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INTRODUCTION

Air quality is closely connected to a complex interaction of 
factors associated with anthropogenic emissions, atmospheric 
circulations and topography; also; most of the urban pollution 
present particulate pollutants and trace gases toxic to human 
health and responsible for damaged climate system. As large 
parts of northern India suffer under thick air pollution during 
post-monsoon and winter season, the GOI is continuously 
making efforts to establish a Decision Support System (DSS) for 
AQ management. The motive of this study is to implement an 
accurate AQ forecasting system that can provide inputs to DSS 

during extreme air pollution events. SILAM AQ forecasting system 
has been configured and designed for India in collaboration 
between IMD and FMI. An extensive set of experiments have 
been performed with different model settings to forecast the AQ 
including criteria pollutants and several other Volatile Organic 
Compounds (VOCs) over India. The model input datasets 
have been taken from Indian application of Weather Research 
and Forecasting (WRF) model at 3KMs spatial resolution as 
meteorological data and a dense network of 300+ stationary 
AAQMS across the country as AQ observations. For the present 
work, a numerical simulation of pollution events over mega 
city Delhi has been simulated using SILAM model at a spatial 
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resolution of 5-kms. The modeled results implied that the model 
is very sensitive towards the initial boundary conditions, grid 
spacing, and emissions. The results are validated against available 
in-situ observations for particulate pollutant concentrations. The 
model forecasts with horizontal grid resolution fit well with the 
hourly measurements of AQMS and these experiments tend to 
over predict the peak level of about 150-200 μg/m3 . This analysis 
has been performed using grid points averaged concentrations of 
AQMS network across Delhi-NCR. Nearest neighbor algorithm 
has been used to retrieve grid point concentration of PM 10 and 
PM 2.5 similar to grid point observations from AQMS. SILAM 
5-km simulation shows increased PM concentrations with a peak 
value of about 700 μg/m3 against an observed value of 640 μg/
m3. On the other hand predicted maximum value of PM 2.5 
concentration was 580 μg/m3 as compared to that of measured 
value 430 μg/m3 during an increased pollution event. Another 
exercise of curve fitting has been performed in order to fit the 
predictions over observations using univariate linear regression 
analysis that showed much improved results that are described 
under results section. This exercise can be used in tuning the 
model for more accurate results

MATERIALS AND METHODS

Indian setup

SILAM model for India is configured to generate 72-hours hourly 
AQ forecast of criteria air pollutants at a spatial resolution of 5 
KMs. The model is configured to use WRF modeled meteorological 
data at 3 KMs spatial resolution as meteorological inputs. WRF 
model is operated by Numerical Weather Prediction (NWP) 
division of IMD. NWP generates meteorological forecasts at 00, 
06, 12 and 18 UTC; among those; previous day’s WRF forecast 
at 12 UTC is used as meteorological input to SILAM model 
initialization. SILAM initialization is composed of three basic 
elements: (a) SILAM global run, (b) SILAM previous day’s run 
for India and (c) meteorological parameters for SILAM boundary 
conditions. SILAM global run is performed at FMI which uses 
hourly forecasts of European Centre for Medium-Range Weather 
Forecasts (ECMWF) as meteorological inputs. The model output 
is in network common database file (netCDF) format and png 
files as static concentrations maps for modeled species. City wise 
forecasts are calculated in post-processing python scripts using 
grid area averaged concentration for Delhi-NCR and station-wise 
concentration for Kanpur, Lucknow and Varanasi; three major 
cities with moderate pollution activities in IGP region. 

Emissions

The AQ and fire smoke in SILAM are computed using eulerian 
dispersion kernel, corresponding source terms and physio-
chemical transformation modules. Emission information is 
equipped with concentration and deposition information of 
corresponding pollutant. Global emissions from the Copernicus 
Atmosphere Monitoring Service (CAMS) CB5v2 for Indian 
region are utilized for Indian application of SILAM. Sectoral 
emissions viz public power, industries, road transport, shipping, 
off road dust, agricultural waste and other stationary combustions 
are defined in corresponding categorical source term file for 
Indian application. The source term file has the information to 
source name, latitude, longitude, plume rise, release rate, release 
time definition if the source is activated for a certain time period. 

The released composite entity is defined in the terms of hour 
in a day, day in a week, week-day relative intensity or month in 
a year. This information is highly required for Indian emissions 
and weather system as the IGP region is significantly affected by 
pollution events twice a year in the post-monsoon and winter 
season. TNO-MACC data set and IS4FIRES are supporting 
modules that provide information on anthropogenic emissions 
and wild-land fires along with embedded emission computations 
for sea salt, wind-blown dust, and natural VOCs [7,8].

Aerosols

SILAM is capable to process up to 496 different nuclides including 
primary and secondary aerosols. It is also able to calculate 
radioactive decays and transformations of chemical compounds; 
chemically active aerosols and gases. Primary aerosols are emitted 
directly from the source itself whereas secondary aerosols are 
formed by chemical and physical processes involving gaseous 
precursors. Secondary aerosols can be divided into two types: 
Secondary Organic Aerosols (SOAs) and Secondary Inorganic 
Aerosols (SIAs) [8-10]. Gaseous precursors for SOAs are VOCs, 
like isoprene and correspond to a mixture of many organic gases 
mainly composed of carbon, hydrogen and oxygen. Precursors 
of SIAs are the gaseous elements like ammonia, nitric acid 
and sulfuric acid. The modeling system is efficient to compute 
aerosol’s wet/dry deposition, gravitational settling and diffusion. 
Particulate aerosols in SILAM are described separately as PM 10 
and PM 2.5 species. Both of the categories have a no. of chemical 
compounds that form corresponding PM. Standard mixture of 
pollutants is named as cocktail in SILAM. Each cocktail has 
associated description file that contains the information of 
almost every possible mixture of aerosols and gases along with 
their mass fraction in corresponding cocktail. The modifications 
and model architecture in SILAM application for India are 
described graphically as below in Figure 1.

SILAM output

SILAM outputs have been configured to provide two types of 
forecasts, i.e. spatial map and station-wise time series. The spatial 
forecast is a 5 KM × 5 KM hourly forecast over Indian sub-
continent. The forecast parameters are all the criteria pollutants 
(PM 10, PM 2.5, CO, NO

2
, SO

2
 and O

3
) and few other parameters 

like dust, H
2
O

2
, HCHO, HNO

3
, H

2
O, HONO and NH

3
. Station 

wise time series is an interactive time series plot with information 
of 72Hrs forecast of each pollutant along with hourly AQ 
categorical index and 24 hours moving average of each pollutant. 
Output products are provided below in Figures 2a and 2b.

RESULTS

Validation and statistical analysis of results for December 2020 
have demonstrated a good agreement with observed values 
from stationary AAQMSs. Pair wise comparisons between PM 
modeled and observed values pair all together has evidenced a 
positive correlation which implies a valid PM trend in December 
2020. However the model has fairly overestimated the PM 
concentrations but the results are acceptable as an initial phase. 
Diurnal variation of PM modeled and observed values during 
December 2020 are provided below in Table 1 and Figure 3.

PM 10 statistics between 410 pairs of observations and modeled 
values has shown a positive Carl Pearson’s correlation coefficient 

[1-6].
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Figure 1: SILAM operational setup architecture.

Figure 2a: SILAM spatial output.
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Table 1: Diurnal variation of modelled and observed PM.

Hour SILAM_PM10 PM10_Observed SILAM_PM2_5 PM2_5_Observed

0 297.6617 403.4142 212.637 252.2526

1 281.0464 436.0531 203.9226 254.9285

2 276.5521 468.6942 205.6286 251.7946

3 272.4314 475.1414 204.1843 240.3895

4 261.3009 440.8186 202.1041 241.6755

5 257.699 409.5492 206.2753 239.5954

6 266.7101 398.3519 209.676 234.2157

7 312.554 397.78 238.8326 234.9745

8 314.3835 374.0041 241.1873 245.6821

9 282.1499 373.1155 232.4795 260.0557

10 243.1388 351.9076 197.3329 247.1127

11 211.4612 348.9015 168.5067 233.8121

12 186.9875 353.7457 139.968 197.0683

13 161.4892 368.2803 125.3835 178.9067

14 139.7646 384.3631 114.3559 156.1497

15 125.2707 372.9344 102.4852 137.1606

16 123.8513 372.1216 97.3692 129.0553

17 142.4779 338.5226 107.239 139.7617

18 179.5197 291.3622 129.9326 162.2186

19 224.2192 272.4237 164.0881 207.2969

20 271.7711 256.9312 193.956 249.1171

21 295.8579 265.6943 214.1268 267.2541

22 319.5574 267.3263 227.4039 274.0133

23 303.8516 331.3929 218.7307 271.0087

Figure 2b: SILAM time series output. Note: (            )Severe; (            )Very Poor; (            )PM2.5; (            )Poor; (            )
Modern; (            )Satisfactory; (            )Good
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Figure 3: Correlation matrix of modeled vs. observed PM.

Figure 4a: PM10 statistics.

of 0.4. PM10 predictions are slightly over and under estimated 
at different time stamps but this difference has been observed 
due to sudden increased pollution events evidenced by ground 
based observations. Wind pattern and transport of coarse 
particulates from the outer boundaries of Delhi are responsible 
factors that contribute in these sudden raised pollutants 
concentrations. PM 2.5 statistics between 407 pairs of modeled 
and observed values has shown a strong positive correlation 
of 0.74 with 90% confidence interval of 0.70 and 0.78. Paired 
samples t-test of 408 and 405 modeled and observed PM Pairs 
has validated the hypothesis between dependent SILAM PM 

measured and modeled PM are described below in Figures 4a 
and 4b. Analysis of variance (ANOVA) has also been performed 
to assess the variation within different order of fits in between 
SILAM predictions and observations. We have experimented 
1st, 2nd, 3rd and 4th order polynomial fits against the observations 
using univariate regression analysis and the results have proven 
the best fits for both of the PM 10 and PM 2.5 with a positive 
correlation of more than 0.9. Curve fitting statistics are tabulated 
below in Table 2. Taylor diagrams for differently ordered fits are 
represented below in Figures 5 and 6.

and independent observed PM variables. Test statistics between 
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Figure 4b: PM2.5 statistics

Table 2: Statistics of 1st, 2nd, 3rd and 4th order polynomial fits between modelled and observed values.

PM 10 PM 2.5

Order Adjusted R2 F-Statistic P-value Pr(>|t|) Order Adjusted R2 F-Statistic P-value Pr(>|t|)

1st 0.1554 84.17 <2.2e-16 4.13e-8 1st 0.5484 754.2 <2.2e-16 <2e-16

2nd 0.1741 48.63 <2.2e-16 0.0008 2nd 0.5604 395.6 <2.2e-16 0.028

3rd 0.1838 34.94 <2.2e-16 0.0041 3rd 0.5597 263.3 <2.2e-16 0.39

4th 0.1821 26.16 <2.2e-16 0.174 4th 0.5506 136.7 <2.2e-16 0.004

Figure 5: (A) Taylor diagram of PM10 vs. model fits (B) Taylor diagram of PM2.5 vs. model fits. 

A B
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Figure 6: (A) Analysis of variance for PM10 (B) Analysis of variance for PM2.5.

A B

Taylor diagrams and ANOVA tables clearly indicate that PM 10’s 
best fit has been observed at the 2nd order polynomial fit where 
the probability of rejection of hypothesis is 0.0008. On the other 
hand; 4th order polynomial fit is the best fit for PM 2.5 variable 
against observed values where the probability of acceptance 
is highest. Both of the fits have demonstrated improved RMS 
error and correlation coefficient. The results are acceptable as 
an initial pre-operational phase. Accuracy of the predictions 
can be improved by fine tuning the emissions and updating the 
land use land cover data of the region. Rapid construction and 
urbanization activities have resulted in increased pollution levels 
across the region. Updating the source lists, active hours of the 
sources will certainly help in improved model predictions.

CONCLUSION

Air Quality management has emerged as a prior challenge for 
India as the country lists among the most affected cities by air 
pollution in the world. Establishing an accurate AQ forecasting 
system is a challenging task for a large region like India. Lack 
of information on type of pollution from natural/man-made 
activities along with accurate spatial and temporal information 
is the key to model the forecasting system. Different sources 
of pollutants can be found in different parts of the country. 
Implementing the SILAM model for such a diverse country in 
terms of ecology, geography and climate system is probably first 
of its kind effort known to us. We are continuously engaged in 
tuning the model concerning sectoral emissions and updated 
land use maps. As a preliminary phase the model performance is 
acceptable as per the statistical significance of the results against 
observations. Better understanding of pollution events across 
different parts of the country will certainly aid in improved 
forecasting capability of SILAM for India.
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