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Review of Literature
Autism in the human presents both a positive and a negative 

opportunity for understanding the disorder. Invasive experiments are 
limited to animal models, but behavioral and clinical observations and 
direct questioning are useful.

Many primary questions about autism are still much argued in the 
literature. A good example of this is a study described by Dawson et 
al. [1], concerning the level of autistic intelligence compared to that of 
non-autistic control subjects. Their conclusion was that the intelligence 
of autistic people has been too often underestimated, but the true 
value of the paper was their careful and systematic development and 
presentation of their methodology. This was a refreshing educated 
insight into the nature of autism.

Of course, we know that genetic mutations have been linked to 
autism. It is thought these could number in the hundreds [2]. Epigenetics 
also plays a role [3], just as it does in normal brain development.

Courchesne et al. [4] have taken good advantage of the limited 
amount of brain tissue available from autistic people who died. From 
these studies, he found a 67% increase in the number of brain cells of 
the prefrontal cortex, when compared to corresponding tissue from 
people of the same age who were not autistic. Brain weight and size 
were also greater. This was consistent with earlier reports of autism 
being related to overgrowth of the head and brain in the frontal region. 
In fact, Stanfield et al. [5] pointed out that in autistic subjects they 
studied with Magnetic Resonance Imaging (MRI), although the corpus 
callosum was reduced, the total brain, the caudate nucleus, and the 
cerebral hemispheres, exhibited an increased volume.

Several investigators over the years have discussed the overgrowth 
of nerve cells in the prefrontal cortex as characteristic of autism, and 
Courchesne et al. [4] continuation of this study has quantified some 
specific processes leading to this condition. The lack of selective pruning 
of collaterals during development in this region of the brain seems to 
be a primary factor. We know that pruning of nerve cells is a major 

component of brain development in the early years of life. This has been 
studied in several specific areas of brain development. One of the most 
striking investigations of this was of the role of nerve cell pruning in 
the development of stereo vision [6,7]. Improper pruning would lead to 
impaired vision, or even blindness. In the case presented by Courchesne 
et al. [4], the massive prenatal build up of nerve cells resulting from lack 
of pruning in the prefrontal cortex leaves the individual with “noise” in 
this portion of the cognitive system.

Evidence suggests that the cerebral-cerebellar connection is greatly 
impaired in autism [8], and this portion of the problem is a central 
factor of the pathology of autism. That cerebral-cerebellar function 
of fine-tuning movement and muscle action is impaired, is easily 
seen in many people with autism because of their lack of smooth 
movement and various other motor deficits [9]. On a simplistic level, 
this is understandable, considering that it is generally accepted that the 
prefrontal cortex normally takes longer to mature than the cerebellum, 
and in autism, the cerebellum is left with the almost impossible task 
of communicating with a prefrontal cortex overpopulated with nerve 
cells (many of which are malformed and not functioning properly, since 
the pruning process had not culled the misfit neurons and synaptic 
connections), and the resultant “noise” [4].

Crespi [10,11] hypothesized that Autism Spectrum Disorder 
(ASD) and psychotic-affective spectrum disorders (schizophrenia,) 
both involve problems with social interaction. He characterized ASD 
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Abstract
This review reveals possible explanations for the link between cerebellar neuropathology and cognitive disorders, 

with an emphasis on autism and schizophrenia. There is a growing body of evidence showing these two conditions 
to be related. The loss of Purkinje cells, the principal neurons of the cerebellar cortex, is one of the most consistent 
neuropathologies found in autistic brains. Cerebellar neurophathologies are a common finding in schizophrenia, as 
well. The cerebellum has long been considered a pure motor structure, and it’s involvement in cognitive disorders 
remained obscure. The cognitive deficits typically associated with autism and schizophrenia strongly implicate 
prefrontal cerebral cortical pathology. We review recent findings, which provide new insights into suggest possible 
neuronal mechanisms through which the cerebellum might interact with the prefrontal cortex during cognitive tasks. 
In addition to exploring the link between autism and schizophrenia, we point out several opportunities for further 
study, including the selective pruning of nerve cells and collaterals during development, communication systems 
between the prefrontal cortex and the cerebellum, exploration of the genome, effects of autism and schizophrenia on 
intelligence, and a focus on the epidemiology of autism.
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as exhibiting an over-development and schizophrenia, revealing an 
under-development of what he called the “human-specific social brain 
phenotypes.” He and his colleagues supported their view with studies 
of how autism risk alleles affect manifestations of the disorder, and 
through analysis of the literature. Developmental neurogenesis work, 
physiological and genetic studies of synaptic function in the mouse, 
support Crespi’s hypothesis [12-14]. 

Another comparison between autism and schizophrenia can 
be made relative to the awareness of self or self-consciousness. 
Schizophrenia has been called a disorder of self, which can take 
various forms and to varying degrees, but there is a general distortion 
of consciousness and lack of self presence [15]. Autism can also be 
characterized by a lack of self-consciousness, but high-functioning 
autism or people with Asperger syndrome may have or acquire self-
consciousness through learning [16]. Memory tests by Toichi et al. 
[17] also revealed deficits in the consciousness of self by people with 
autism. So far it seems that many of the genes implicated in autism and 
schizophrenia are active only during specific stages of the developing 
brain [14], suggesting the existence of critical periods for the normal 
development of consciousness of self. 

Experiments in animals, in particular in genetic mouse models of 
ASD, provide important clues, as to possible neuronal pathways and 
mechanisms of interaction between the cerebellum and the cerebral 
prefrontal cortex, and their involvement in autism. Tracing studies in 
primates have shown that the cerebellum projects (via the thalamus) 
to the prefrontal cortex [18]. In turn, the prefrontal cortex projects 
back to the cerebellar areas from where prefrontal cortical projections 
originated, forming what might amount to parallel loops of cerebral-
cerebellar connections [19]. While these anatomical connections clearly 
suggest targeted neuronal interactions between the two structures, how 
cerebellar activity modulates prefrontal cortical activity and vice versa, 
and how their interaction is related to behavior is poorly understood. 

Recent experiments in mice have revealed a surprising new 
aspect of prefrontal cortical interaction with the cerebellum. When 
stimulating the cerebellar dentate nucleus in healthy mice, Mittleman 
et al. [20] discovered an increase in dopamine release in the medial 
prefrontal cortex. Dopamine is a neuromodulatory transmitter 
generated by cells in the substantia nigra and Ventral Tegmental Area 
(VTA), and is most widely known for its importance in the failure and 
disinhibition of movement initiation in Parkinson’s and Huntington’s 
disease, respectively [21]. But, dopamine is also strongly implicated in 
reward and pleasure seeking behavior, drug addiction and cognitive 
functions [22]. Abnormal function of the dopaminergic system has 
been implicated in a variety of cognitive disorders, including autism 
spectrum disorders and schizophrenia [23,24]. Cerebellar controlled 
dopamine release in the mouse medial prefrontal cortex was mediated 
by two independent and equally contributing pathways, one involving 
the Ventral Tegmental Area (VTA), which contains dopaminergic cells 
projecting to the prefrontal cortex, the other involving the thalamus 
[25]. Increased dopamine release via cerebellar activated thalamic 
projections involved stimulation of mesocortical dopaminergic 
terminals via appositional excitatory glutamatergic synapses [26,27]. 
A recent study in a mouse model of fragile X syndrome, an autism 
spectrum disorder, showed a reorganization of the pathways involved 
in cerebellar modulation of mPFC dopamine release, resulting in a 
weakening of the VTA, and a strengthening of the thalamic pathway 
via the ventro-lateral nucleus [28]. Together with the known cerebellar 
deficits associated with autism [8,29-31], these findings suggest that a 
dysfunction of cerebellar dependent reward circuits may play a role in 

at least some forms of autism. Consistent with this hypothesis are recent 
findings by Dichter et al. [32], who used functional Magnetic Resonance 
Imaging (fMRI), to compare reward circuit responses in autistic and 
control subjects, and reported hypo-activation of reward circuit 
activity in autistic individuals [32]. While more studies are needed to 
determine how strongly the cerebellum is involved in reward seeking 
tasks, like those chosen by Dichter et al. [32], a role of the cerebellum 
in human cocaine-related behavior has already been demonstrated. 
Together these studies suggest that the cerebellum modulates prefrontal 
cortical activity via dopamine, thus contributing to a broad spectrum 
of sensorimotor and cognitive functions, especially behaviors involving 
reward seeking and positive reinforcement [22]. 

These dopamine mediated modulatory actions are unlikely to take 
place at the millisecond temporal resolution, often associated with 
cerebellar coordination of movements [33-38]. The time course of 
dopamine release in response to cerebellar stimulation, the experiments 
by Mittleman et al. [20] could span tens of seconds. This suggest that 
the cerebellum can operate at much slower time scales, modulating 
PFC activity during slow complex processes, such as the analysis and 
interpretation of facial expressions, social contexts, and theory of mind. 
Whether cerebellar modulation of PFC dopamine release does indeed 
serve any of these functions remains to be shown. But, with the close 
association of cerebellar and PFC abnormalities with autism [39,40], it 
is at least an intriguing hypothesis yet to be tested. 

While we have focused on the interaction between the cerebellum 
and the prefrontal cortex, which is an association cortical area not 
involved in motor control. However, motor deficits are common in 
ASD patients [9,41], and at least some of those seem to be caused by 
cerebellar neuropathology [31,42]. Several studies in mouse models 
of single gene autism spectrum disorders, such as Angelman, fragile 
X syndrome and Smith-Magenis syndrome, have documented motor 
deficits in the mutant mice (e.g. [43-46]). It is, thus, likely that cerebellar 
deficits associated with ASD contribute to both, motor and cognitive 
deficits. Further complicating the issue from a translational perspective 
is the recent discovery suggesting that prefrontal cerebellar interactions 
in rodents are involved in motor learning [47]. Whether the same holds 
true for humans remains to be determined. 

Conclusion and Future Directions
The study of brain connectivity and cerebro-cerebellar interactions 

will provide important clues about the neuronal mechanisms, 
underlying some forms of autism and autism spectrum disorders. 
However, based on our review of the literature, there are several other 
opportunities in the study of autism and autism spectrum disorders 
that cry out for attention:

1) Much can be learned about schizophrenia and autism from 
constant comparisons in the studies of the two conditions. Following 
Bernard Crespi’s lead, studies of everything from genomics to 
perception in people who have one of these conditions will enhance 
our understanding of both.

2) We know that much of the proper development of the brain 
depends on the mechanisms involved in selective pruning of nerve cells 
and collaterals. We need to know more about neurological pruning 
overall and specifically about its role in cognitive brain function.

3) The communications systems between the prefrontal cortex and 
the cerebellum have been studied to some extent, but we still far from 
understanding how these systems operate in the normal brain, which is 
likely a prerequisite to understanding its dysfunction in autism.
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4) As we continue to explore the human genome, our appreciation 
of its complexity grows, and this will provide new avenues to try to 
understand autism. For example, we know that the retrogene GLUD2 
is derived from glutamate dehydrogenase. This agent is responsible for 
clearing the by-products of neuron activity from the system [48]. The 
possible excessive buildup of by-products from the overpopulation of 
nerve cells of the prefrontal cortex of autism patients may be one of 
many factors contributing to the ill effects of autism. Or does some 
other gene compensate?

5) There is a special opportunity in the study of autism to learn 
much more about the basic nature of human intelligence.

6) There is a wealth of epidemiological evidence that the 
environment might affect the prevalence of ASD in certain geographical 
areas [49]. We have not addressed this here. However, the importance 
of the environment on the occurrence of autism is quite apparent from 
an extensive recent study by Suren et al. [50], of over 85,000 children. 
Those children whose mothers took folic acid around the time of 
conception had a distinctly lower risk of autistic disorder than those 
whose mothers did not. This and similar studies strongly suggest that 
more effort should be directed towards the study of environmental 
factors in ASD.
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