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Introduction
In biochemical reactions, an important measure related to 

enzymatic function is the Michaelis-Menten constant, Km, because 
other measures such as pH, temperature, substrate concentrations, are 
mainly related to reactive conditions. Thus, the Km value is important 
to understand the characteristics of enzyme and its relationship with 
substrates and numerous conditions in biochemical reactions [1,2].

Actually, Km is the only parameter, from which the enzymatic 
kinetics as well as stimulators and inhibitors to enzymatic reactions 
can be formulated [3,4]. Therefore, it is important not only from a 
practical viewpoint but also from a theoretical viewpoint. However, the 
measurement of Km is performed case by case [5], and the measured 
value is difficult to extrapolate to the enzymes under same category. 
Yet, Km is also important to describe the absorption process, i.e. active 
absorption process [6], for which the Km value is measured individually 
too. Technically, Km is directly related to the affinity of enzyme to a 
certain substrate.

Without costly and time-consuming measurement, no Km values 
are available for newly found and designed enzymes. Therefore, 
it is necessary to develop methods to predict Km based on simple 
information for each enzyme before conducting costly experiments. 
Along this research line, several studies have been carried out 
very recently [7-11]; however, more studies are needed in order to 
systematically approach this issue from various angles.

Cellulose 1,4-β-cellobiosidase (EC 3.2.1.91) hydrolyzes 1,4-β-D-
glucosidic linkages in cellulose and cellotetraose, and then releases 
cellobiose from the non-reducing ends of the chains. Recently, a 
new interest was directed to cellobiosidase because of its potential 
role in bio-fuel industry, meanwhile lactoside is a major substrate in 
biochemical reaction of β-cellobiosidase. In this study, the information 

of amino acid properties in beta-cellobiosidase, pH and temperature 
in reaction, and lactoside as substrate were chosen as predictors to 
predict the Km values by means of neural network in order to develop 
the predictive model.

Materials and Methods
Data 

The Km values related to cellulose 1,4-β-cellobiosidases (EC 
3.2.1.91) with lactoside as substrate were found in the Comprehensive 
Enzyme Information System BRENDA [13]. Up to May 2011, 5 
β-cellobiosidases had their sequence information under the category of 
Km value as functional parameter, of which β-cellobiosidases P62694 
and Q8J0K6 were documented with their mutants [14-18]. Still, each 
cellulose 1,4-β-cellobiosidase could have different Km values regarding 
different catalytic conditions, such as pH, temperature and substrate 
[7-12]. In total, this databank provided 38 matched sequences and Km 
values of β-cellobiosidases (Supplementary Data). The amino-acid 
sequences of β-cellobiosidases were obtained from the UniProt [19].

Predictors

The information of amino acid properties was mainly obtained 
from AAIndex [20], which contains 540-plus amino-acid properties 
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The Michaelis-Menten constant, Km, is important to understand the characteristics of enzyme and its relationship 

with substrates and numerous conditions in biochemical reactions. Although the fast development is evidenced in 
enzymatic research, the Km value in each enzyme under various conditions still needs to be measured individually. 
On the other hand, the modern computational techniques and bioinformatics provide the opportunity to theoretically 
predict Km in enzyme with different substrates under various conditions. Cellulose 1,4-beta-cellobiosidase is an 
enzyme used in cellulose hydrolysis for bio-fuel industry, and huge efforts are made to enhance its efficiency through 
searching for new strains of beta-cellobiosidase as well as enzymatic engineering. Therefore it is considered 
important to develop methods to predict the Km value in beta-cellobiosidase’s reaction. In this study, the information 
of amino acid properties in beta-cellobiosidase, pH and temperature in reaction, and lactoside as substrate were 
chosen as predictors to predict the Km values by feedforward backpropagation neural networks, and the delete-1 
jackknife was used to validate the predictive model. The results show that 11 of 25 scanned amino acid properties 
could act as predictors, and that the amino-acid distribution probability appeared the best predictor. The two-layer 
structure of neural network configuration was sufficient for initial scanning. In consistent with previous studies, the 
Km value of enzymatic reactions was predictable using enzyme sequence information and reaction conditions with 
neural network models.
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with redundancy [21,22], so not all documented amino acid properties 
were used in this study, but the ones screened in the previous studies 
[7-12]. Those amino acid properties included amino acid charge, 
hydrophilicity or hydrophobicity, size and functional groups [23], such 
as the spatial properties [24,25], the hydrophobic properties [26-28], 
the electronic properties [29], and the secondary structure predictions 
[30]. Each of those amino acid properties had numerically constant 
value for a type of amino acid Supplementary Data; therefore they were 
not sensible to amino aid composition, location in enzyme, etc.

On the other hand, an amino acid property, which outperformed 
those amino acid properties from AAIndex in previous studies [7-12], 
was the amino-acid distribution probability [31,32]. This property does 
not have a constant value for each type of amino acids, but is subject 
to the length of enzyme and position of each amino acid. Table 1 
showed the difference between the field effect index and the amino-acid 
distribution probability for two β-cellobiosidases.

The predictors of pH and temperature were measured values in 
database [13], and the predictor of substrate, lactoside, was different 
with respect to its substituent groups. So there were 23 predictors for 
predicting the Km values.

Predictive Model

The previous studies showed that the neural network could be the 
best model for the prediction [7-12], because the relationship between 
predictors and Km value is not readily known, while the neural network 
can theoretically model either cause-consequence relationship or 
phenomenological relationship. However, the neural network model 
used in previous studies appeared very complicated, thus the application 
of simple neural network model without compromising its predictive 
ability was the main task, which meant to determine how many layers 
and how many neurons work better.

The developed predictive model was validated using the delete-1 
jackknife validation as used in previous studies [7-12] because it was 
considered very powerful for this type of studies [33].

Results and Discussion
Using a 12-1 feedforward backpropagation neural network as an 

example, Figure 1 showed the predictive model for predicting the 
Km value. This predictive model was different from current models 
in bioinformatic studies that included as many predictors as possible. 

Figure 1: 12-1 feed forward back propagation neural network to model 23 predictors and Km. Each gray circle

presents a neuron. A, alanine; R, arginine; N, asparagine; D, aspartic acid; C, cysteine; E, glutamic acid; Q,

glutamine; G, glycine; H, histidine; I, isoleucine; L, leucine; K, lysine; M, methionine; F, phenylalanine; P, proline; S,

serine; T, threonine; W, tryptophan; Y, tyrosine; V, valine; pH, pH value; Tm, temperature; Su, substrate; IW{1},

the input weights; LW{2,1}, the layer weights to the second layer from the first layer; b{1} and b{2}, the biases

related to each neuron at the first and second layers.
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Figure 1: 12-1 feed forward back propagation neural network to model 23 pre-
dictors and Km. Each gray circle presents a neuron. A, alanine; R, arginine; 
N, asparagine; D, aspartic acid; C, cysteine; E, glutamic acid; Q, glutamine; G, 
glycine; H, histidine; I, isoleucine; L, leucine; K, lysine; M, methionine; F, phenyl-
alanine; P, proline; S, serine; T, threonine; W, tryptophan; Y, tyrosine; V, valine; 
pH, pH value; Tm, temperature; Su, substrate; IW{1}, the input weights; LW{2,1}, 
the layer weights to the second layer from the first layer; b{1} and b{2}, the biases 
related to each neuron at the first and second layers.

Figure 2 Convergence of mean squared error performance function with 100 different initial weights and biases

generated by random initialization function in 12-1 neural network with different amino acid properties.
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Figure 2: Convergence of mean squared error performance function with 100 
different initial weights and biases generated by random initialization function in 
12-1 neural network with different amino acid properties.

Amino 
Acid Field effect index Amino-acid number Distribution probability

A7WNT9 A7WNU1 A7WNT9 A7WNU1 A7WNT9 A7WNU1
A 0.05 0.05 34 44 0.0028 0.0031
R 0.27 0.27 10 13 0.1143 0.0441
N -0.56 -0.56 30 35 0.0269 0.0291
D -1.77 -1.77 33 31 0.0053 0.0014
C 0.06 0.06 24 26 0.0091 0.0198
E -1.14 -1.14 13 14 0.0617 0.0687
Q -0.35 -0.35 23 21 0.0173 0.0243
G 0 0 61 60 0.0067 0.0154
H -0.58 -0.58 6 6 0.3472 0.2315
I 0.04 0.04 16 14 0.0795 0.0011
L -0.03 -0.03 26 22 0.0247 0.0033
K 0.51 0.51 21 23 0.0270 0.0101
M -0.3 -0.3 10 15 0.1905 0.0011
F -0.45 -0.45 16 17 0.0341 0.1280
P 0.02 0.02 26 25 0.0115 0.0053
S -0.38 -0.38 50 47 0.0008 0.0013
T -0.44 -0.44 64 55 0.0003 0.0022
W -0.24 -0.24 11 10 0.0135 0.1905
Y -0.42 -0.42 23 22 0.0222 0.0559
V -0.04 -0.04 26 32 0.0073 0.0226

The amino-acid distribution probability, is computed according to the equation, 
r!/(q0!×q1!×...×qn!)×r!/(r1!×r2!×...×rn!)×n-r, where “!” is the factorial function, r is the 
number of a type of amino acid, q is the number of partitions with the same num-
ber of amino acids and n is the number of partitions in the protein for a type of 
amino acid [31]. The computation can be found in the web site http://www.dream-
scitech.com/Web-Based-Computation/ADP.htm, 2011.

Table 1: Field effect index, amino-acid number and distribution probability in 
β-cellobiosidase A7WNT9 and A7WNU1.
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Theoretically, a predictive model would be chosen with as fewer 
predictors as possible [34,35], which was the approach used in this 
study.

Figure 2 showed the convergence with each predictor. This was 
an important step during model development, because Figure 2 gave 
a clear picture of which predictor could not converge, which were 
predictors I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XVIII, XIX, and XX 
(Supplementary Data). Nevertheless, the predictors that could not 
converge would not be useful for the prediction. On the other hand, 
whether a predictor converged guaranteed whether correct model 
parameters could be obtained [36,37]. Therefore Figure 2 played a role 
to select workable predictors.

Figure 3 showed the performance of predictions obtained by using 
the selected predictors from Figure 2 in terms of P value, which was 
the statistical difference between predicted and measured Km values, 
and R2 value, which was the squared correlation coefficient between 
predicted and measured Km values. Actually, Figure 3 played role to 
determine number of neurons ranged from 1-1 to 20-1 for the first layer 
in two-layer neural networks. In general, the P value and R2 increased 
in predictions using 1-1 to 3-1 neurons, and some predictors got the 
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Figure 3: Comparison between recorded and mean predicted Km in different 
fitting models. Black bars, P value obtained from Wilcoxon signed rank test; gray 
bars, squared correlation coefficient in regression.
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Figure 4: Comparison between recorded and mean predicted Km in different 
3-1 models for fitting and delete-1 jackknife validation. Black bars, P value ob-
tained from Wilcoxon signed rank test; gray bars, squared correlation coefficient 
in regression.

highest values in predictions using 5-1 neurons. Thereafter, the R2 
values were stable while the P values changed as the neuron increased. 
Among 11 predictors, the last one (XXV) that was the amino-acid 
distribution probability provided better predicting results than others.

Figure 4 showed the performance of predictions obtained from 11 
selected predictors in different 3-1 models, which reflected another 
aspect of model selection, i.e. how many layers were suitable for a 
predictive model. As Figure 2 chose predictors and Figure 3 chose the 
number of neurons in a neural network, so thus Figure 4 was a necessary 
step for model development. Also, the delete-1 jackknife validation was 
applied because more elaborations became possible with the narrowing 
of searching range for model and predictor selections. As can be seen, 
multiple layers did not reveal remarkable improvement for predictions.

The predictions of 11 selected predictors were conducted in 
different 12-1 models for fitting (Figure 5) and validation (Figure 6), to 
further evaluate the influence of multi-layer models on the prediction 
performance, and to answer whether a very sophisticated model could 
improve the predictions. Generally speaking, the P values were higher 
obtained from fitting and the R2 values higher obtained from validation, 
but no clear feature could be drawn as the model layers increased.
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Currently, considerable data are available for various bioinformatic 
models, but unfortunately few data are available related to parameters 
of enzymatic reactions. Therefore a small dataset was used in this 
study although they were all the data available in literature. This is the 
pressing point that the methods for the prediction of enzyme function 
parameters should be developed.

This study advanced our knowledge on the prediction of Km values 
not only in view of the amino acid properties in enzymes as predictors, 
but also in view of pH, temperature and substrate in enzymatic reaction 
as predictors, whereas previous studies included only the amino acid 
properties as predictors [8,10].

In conclusion, the results demonstrated that the Km value of 
cellulose 1,4-beta-cellobiosidases could be predicted using the neural 
network models with their sequence information and reaction 
conditions. Eleven of 25 scanned amino acid properties could act as 
the predictors, among which the amino-acid distribution probability 
appeared the best predictor, and the two-layer structure of neural 
network configuration was sufficient for initial scanning.
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Figure 5: Comparison between recorded and mean predicted Km in different 
12-1 models for fitting. Black bars, P value obtained from Wilcoxon signed rank 
test; gray bars, squared correlation coefficient in regression.
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Figure 6: Comparison between recorded and mean predicted Km in different 
12-1 models for delete-1 jackknife validation. Black bars, P value obtained from 
Wilcoxon signed rank test; gray bars, squared correlation coefficient in regres-
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