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Introduction
Polycystic ovary syndrome (PCOS), one of the most common 

endocrine disorders in women during their reproductive age [1], is 
associated with reproductive, metabolic and public health  disorders 
[2]. Although PCOS was recognized about 80 years ago, its etiology, 
pathophysiology and long-term health risks have not been clearly 
elucidated. Based on current scientific literature both genetic and 
environmental factors play an important role in the development 
of PCOS [3, 4]. Current treatments for PCOS rely on managing the 
symptoms of the syndrome rather than its cause; these treatments 
include lifestyle changes followed by regulating the menstrual 
cycle,reducing the androgen levels and promoting ovulation [5, 6]. The 
main endocrine abnormality of PCOS is  increasing LH/GnRH pulse 
frequency, which none of the current treatments have yet targeted [7].

Kisspeptin, a principal activator of GnRH neurons and the target 
of endocrine and metabolic cues, is a prerequisite for the onset of 
puberty and maintenance of normal reproductive function [5,6,8]. 
Although PCOS symptoms  generally become obvious during puberty, 
clinical and experimental evidence suggest an intrauterine origin for 
the syndrome [7]. Exposure to excess androgen during the critical 
period of early life leads to the development of a PCOS-like phenotype 
in adulthood, which is associated with reduced hypothalamic kiss1 (a 
male-typical kiss1 pattern) and unresponsive to sex steroid feedback 
actions; however there is enhanced GnRH neuron activity and LH 
secretion [9, 10]. Experimental studies demonstrate that kisspeptin 
antagonists decrease LH pulse frequency and amplitude but do not 
appear to affect basal LH secretion [11, 12]. As a result slowing GnRH 
neuron activity via kisspeptin antagonists may improve GnRH/LH 
pulse frequency in PCOS conditions [13]. In this study we investigated 

whether prenatal exposure to a single dose of kisspeptin antagonist 
P271 during a critical period of fetal development can alter gnrh mRNA 
expression and hormonal profile in PCOS rats during adulthood.

Materials and Methods
Animals

All experimental procedures and protocols used in the present 
study were approved by the local ethics committee o the Research 
Institute for Endocrine Sciences (IR.SBMU.RIES. REC.1394.3). The 
details of production of prenatally androgenized rats model have 
previously been published [14]. In brief sexually mature female and 
male Wistar rats (n=20 each, body weight 170–190 g) were obtained 
from the RIES animal facility of Shahid Beheshti University of Medical 
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Abstract 
Introduction: Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women 

of reproductive age. Increased GnRH/luteinizing hormone (LH) pulse frequency is a characteristic of endocrine 
abnormalities in PCOS. Kisspeptin antagonists reduce LH pulse frequency and amplitude and are hence supposed 
to slow GnRH neuron activity that may adjust GnRH/LH levels in PCOS conditions.

Objective: To investigate the impact of kisspeptin antagonist P271 administration during prenatal life to reduce 
GnRH expression in adulthood in prenatally androgenized (PNA) rats as a model of PCOS.

Materials and methods: PNA rats (n=9) and controls (n=9) received P271 on day 20 of their prenatal life, and 
they were examined in adulthood (110-120 days). The ability of P271 to alter GnRH mRNA expression, and plasma 
levels of gonadotropins and steroid hormones were tested using reverse transcription q-Real-time PCR and ELISA 
methods, respectively. 

Results: In this study, based on the result of Generalized Estimating Equation (GEE) model, we found that 
GnRH expression in PCOS+P271 rats decreased compared to PCOS rats in the diestrous phase. In addition, P271 
administration reduced gonadal steroid and gonadotropin levels in both PCOS and non-PCOS rats. 

Conclusion: In conclusion prenatal administration of kisspeptin antagonists can reduce GnRH expression and 
LH, FSH, T, P4 and E2 levels in PCOS rats in later life.
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Sciences (Tehran, Iran) and were housed under controlled photoperiod 
(12 h light/12 h dark), temperature (22 ± 3°C) and humidity (45–55%) 
conditions. Food and water were available ad libitum. One pair of male 
and female rats was caged for one night in standard animal housing 
conditions, and the day of vaginal plug observation was counted as the 
first day of gestation.

Experimental design

The flow diagram for the detailed experimental plan is described in 
Figure 1. Pregnant rats were randomly divided into two groups; group 1 
received 5 mg of free testosterone (T1500; Sigma, Steinheim, Germany) 
dissolved in a 500 μl cocktail containing sesame oil (S3547; Sigma, 
Steinheim, Germany) and benzyl benzoate (B6630; Sigma, Steinheim, 
Germany) at a ratio of 4:1, by subcutaneous injection on the 20th day of 
pregnancy, while group 2 received only 500 μl of solvent [14]. These two 
groups were again divided into two subgroups; one subgroup received 
intraperitoneal injection (5 nmol) of P271 (EZBiolab Inc., Carmel, 
USA, cp7222) and the other received solvent, 4 hours after the first 
injection (according to Desroziers et al study, kisspeptin is developed 
between embryonic day 12.5 and 13.5) [15]. Female offspring of PCOS 
(n=9), control (n=8), PCOS+P271 (n=9) and P271 (n=9) group were 
kept under the standard animal housing conditions mentioned above.

Monitoring the estrous cycle

Estrous cyclicity was monitored by daily observations of vaginal 
smears for all female offspring (age 70-90 days) between 08.00 and 12.00 
h for 20 days. The vaginal secretion of each rat was collected with a plastic 
pipette filled with 50 𝜇L of distilled water by inserting the pipette tip into 
the vagina. The pipette tip was rotated two or three times against the 
vaginal wall and then withdrawn and rolled on a clean glass slide; smears 
were fixed with 70% ethanol, stained with Giemsa and observed under a 
light microscope at 100x magnification. The estrous cycle was determined 
according to the cell types observed in the vaginal smear [14]. 

Animals were then divided to four subgroups, i.e. proestrous, 
estrous, metestrous and diestrous.

Blood sample collection

Since GnRH peaks occur only within a narrow temporal window, 

typically late afternoon in nocturnal rodents, [16] the female offspring, 
110-120 days of age, were weighed and anaesthetized by I.P. injection 
of pentobarbital sodium (P3761, Sigma, St Louis, MO, USA) dissolved 
in normal saline [60 mg (kg body weight) -1] 1 to 2 h before darkness. 
Blood samples were collected from the abdominal aorta and centrifuged 
at 6000 g for 5 min, at 4°C. Sera were extracted, aliquoted and stored at 
-80°C until analysis.

Hypothalamus dissection

Following blood sampling, the rats were decapitated, brains were 
immediately dissected out, the entire hypothalami were dissected out 
by an anterior coronal section, approximately 1 mm anterior to the 
optic chiasma, and a posterior coronal cut at the posterior border of the 
mammillary bodies was made. A small portion of the thalamus located 
above the hypothalamus was dissected out. The samples were snap 
frozen in liquid nitrogen and stored at -80°C. We were unable to extract 
mRNA from separate areas of the hypothalamus. Thus, all hypothalami 
were used.

Determination of the estrous cycle phases

Following hypothalamus isolation, the vaginal secretion of each 
rat was collected and the phase of the estrous cycle was determined 
according to the procedure mentioned above

Quantitation of GnRH mRNAs in the hypothalamus

Quantitative reverse transcription real-time PCR (qRT-PCR) 
reactions were performed in a Rotor Gene 6000 machine (Corbett 
Research, Sydney, Australia). Total hypothalamus RNA was extracted 
using the QIAGEN RNeasy Mini Kit (Cat No: 74104), according to the 
manufacturer’s protocol. Quantity and purity of RNAs were measured 
using the NanoDrop 1000 (Thermo Scientific, Waltham, and Mass). 
Total RNA from each sample (250 ng) was used as template for reverse 
transcription (RT) reaction. The cDNA synthesis was performed using 
the QIAGEN QuantiNova Reverse Transcription Kit (Cat No/ID: 
205411) in a 20 μl reaction mixture. Quantity and purity of cDNAs were 
measured using the NanoDrop 1000 (Thermo Scientific, Waltham, and 
Mass). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was 
used as the endogenous reference gene (Table 1). qRT-PCR reactions 
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Figure 1: Flow diagram showing the experimental design.
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were performed using the Thermo Scientific™ Maxima™ SYBR™ Green/
ROX 2X qPCR Master Mix (Cat No.: K0221); PCR conditions were 95°C 
for 10 min and 40 cycles of 95°C for 30 sec, 60°C for 60 sec and 72°C 
for 45 sec. Standard curve was used to estimate the PCR amplification 
efficiency. PCR reaction mixture (15 μl) contained a SYBR Green qPCR 
Master Mix 7.5 μL, 0.5 μl each of forward and reverse primer (Table 1), 
RNase-free water 5.5 μl, and 1 μl cDNA sample. For negative control, the 
Cdna sample was replaced with RNase-free water. Duplicate reactions 
were performed for the target and reference genes. The relative amount 
of mRNA in each sample (deltaCt) was calculated based on its threshold 
cycle (Ct) compared to the Ct of GAPDH (deltaCt= CtGnRH -CtGAPDH). So 
the lower the delta Ct the higher the gene is expressed. GnRH mRNA 
expression was evaluated in these 4 groups considering the estrous 
cycle.

Measurement of hormones

Serum concentrations of testosterone (T), progesterone (P4), 
estradiol (E2), follicle-stimulating hormone (FSH) and luteinizing 
hormone (LH) were quantified by the ELISA method. Rat specific 
ELISA kits were used to measure levels of T (Cat No. CSB-E05100r), 
E2 (Cat No. CSB-05110r), P4 (Cat No. CSB-E07282r), FSH (Cat No. 
CSB-E06869r) and LH (Cat No. CSB-E12654r); the sensitivity of these 
kits was 60 pg/ml, 40 pg/ml, 15 pg/ml, 0.07 mlU/ml and 0.15 mlU/ml, 
respectively. Intra-assay coefficients of variations for all hormones were 
<10%.

Data analysis and statistics

Data and design: This study was an in vivo experimental trial 
conducted on rats; we had two groups of PCOS and non-PCOS which 
had received intraperitoneal injections of either P271 or solvent, 
respectively. Vaginal sampling was not performed because of the 
possible risk of inducing stress and pseudo pregnancy, which may alter 
the criteria to be measured. We did not induce estrous synchronization, 
because hormonal changes were not our desirable. On the other hand, 
because of irregular estrous cycle in PCOS rats, the stage of the estrous 
cycle couldn’t be predicted. We aimed to investigate the effect of a single 
dose of P271 during different phases of the estrous cycle, but we didn’t 
want to kill many rats, so we used GEE.

Statistical analysis: The Generalized Estimating Equation (GEE) 
method was used to estimate coefficient of interest in a generalized 
linear model (GLM), where each phase was considered as a repeated 
measure for a PCOS (non-PCOS) case which had/had not received 
P271. The independent working correlation matrix was assumed 
according to the design of the study. Compared to GLM methods, the 
GEE approach is more consistent when data has not fulfilled normality 
assumption [17].To assess the mean effect of P271 administration on 
the outcomes of interest (gene expression and hormonal profiles) was 
adjusted for group (PCOS and non-PCOS) and phase (proestrous, 
estrous, metestrous and diestrous) of study; we designed a model in 
which the main effects of the P271 administration [18], PCOS and 
phase of study were estimated (table 2). In addition, two-and-three-

way effect modifier variables (interaction effect) of P271 administration 
*phase and P271 administration *PCOS*phase were estimated to check 
the effect of P271 administration, adjusted by PCOS and phase during 
four levels of phase of the study on the outcome of interest. Model 
equation was defined as the following:

Mean of (deltaCt) = β0 + β1 (PCOS) + β2 (P271.A) + β3 (phase 
= Metestrous) +  β4 (phase = Diestrous) + β5 (phase = Estrous) + β6 
(P271.A*Diestrous) +  β7 (P271.A*Metestrous) + β8 (P271.A*Estrous) 
+ β9 (P271.A*Diestrous*PCOS) + β10 (P271.A*Diestrous*PCOS) + 
β11 (P271.A*Metestrous*PCOS) + β12 (P271.A * Estrous*PCOS) + 
β13 (P271.A*proestrous*PCOS) + β14 (No-P271.A*Diestrous*PCOS) 
+ β15 (No P271.A*Metestrous *PCOS) 

Results
Estrous cycle

Observation of vaginal smears on a daily basis for 20 days showed 
that PCOS rats had longer and irregular estrous cycles compared with 
controls.

Gene expression results

Using the GEE model we calculated the mean gene expression 
(deltaCt) in various condition using the mentioned formula; for 
instance deltaCt in metestrous phase for those PCOS cases who had 
received P271 was calculated to be 5.47, considering the coefficients of 
various items as bellows:

Mean of (deltaCt) =6.0-0.27 (PCOS =1) -0.18 (P271.A =1) 
+ 1.8 (phase =Metestrous) -0.81 (P271.A*Metestrous) - 1.07 
(P271.A*Metestrous*PCOS) =5.47

Figure 2 shows the results of the GEE model, illustrating that 
regardless of other conditions, the PCOS status or P271 administration 
decreased the mean of deltaCt by 0.27 (95%CI: 0.79-0.24, p=0.301) and 
0.18 (95%CI: 0.70-0.33, p=0.489), respectively, although these changes 
were not statistically significant.

Figure 3 compares the P271 administration to the control group, 
adjusted by PCOS status in four phases of the estrous cycle. This figure 
demonstrates a significant increasing trend of deltaCt in the estrous 
cycle in controls; it was 6, 7.30, 7.60 and 7.80 in the proestrous, estrous, 
metestrous and diestrous phases respectively in controls. This model 
shows an increasing trend of expected deltaCt in the PCOS group from 
proestrous to metestrous (proestrous (5.73), estrous (7.03), metestrous 
(7.45)), while deltaCt decreased in the diestrous phase (6.23) in these rats. 
In the P271 group, deltaCt increased from proestrous (5.82) to estrous 
(7.45), while it decreased from estrous to metestrous and reached a plateau 
from metestrous through diestrous (6.60). In the PCOS+P271 group, an 
increasing trend of expected deltaCt in estrous cycle (proestrous (5.20), 
estrous (6.11), metestrous (7) and diestrous (7.40)) was observed. This 
figure shows that relative expression is increased approximately by 1.17 in 
PCOS+P271 cases in the diestrous phase compared to the PCOS ones with 
no P271 administration at the same phase.

Gene (accession no.)
                     Primer sequence Annealing

                           (5 to 3) temperature  (C)

GnRH1 (NM_012767.2)

Forward: 58.4
GGCTTTCACATCCATACAGAATG 56.4

Reverse: TAGGACCAGTGCTGGCTAGAG

Gapdh
(XM_017593963.1)

Forward: TGCCGCCTGGAGAAACCTGC 66.9
Reverse TGAGAGCAATGCCAGCCCCA 65.7

Table 1: Sequences of primers used for qReal-Time PCR.

http://www.cusabio.com/ELISA-Kit/Rat-TestosteroneT-ELISA-Kit-107011.html
https://en.wikipedia.org/wiki/Generalized_linear_model
https://en.wikipedia.org/wiki/Generalized_linear_model
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Delta Ct Delta Ct 

PCOS group P271 administration 
Figure 2: PCOS or P271 administration decreased delta Ct. Solid line: linear, circle: observed.

Figure 3: Comparison of means of relative expression of GnRH mRNA/GAPDH in PCOS and controls with/without P271 administration according to the phase of the 
estrous cycle. Dashed line: without P271 administration, solid line: with P271 administration.

Hormonal profiles

Hormonal profiles of various conditions have been reported in 
table 2; as shown, in both the proestrous and estrous phases, mean 
differences of LH, E2 and T in PCOS rats, compared to controls, are 
-1.42 (mlU/ml), -40.56 (pg/ml) and -0.75 (pg/ml), respectively. These 
differences are 0.51 (mlU/ml), 13.22 (pg/ml) and 0.24 (pg/ml) in the 
metestrous phase, respectively (figure 4). Compared to controls, mean 
differences of FSH and P4 in PCOS rats, are 38.16 (mlU/ml) and 11.14 

(pg/ml) in the metestrous, and 72.10 (mlU/ml) and 30.26 (pg/ml) in 
the diestrous phase, respectively (figure 5). This table demonstrates that 
in both PCOS and control groups, administration of P271 resulted in a 
decrease in LH, FSH, E2, T, P4 and LH/FSH ratio levels by 1.44 (mlU/
ml) (95%CI: 1.85-1.04), 75.21 (mlU/ml) (95% CI:93.31-57.11), 81.58 
(pg/ml) (95%CI:106.58-56.58), 2.53 (pg/ml) (95%CI: 3.54-1.51), 15.40 
(pg/ml) (95% CI:34.28-3.48) and 0.02 (95% CI:0.03-0.01) respectively. 
All of these predicted changes are statistically significant, except for that 
related to P4.
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Figure 4: Comparisons of means of LH (luteinizing hormone), testosterone and estrogen levels in PCOS and controls with/without P271 administration according to 
the phase of the estrous cycle. Dashed line: without P271 administration, solid line: with P271 administration. 

Figure 5: Comparisons of means of FSH (follicle stimulating hormone) and progesterone levels and LH/FSH ratio in PCOS and controls with/without P271 administration 
according to the phase of the estrous cycle. Dashed line: without P271 administration, solid line: With P271 administration. 
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Discussion
This study, for the first time, evaluated the effect of one dose of 

prenatally administered P271 on GnRH expression and hormonal levels 
in various phases of estrus cycles in PCOS rats and controls during 
adulthood. However, our study does have its limitations, including 
simultaneous assessment of GnRH expression and gonadotropin 
secretion; this could be partly explained by the inconsistency observed 
on GnRH expression and gonadotropin secretion; the highest 
hypothalamic GnRH expression occurs 1 to 2 h before darkness, 
whereas gonadotropins secrete during later times. Since this was 
the first study investigating the effect of prenatal administered P271 
on GnRH expression and hormonal profiles in PCOS rats, it cannot 
provide a comprehensive explanation in terms of causality, indicating 
the need for further prospective comprehensive studies to confirm our 
findings.

Using animal models, it has been shown that exposure of the female 
fetus to androgens, during the critical period of their early life, results 
in the defeminization of the GnRH surge-generating system, limiting 
their ability to produce a GnRH/LH surge [19]. These animals exhibit 
elevated LH pulse frequency and irregular reproductive cycles, which 
may result from a number of mechanisms, including alterations in 
synaptic input to GnRH neurons, 2004, desensitization of GnRH 
neurons to steroid feedback, increased amplitude/frequency of GnRH 
pulses, and increased gonadotropic sensitivity to the GnRH stimulation 
[20-24]. Kisspeptin, an essential gatekeeper of puberty onset and 
GnRH secretion, mediates steroid feedback and metabolic cues during 
different developmental stages throughout the lifespan [9, 25]. In 
addition, kisspeptin is involved in the pathophysiology of the HPG axis; 
e.g., in PCOS animal models, the hypothalamic expression of kiss 1 and 
GnRH is abnormal, which might lead to multiple tissue abnormalities, 
observed in this syndrome [26]. In line with this evidence our results 
revealed that administration of P271 to prenatally androgen exposed 
rats altered the pattern of hypothalamic GnRH expression during the 
estrous cycle, in such a way that this pattern was similar to that seen 
in controls.

It has been shown that hypothalamic GnRH mRNA expression 
varies during the estrous cycle, with the highest expression levels in the 
late afternoon of the proestrous phase [27-28]. Our study, also, showed 
a peak in hypothalamic GnRH mRNA levels during the proestrous 
phase in each group. Prenatal androgen exposure led to higher GnRH 
levels compared to controls, especially during the diestrous phase. 
This result is in accordance with an earlier study, in which postnatally 
androgenized rats were constantly in diestrous phase and showed an 
increase in the number of GnRH-immunoreactive cells in adulthood 
[29]. Although some other studies have reported that pre/postnatal 
exposure to androgen excess did not alter hypothalamic GnRH mRNA 
expression [30,31], the difference may be due to various causes, e.g. 
dose of androgen, timing of androgen exposure, species of animals, 
phase of estrous cycle, or time of sampling.

Our previous study showed that the effect of androgen on the 
female reproductive system is highly influenced by the time of exposure 
and the hormone must be present during the appropriate time to have 
its effect; if it is present too early or too late, the impact will not be 
the same. Prenatal exposure of female fetuses to androgen during 
embryonic days 16-19, produced developmental and morphological 
disorders in the reproductive system and androgen-sensitive tissues in 
female offspring. On the other hand, exposure to excess androgen on 
embryonic day 20, had little effect on the morphology, but did induce 
a PCOS like phenotype [32]. Thus, in this study, we administered P271 

during this critical period of fetal development, which could reverse 
some of the disrupted feedback actions/endocrine abnormalities, 
induced by androgen. 

In the current study, PCOS rats showed disrupted hormonal profiles 
compared to controls. In the PCOS rats, serum LH, E2 and T levels 
reduced during proestrous and estrous phases, whereas they increased 
during metestrous phase, compared to controls. In addition, PCOS 
rats exhibited higher serum FSH and P4 levels during metestrous and 
diestrous phases than controls. In agreement with our results, previous 
studies have reported disrupted hormonal profile in PCOS animal 
models, compared to controls [33]. Evidence for endocrine changes in 
PCOS animal models is inconsistent, indicating the differences may be 
due to various factors, including type of hormone administered, time 
of hormone exposure, age of animal during the time of study, different 
PCOS phenotypes in animal models and time of sampling [21, 33-35].

Conclusion
Kisspeptin antagonist during the critical period of fetal life reduced 

GnRH mRNA expression, sex steroid hormone and gonadotropin 
levels. Kisspeptin antagonist may amend the disrupted HPO axis of 
PCOS cases and may have a potential role in the treatment of affected 
women.

Since this was the first study investigating the effect of prenatal 
administered P271 on GnRH expression and hormonal profiles in 
PCOS rats, it cannot provide a comprehensive explanation in terms of 
causality, indicating the need for further prospective comprehensive 
studies to confirm our findings.
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