV between
trough and peak, marked flattening and/or trough at the isoelectric
line or slightly below.
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Results
Detailed data have been provided in previous publications

[13,17,18].

Effect of astemizole
In the cross over study, astemizole produced a dose-related increase

in QT interval and in CVQT at 30 and 60 min after dose (Table 1).

Figure 1: Changes in morphology of T wave recorded in CV5RL precordial lead, after treatment of dogs with astemizole. A: Normal T wave
after vehicle treatment; B: Minimal notching after 1 mg/kg; C: Mild notching after 1 mg/kg; D: Moderate notching after 3 mg/kg; E: Marked
notching after 3 mg/kg.

Figure 2: Severe notching of the T wave recorded in CV5RL precordial lead after treatment of dogs with 6 mg/kg of astemizole.
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Notching of the T wave also occurred in both the cross over and the
increased dose study and in some occasions was very pronounced and
associated with a flattening of the wave (Table 2, Figure 1 and 2).

Effects of cisapride
The changes were similar to those produced by astemizole. The

increase in CVQT was slightly less pronounced for Cisapride than for

astemizole (Table 3), but T wave notching was similar or even more
marked in one animal (Table 2 and Figure 3).

Effects of hypokalemia
Hypokalemia produced an increase in QT interval and a number of

changes in T wave morphology, in particular notching, flattening,
inversion, biphasic of triphasic aspect (Figure 4).

Mean values at 3 time points (n=9) Lead CV5RL Difference compared to pre dose values

Pre-dose 30 min 60 min 30 min 60 min

Control 1.51 ± 0.33 1.47 ± 0.51 1.62 ± 0.37 -0.04 0.11

1 mg/kg 1.65 ± 0.41 2.48 ± 0.57 2.25 ± 0.74 0.84** 0.61

3 mg/kg 1.67 ± 0.35 2.89 ± 1.15 2.80 ± 1.22 1.22** 1.13**

Change compared to
control at 1 mg/kg

0.13 1.01*** 0.63*

Change compared to
control at 3 mg/kg

0.16 1.42*** 1.18**

*: p<0.05; **; p<0.01; ***: p<0.001 (data analyzed with a linear mixed model of analysis of variance with time, dose and the dosetime interaction as fixed effects and
animal as a random effect).

Table 1: Effect of astemizole on coefficient of variation of QT in dogs.

Mean score (n = 9) (range mini-max)

Before 30 minutes 60 minutes

Astemizole Control 0.55 (0-2) 0.22 (0-1) 0.75 (0-2)

1 mg/kg 0.55 (0-2) 2.11 (0-3) 2.22 (0-4)

3 mg/kg 0.55 (0-1) 3.22 (1-4) 2.67 (0-4)

Cisapride Control 0.4 (0-2) 0.7 (0-2) 0.6 (0-2)

1.5 mg/kg 0.3 (0-2) 1.6 (0-3) 0.7 (0-2)

6 mg/kg 0.2 (0-1) 2.6 (0-4) 2.3 (0-5)

Table 2: Notching of the T wave recorded in CV5RL precordial lead, after treatment of dogs with astemizole or cisapride.

Mean values at 3 time points (n=9) Lead CV5RL Difference compared to predose values

Pre-dose 30 min 60 min 30 min 60 min

Control 1.45 ± 0.42 1.41 ± 0.43 1.58 ± 0.25 -0.04 0.13

1.5 mg/kg 1.56 ± 0.41 2.06 ± 0.52 1.79 ± 0.39 0.5* 0.23

6 mg/kg 1.56 ± 0.33 2.16 ± 0.82 1.67 ± 0.58 0.6** 0.11

Change compared to control at 1 mg/kg 0.11 0.65* 0.21

Change compared to control at 3 mg/kg 0.11 0.75* 0.09

*: p<0.05; **; p<0.01; ***: p<0.001 (data analyzed with a linear mixed model of analysis of variance with time, dose and the dosetime interaction as fixed effects and
animal as a random effect).

Table 3: Effect of cisapride on coefficient of variation of QT in dogs.
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Figure 3: Changes in morphology of T wave recorded in CV5RL precordial lead, after treatment of dogs with cisapride. To be compared with
normal monophasic T wave. (A) Mild notching 1 h after treatment with 1.5 mg/kg: (grade 2); (B) Marked notching with flattening of the T
wave 1 h after treatment with 6 mg/kg (grade 4); (C) Severe notching of the T wave, 3 h after treatment with 6 mg/kg (grade 5).

Figure 4: Severe changes inmorphology of T wave recorded in CV5RL precordial lead in hypokalemic dogs (treatment with furosemide). To
be compared with normal T wave monophasic and positive. (A) Biphasic or triphasic T wave; (B) Inversion of T wave.
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Figure 5: Changes in morphology of T wave recorded in CV5RL precordial lead, in a dog treated with 5 μg/kg of isoproterenol.

Effect of isoproterenol
Isoproterenol produced a marked increase in heart rate, a decrease

in corrected QT interval (QTc) and a notching of T wave (Figure 5).

Discussion
The temporal variability of the QT interval of the ECG is the in vivo

correlate of cardiac action potential instability, which has been shown
to be markedly increased by arrhythmogenic drugs, in particular IKr
blockers and is considered as a reliable and sensitive predictor for the
risk of arrhythmia [12]. In the astemizole experiment, the CV of QT
was markedly increased, indicating an effect on the temporal
variability of cardiac repolarization. The CV of QT was also increased
by cisapride but to a lesser extent as compared to astemizole. Results
from both studies indicate that the CV of QT can assess the temporal
variability of QT in dogs treated with pro-arrhythmic IKr blockers.
These findings were consistent with those of previous authors [9].

Clinical investigations have shown that increased beat-to-beat QT
variability is an indicator of temporal myocardial repolarization
liability and predicts ventricular tachyarrhythmias, sudden cardiac
death and cardiovascular mortality [19-21].

The second key observation after treatment with astemizole and
cisapride was a clear notching of the T wave, consisting of presence of
2 peaks of the T wave, with the intermediate trough sometimes
reaching the isoelectric line, giving an impression of U wave. Notching
of the T wave indicates an increase in the heterogeneity of
repolarization of the different layers of cardiomyocytes across the
ventricular wall and consequent modification of the transmural
voltage gradient [22-24]. The change is considered to be due to

differences in the action of the compounds on different cardiac cells.
IKr blockers like astemizole or cisapride act predominantly on the M
cells, which are more sensitive to IKr blocking than epicardial or
endocardial cells [25,26]. Notching of the T wave has been previously
observed in dogs and humans after treatment with IKr blockers
[26-28].

Notching of the T wave in dogs was therefore found to be a
predictive biomarker for the evaluation of potential proarrhythmic
risk of IKr blockers and the aim of further studies was to verify this
finding in situations potentially producing arrhythmia by other ways
than IKr blocking. These experiments indicated that diuresis-induced
hypokalemia and isoproterenol, an adrenergic β-agonist both produce
T wave abnormalities.

Notching and/or flattening of the T wave in CV5RL in dogs treated
with isoproterenol is also probably related to an increase in
heterogeneity of the repolarisation of the different cardiomyocytes
layers across the ventricular wall. In vitro studies on canine cardiac
tissues have shown that isoproterenol produced a greater shortening of
the action potential in epicardial than in endocardial cardiomyocytes
and prolonged the action potential of M cells [29,30]. These changes
resulted from a large augmentation in IKs current in epicardial and
endocardial cells but not in M cells in which IKs is weak.

The changes in T wave morphology in hypokalemic dogs is
consistent with in vivo and in vitro data and find a similar explanation
as the changes produced by astemizole, cisapride and isoproterenol. In
isolated cardiac tissues, a decrease in extracellular potassium prolongs
the duration of cardiac action potential to a greater extent in the
epicardium than in other myocardial layers, which is attributed to a

Citation: Hanton G (2014) Improvement of QT analysis for Evaluating the Proarrhythmic Risk of Drug: The Importance of Spatial and Temporal
Dispersion of Repolarization. J Clin Toxicol 4: 202. doi:10.4172/2161-0495.1000202

Page 6 of 8

J Clin Toxicol
ISSN:2161-0495 JCT, an open access journal

Volume 4 • Issue 3 • 1000202



predominant Ito current (responsible for transient early outflow of
potassium) in the epicardium [14]. Electrophysiological studies in
isolated cardiac cells also showed that when extracellular potassium
decreases, the slope of phase 2 of the action potential becomes steeper
and phase 3 slower, resulting in an increased duration of the action
potential. The period of incomplete repolarization tends to be longer
in Purkinje fibres than in ventricular cells, resulting in an increased
dispersion of repolarization [31]. In humans, hypokalemia is known to
produce typical changes in the ECG, in particular a decrease in T wave
amplitude and the appearance of a U wave [32]. Similar changes have
been observed in hypokalemic dogs [33].

Notching of the T wave thus occurred in different conditions
known to be associated with arrhythmic events. Notably this
indication of proarrhythmic risk was found in association with QT
prolongation (astemizole, cisapride and hypokaliemia) but also with
QT shortening (isoproterenol). The findings of the current
experiments are therefore consistent with clinical investigations
showing that changes in the morphology of the T wave, in particular T
wave notching and increase in Tp-Te, are reliable markers of the
proarrhythmic risk [34-36].

In conclusion, we have established a simple method for in vivo
assessment of spatial and temporal variability of cardiac repolarization,
which may help in the evaluation the pro-arrhythmic risk of drugs.
The precordial lead CV5RL was found to be the best lead for these
investigations. This methodology could help in the interpretation of
findings in pre-clinical studies.
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