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Introduction
Accurate and reliable prediction of protein structure and function 

remains a challenge [1]. Of particular importance is the prediction of 
membrane proteins, as, unlike soluble and fibrous proteins, membrane 
proteins remain poorly tractable targets for the principal experimental 
methods of structure determination: X-ray crystallography and 
multidimensional nuclear magnetic resonance (NMR) spectroscopy 
[2].

The membrane assembly of outer membrane proteins is more 
complex than that of transmembrane helical proteins owing to the 
intervention of many charged and polar residues in the membrane. 
Accordingly, the predictive accuracy of transmembrane β strands is 
considerably lower than that of transmembrane α helices [3]. 

Despite widely different functions, these proteins show a remarkable 
degree of structural similarity, which has led Schulz to identify 8 rules 
summarising β-barrel construction [4]. Of these, two are of particular 
importance when attempting to predict TM β-barrel topology: rule 
two states that both the N- and C-termini are at the periplasmic end 
of the barrel, restricting the strand number to even values; and rule 
4, that external β-strand connections are long loops (termed L1, L2, 
etc.), whereas the periplasmic strand connections are generally short 
(T1, T2, etc.) [2].

Porins are the major component of the outer membrane of Gram 
negative bacteria. The crystal structures of porins have been studied 
in atomic detail from three different species namely, Rhodobacter 
capsulatus [5], Escherichia coli [6], and Rhodopseudomonas blastica 
[7], Klebsiella pneumoniae and Comamonas acidovorans. They show a 
common chain fold consisting of 16 anti-parallel β strands of different 
lengths (6-17 residues) forming a large barrel [3].

A novel type of learning machine called support vector machine 
(SVM) has been receiving increasing interest in areas ranging from its 
original application in pattern recognition to other applications such 
as regression estimation [8-11] due to its remarkable generalization 
performance. SVM was developed by Vapnik and his coworkers in 
1995 [12], and it is based on the structural risk minimization (SRM) 

principle which seeks to minimize an upper bound of the generalization 
error consisting of the sum of the training error and a confidence 
interval [13].

SVM is a new machine learning technology that has been 
successfully applied in solving problems in the field of bioinformatics. 
A high-performance method was developed for protein secondary 
structure prediction based on the dual-layer support vector machine and 
position-specific scoring matrices (PSSMs). The SVM’s performance is 
usually better than that of traditional machine learning approaches. 
The performance was further improved by combining PSSM profiles 
with the SVM analysis [14]. 

A SVM-based method was developed for predicting families and 
subfamilies of cytokines using dipeptide composition. The taxonomy 
of the cytokine superfamily with which the method complies was 
described in the Cytokine Family cDNA Database (dbCFC) and the 
dataset used in the study for training and testing was obtained from the 
dbCFC and Structural Classification of Proteins (SCOP). The method 
classified cytokines and non-cytokines with an accuracy of 92.5% by 
7-fold cross-validation. The method is further able to predict seven 
major classes of cytokine with an overall accuracy of 94.7% [15].

A support vector machine (SVM)-based method, GPCRpred, 
has been developed for predicting families and subfamilies of GPCRs 
from the dipeptide composition of proteins. The method is further 
able to predict five major classes or families of GPCRs with an overall 
Matthew’s correlation coefficient (MCC) and accuracy of 0.81 and 
97.5% respectively [16].
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For regression analysis, the non-linear ability of SVM can use 
kernel mapping to achieve. For the kernel mapping, the kernel function 
must satisfy the condition of Mercer theorem. The Gauss function is 
a kind of kernel function which is general used. It shows the good 
generalization ability. However, for our used kernel functions so far, 
the SVM cannot approach any curve in 2( )nL R  space (quadratic 
continuous integral space), because the kernel function which is used 
now is not the complete orthonormal base. This character lead the 
SVM cannot approach every curve in the 2( )nL R  space. Similarly, the 
regression SVM cannot approach every function [17].

According to the above describing, we need find a new kernel 
function, and this function can build a set of complete base through 
horizontal floating and flexing. As we know, this kind of function 
has already existed, and it is the wavelet functions. Based on wavelet 
decomposition, this paper propose a kind of allowable support vector’s 
kernel function which is named wavelet kernel function, and we can 
prove that this kind of kernel function is existent. The Morlet and 
Mexican wavelet kernel functions are the orthonormal base of 2( )nL R  
space. Based on the wavelet analysis and conditions of the support 
vector kernel function, Morlet or Mexican wavelet kernel function 
for support vector regression machine (SVM) is proposed, which is a 
kind of approximately orthonormal function. This kernel function can 
simulate almost any curve in quadratic continuous integral space, thus 
it enhances the generalization ability of the SVM [17].

In this paper, we develop a wavelet support vector machine 
(WSVM) algorithm to predict the transmembrane β strands in 
the family of bacterial porins. A Visual C++ 6.0 program has been 
developed which takes the amino acid sequence as the input file and 
gives the predicted transmembrane β strand as output. The proposed 
WSVM [17] method predicts at an average accuracy level of 84.9% for 
all the five bacterial porins considered.

Wavelet Support Vector Machine (WSVM)
If the wavelet function ( )xψ  satisfied the conditions: 2( ) ( )x L IRψ ∈

, and ( ) 0xψ = , ψ  is the Fourier transform of function ( )xψ . The 
wavelet function group can be defined as

,
1( ) ,a b

x bx
aa

ψ ψ − 
=  

 
                                                                          (1)

where a is the so-called scaling parameter, b is the horizontal floating 
coefficient, and ( )xψ  is called the ‘‘mother wavelet”. The parameter 
of translation ( )b b R∈  and dilation a ( 0a > ), may be continuous or 
discrete. For the function ( )f x , 2( ) ( )f x L R∈ , The wavelet transform 

( )f x  can be defined as
1

*2( , ) ( ) ( ) ,x bW a b a f x dx
a

ψ
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− 
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 ∫                                                  (2)

where *( )xψ  stands for the complex conjugation of ( )xψ .

The wavelet transform { }( ),W a b  can be considered as functions 
of translation b with each scale. Eq. (2) indicates the wavelet analysis 
is a time-frequency analysis, or a time-scaled analysis. Different from 
the short time Fourier transform (STFT), the wavelet transform can be 
used for multi-scale analysis of a signal through dilation and translation 
so it can extract time-frequency features of a signal effectively.

Wavelet transform is also reversible, which provides the possibility 
to reconstruct the original signal. A classical inversion formula for 

( )f x  is

2
1 1( ) ( , ) ( ) ,f

R R

t bf t W a b dadb
C aaψ

ψ −
= ∫ ∫                                       (3)

where 

2
( )

,
w

C dw
wψ

ψ∞

−∞
= <∞∫                                                                (4)

and ( ) ( )exp( ) .w x jwx dxψ ψ= −∫                                                                    (5)

For the above Eq. (3), Cψ  is a constant with respect to ( )xψ . The 
theory of wavelet decomposition is to approach the function ( )f x  by 
the linear combination of wavelet function group.

Wavelet kernel function
The support vector’s kernel function can be described as not 

only the product of point, such as ( )' ,( , )k x x k x x= ⋅ , but also the 

horizontal floating function, such as ( )' '( , )k x x k x x= − . In fact, if a 
function satisfied condition of Mercer, it is the allowable support vector 
kernel function.

Theorem 1: The symmetry function '( , )k x x  is the kernel function 
of SVM if and only if: for all function 0g ≠  which satisfied the condition 

of ( )2
dR

g dξ ξ <∞∫ , we need satisfy the condition as follows:

' ' '( , ) ( ) ( ) 0
d dR R

k x x g x g x dxdx ≥∫ ∫                                                              (6)

This theorem proposed a simple method to build kernel function. 
For the horizontal floating function, because hardly dividing this 
function into two same functions, we can give the condition of 
horizontal floating kernel function.

Theorem 2: The horizontal floating function ( )' '( , )k x x k x x= −  is 
allowable support vector’s kernel function if and only if the Fourier 
transform of ( )K x  need satisfy the condition follows:

/2[ ]( ) (2 ) exp( ( )) ( ) 0.
n

n

R
F x w j w x K x dxπ −= − ⋅ ≥∫                                 (7)

If the wavelet function of one dimension is ( )xψ , using tensor 
theory, the multi-dimension wavelet function can be defined as

1

( ) ( ), ,
l

l d
l i

i

x l x x Rψ ψ ×

=

= ∈∏                                                                   (8)

where x is a column vector with d dimensions.

We can build the horizontal floating kernel function as follows:
'

'
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where a1 is the scaling parameter of wavelet, a1 > 0.
 
So far, because the 

wavelet kernel function must satisfy the conditions of Theorem 2, the 
number of wavelet kernel function which can be showed by existent 
functions is few. Now, we give an existent wavelet kernel function: 
Morlet wavelet kernel function. Morlet wavelet function is defined as 
follows:

2
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x

x xψ
−

= 0, .x R w R∈ ∈  (10)

Morlet wavelet kernel function is defined as
''

'
2
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2
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where , ,l d
ix R a R×∈ ∈  and this kernel function is an allowable support 

vector kernel function.

If we use wavelet kernel function as the support vector’s kernel 
function, the estimation of wavelet support vector machine (WSVM) 
is defined as

*

1 1

( ) ( ) , .
ll jj

i
i i

ii i

x x
f x b b R

a
α α ψ

= =

 − = − + ∈
 
 

∑ ∏  (12)

For wavelet analysis and theory, see Krantz [18] and Liu and Di 
[19].

The proposed wavelet support vector machine (WSVM)

 In sample set { }( , ), 1,2, ,i ix y i n= ± , n
ix R∈  is used as input and 

iy  is used as output. And the ε  intensitive loss funcion can be defined 
as 

0 , ( )
( )

( ) , ( )
y f x

y f x
y f x y f xε

ε
ε ε

 − >− = 
− − − >

                                         (13)

The optimal hyper plane of standard support vector machine can 
be defined as ( ) ( )f x w x b= ⋅Φ + . 

At the same time, combining the wavelet kernel function with 
support vector machine, we can build a new SVM learning algorithm 
that is support vector machine on wavelet kernel function (WSVM). 
The parameter b is taken into account confidence interval of WSVM 
and form the new variable w of optimal problem, then the new wavelet 
support vector machine whose e-insensitive tube can be reformulated 
as

2 *

, , 1

1 ( ),
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n

i i
w b i

w C
ξ

ξ ξ
=

+ +∑  (14)

Subject to

( )i iy w x bφ ε ξ− ⋅ − ≤ +  (15)

(*) 0, 0,iξ ε≥ ≥  (16)

where w is a Column vector with d dimensions, C > 0 is a penalty factor, 
(*)( 1, , )i i lξ =   are slack variables.

Problem (14) is a quadratic programming (QP) problem. By means 
of the Wolfe principle, wavelet kernel function technique and Karush–
Kuhn–Tucker (KKT) conditions, we have the duality problem (16) of 
the original optimal problem (17)
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The original problem can be transferred to the following problem.

* *

* *
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Subject to
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According to the KKT condition, we can get the following equation.

* *
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Select the appropriate parameters C, and the optimal mother 
wavelet function which can match well the original series in some 
scope of scales as the kernel function of WSVM model. Then, WSVM 
output function is described as following:

* *

1

( ) ( ) ( ) ( ) ( ) ( , ), .
n

i i i i i i
i SV

f x x x b K x x bα α α α
=

= − Φ ⋅Φ + = − +∑ ∑
                                                    	                                                                                                                         (22)

Database
The dataset used to derive the statistical models comprises 18 

β-barrel membrane proteins of porins found in the Protein Data Bank 
(Table 1). All proteins share no more than 26% pairwise sequence 
identity. 

We applied our predictive method to five different porins from (i) 
Escherichia coli, (ii) Rhodobacter capsulatus, (iii) Rhodopseudomonas 
blastica, (iv) Klebsiella pneumoniae, (v) Comamonas acidovorans, for 
which structures have been determined in atomic detail. We considered 
the first three proteins (Escherichia coli, Rhodobacter capsulatus and 
Rhodopseudomonas blastica) as a training set to develop the wavelet 
support vector machine parameter and the last two (Klebsiella 
pneumoniae and Comamonas acidovorans ) as a test case.

Accuracy of Prediction
The accuracy of predicted segments was computed using the 

equation

Accuracy (%) =[ ( )]/u oN N N N− +

where N, Nu and No are total number of residues, number of residues 
under-predicted and number of residues over-predicted in a particular 
protein, respectively [5].

Protein Organism PDB ID

OmpF
Escherichia coli

1hxx,1hxt,1hxu,1gfo,1gfq

OmpC 2jin

Porin Rhodobacter capsulatus 2por, 3por

Porin Rhodopseudomonas blastica 1prn, 2prn, 3prn, 4prn, 1bh3,1h6s

Ompk36 Klebsiella pneumoniae 1osm

Omp32 Comamonas acidovorans 1e54, 2fgq, 2fgr

Table 1: Dataset of 18 β-barrel membrane proteins used for this study.
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Results and Discussion
We have predicted the transmembrane β strands for the all five 

porins and compared our WSVM results with the method of SVM 
with Gaussian RBF kernel function and RBF neural network (RBFNN). 
The experimental results are presented in (Table 2). From this table we 
observe that the WSVM method has the highest predictive accuracy for 
the protein porin from Rhodopseudomonas blastic (86.8%). Especially 
the proposed WSVM method predicts the transmembrane β strands 
of porins from Comamonas acidovorans with higher accuracy (83.4%) 
than SVM (77.2%) and RBFNN (74.5%) method. By considering all 
the five proteins, the proposed WSVM method predicts with higher 
accuracy than SVM and RBFNN methods. The proposed WSVM 
method predicts the transmembrane β strand for all the five proteins 
with >83% accuracy and the average accuracy is 84.9%.

In our study, wavelet kernel function kernel function is selected as 
a mapping function. The other popular kernel functions of SVM are:

Gaussian RBF kernel: 
2

( , ) exp
2

i
i

x x
k x x

 − = −
 
 

Polynomial kernel: ( , ) (1 )d
i ik x x x x= + ⋅

and Linear kernel: ( , ) T
i ik x x x x=

The best test result of the SVM is the predictor with wavelet kernel. 
The accuracy of SVM with wavelet kernel (84.9%) is better than other 
three SVM kernel function of the Gaussian RBF kernel, Polynomial 
kernel as well as Linear kernel that average 81.6%, 80.3%, and 79.8%, 
respectively. The proposed WSVM method implemented in this study 
can promote the accuracy of prediction of membrane spanning β 
strands in bacterial porin.

Conclusion
In this paper, we develop a WSVM algorithm to obtain higher 

accuracy in transmembrane strand prediction for the family of 
bacterial porins. The WSVM algorithm algorithm has been automated 
with a computer program written Visual C++. The proposed WSVM 
method predicts the membrane spanning β strands with an accuracy 
of >83% for all the five considered proteins (porins) individually and 
the average accuracy is 84.9%. These accuracy levels are superior to 
those of the methods of SVM and RBFNN. The results of application 
in prediction of membrane spanning β strands in bacterial porin show 
that the WSVM approach is effective and feasible, the comparison 

between the SVM method proposed with wavelet kernel function in 
this paper and other three kernel functions is also given which proves 
SVM with wavelet kernel function is better than SVM with other kernel 
functions.
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