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Introduction
Murine B cell development is a leading developmental system for the 

analysis of gene-regulatory networks that orchestrate cell fate ‘choice’ 
and lineage commitment [1-3]. Since progenitor cells and discrete 
developmental intermediates can be isolated and experimentally 
manipulated, the lymphoid system is particularly well suited for 
studies involving epigenetic, transcriptional, and protein networks that 
control cell fate choice. The analyses of early B cell development are 
thus highly advanced, as regulatory networks of signaling molecules 
and transcription factors have been elucidated that endeavor to 
account for the generation of B lineage progeny from multi-potent 
progenitors (MPP). Importantly, genetically altered mouse lines that 
harbor deletions in key B cell development factors exist, enabling ex 
vivo expansion of cells arrested at discrete points during lymphopoiesis 
and B cell specification (Figure 1) [4].

Published work suggests that B lymphocytes develop from 
lymphoid-primed multi-potent progenitors (LMPPs) in the bone 
marrow that also give rise to myeloid progeny such as macrophages 
and granulocytes [3,4]. Restriction of these LMPPs to the B lineage (B 
cell specification) is controlled by the coordinate activity of a number 
of transcription factors, including E2a (Tcf3 [transcription factor 3]) 
and Ebf1 (early B-cell factor 1) which regulate, among other things, 
rearrangement of the immunoglobulin heavy chain (Igh) locus and 
pre-B cell receptor expression (Figure 1) [5-7]. The E2a gene encodes 

two basic helix-loop-helix isoforms, E12 and E47, generated by 
alternative splicing [8,9]. Ebf1 is an atypical helix-loop-helix zinc finger 
protein which, in the hematopoietic system, is expressed exclusively 
in B lineage cells [10]. Targeted inactivation/deletion of either E2a 
or Ebf1 leads to a blockade of B cell development at the onset of 
expression of early B lineage genes, which is the stage at which DNA 
rearrangements occur between the D to J regions of the Igh locus 
(LMPP or pre-pro-B stage, Figure 1) [11-14]. Cells lacking either E2a 
or Ebf1 can be cultured ex vivo in the presence of Scf (Stem cell factor), 
Flt3l (Fms-related Tyrosine Kinase 3 Ligand) and Il-7 (Interleukin-7). 
E2a and Ebf1 both function to activate transcription of several early B 
lineage genes (Figure 1), and cells lacking these transcription factors 
are arrested at the pre-pro-B cell stage and do not express key B cell 
factors, such as Pax-5 (paired-box 5) or Ikzf3 (Aiolos) [4]. In contrast, 
Rag (Recombination Activating Gene) proteins are necessary for 
recombination of immunoglobulin genes, and deletion of Rag1 or Rag2 
leads to a complete block of Igh rearrangement and a developmental 
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block at the pro-B cell stage. Ebf1-and E2a-initiated programs to specify 
B cell developmental progression are intact in these Rag deficient pro-B 
cells [15,16]. Specifically, Pax-5, Ikzf3 and other key B cell specification 
factors are present. Importantly, these cells no longer rely on Scf or 
Flt3l for ex vivo survival and the cognate receptors are down-regulated, 
although they remain dependent on Il-7. Thus, E2a or Ebf1 deletion 
leads to an early block at the pre-pro-B cell stage, while Rag disruption 
causes a block at the committed pro-B cell stage. These two stages of B 
lymphopoiesis can be compared to discern key regulatory molecules 
and events that enable specification to the B cell fate, i.e. the transition 
from a multi-potent progenitor (pre-pro-B) to a committed B lineage 
cell (pro-B) (Figure 1).

Using such genetically arrested cells and a ChIP-seq experimental 
approach, it has recently been determined how Ebf1 and E2a contribute 
to an altered epigenetic landscape to specify lymphoid cells to the B 
cell lineage [5]. These results suggest that during the transition from 
pre-pro-B cell to pro-B cells, enhancers of E2a-regulated genes become 
mono-methylated on lysine 4 of histone H3 (H3K4me1). Subsequently, 
the transcription factors Ebf1 and Foxo1 (Forkhead box protein O1) 
are involved in accumulation of active histone modifications such as 
tri-methylation on lysine 4 of histone H3 (H3K4me3) at promoters 
of B cell-specifying genes [5]. In addition, findings from the same 
laboratory have shed light on Ebf1-mediated epigenetic regulation of 
its target genes [5]. Ebf1 targets were classified as ‘activated’, ‘repressed’ 
or ‘primed’ genes and it was observed that, in pro-B and pre-B cells (a 
later stage in B cell development), the ‘activated’ genes are enriched 
in H3K4me3 and acetylation on lysine 9 and 14 of histone H3 (H3ac) 
active chromatin modifications and show low levels on tri-methylated 
lysine 27 of histone H3 (H3K27me3), a repressive chromatin 
modification [5]. In contrast, ‘repressed’ genes show the opposite 
pattern of histone modifications, while enhancers of ‘primed’ genes are 
enriched for H3K4me1. Thus, the chromatin state of developmentally 
regulated genes appears to be coincident with their developmental 
potential. In addition, Global Run-On followed by massively parallel 
sequencing (GRO-seq) data, which measures ongoing transcription of 

genes performed on both E2a deficient (pre-pro-B) and Rag1 deficient 
(pro-B) cells has demonstrated differential transcription levels at of key 
developmental genes between these two cells types [17].

The deep-sequencing technologies enabling elucidation of 
transcription and chromatin linked developmental programs are indeed 
a boon in understanding complex developmental programs and much 
has been gleaned from studying differential expression and chromatin 
status in mediating developmental progression. There is a recurring 
theme in such epigenetic studies of regulatory elements, however: the 
supposition that there is a direct link between the changing chromatin 
state at the promoters of a set of genes and developmental progression. 
Indeed, to date, almost all studies in developmental systems have 
focused on chromatin state alone, mRNA levels alone or, at most, a 
general intersection of chromatin state data with RNA expression data. 
We hypothesized that assessing the link between changes in chromatin 
state of protein-coding gene promoters and changes in protein 
abundance between two distinct stages of B cell development would 
yield a more refined picture of the link between the changing chromatin 
state of promoters and the real developmental programs experienced 
by the cells. We note that other studies have indicated that promoter 
activity status does not necessarily indicate a change in steady state RNA 
[18,19], however, we propose to expand on these previous studies by 
systematically investigating how well correlated differential promoter 
chromatin state is with concordant differential ongoing transcription 
and steady state mRNA levels, as well as differential protein levels. By 
generating and analyzing relative protein abundance and steady state 
RNA-seq data from pre-pro-B and pro-B cells, along with previously 
published chromatin and ongoing transcription data in the same cell 
types, we investigated the link between ongoing transcription, steady 
state mRNA, inferred mRNA stability and protein levels relative to 
promoter chromatin state. Our data confirm that active chromatin at 
gene promoters is a good indicator of appreciable levels of transcription 
and steady state mRNA and that differentially active chromatin states 
at promoters are generally good indicators of differential transcription 
and differential steady state mRNA levels. We further show that 
chromatin state changes at gene promoters frequently lead to changes 
in protein abundance. However, many differentially abundant proteins 
derive from genes whose promoters display active chromatin in both 
cellular states, generally due to various forms of post-transcriptional 
regulation. Taken together, these data shed light on differential 
regulation of proteins that may impact B cell development, but have 
been missed by ChIP-seq or RNA-based methods alone.

Methods
Cell culture

Ebf1 -/- pre-pro-B cells and Rag2 -/- pro-B cells were cultured on 
OP-9 stromal cells in Opti-MEM, supplemented with 5% defined FBS 
(HyClone SH30070.03), 2 mM glutamine, 1% penicillin/streptomycin, 
beta-mercaptoethanol (1:1000 dilution) and cytokines [pre-pro-B cells: 
Il-7 (5 ng/mL; Cell Signaling Technology  5217SC), Scf (10 ng/mL; 
Cell Signaling Technology 5223SC), Flt3l (10 ng/mL; R&D systems 
427-FL-025); pro-B cells: Il-7 (5 ng/mL)] under standard tissue culture 
conditions [3]. Cells were harvested by washing media over stromal
cells to liberate B cells, which were then placed in a fresh tissue culture
flask to allow residual stromal cells to attach to the culture vessel for 30 
minutes under standard tissue culture conditions; B cells in suspension 
were then removed and washed three times in cold phosphate buffered 

Figure 1: Experimental system and multi-omics data. (A) Schematic of 
early B cell development through three stages: MPP, pre-pro-B, and pro-B 
cells. Relevant receptors and protein expression are indicated. (B) Multi-
‘omics’ data used in this study and their respective sources.
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saline (pH 7.4) before downstream analysis. We note that Ebf1 -/- cells 
were derived from female embryonic E13.5 livers and Rag2 -/- null cells 
were derived from adult male bone marrow.

ChIP-seq analysis

Chromatin immuno-precipitation (ChIP) of tri-methylated lysine 
4 of histone H3 (H3K4me3) and acetylated lysine 9 and 14 of histone 
H3 (H3ac) followed by massively parallel sequencing (ChIP-seq) in 
Ebf1 -/- pre-pro-B cells and Rag1 -/- pro-B cells was performed in Lin 
et. al. [5] (GEO accession: GSE21978). These raw data were obtained 
from the European Nucleotide Archive (ENA) and we assigned generic 
fastq quality scores to all reads, as no quality score was included with 
the sequence reads. Raw reads were aligned to the mouse reference 
genome (mm9) with Bowtie [20]. To generate predicted ChIP peaks, 
the MACS (Model-based Analysis of ChIP-Seq) algorithm was run on 
all samples (full parameter settings in Supplemental file 1) [21]. Peaks 
predicted for H3K4me3 and H3ac by MACS were merged for each cell 
line to demarcate ‘active regions’. Genes were predicted to have ‘active’ 
promoters as scored by MACS if a peak in the respective cell type 
overlapped by 10 base pairs (bp) a protein-coding RefSeq promoter, 
here defined by the 200 bp region upstream of the transcription start 
site (TSS).

As an alternative to MACS-based peak calling, to quantify the 
abundance of active chromatin modifications in discrete regions, reads 
of each ChIP-seq sample that showed any overlap with an interval 
as defined below were counted. These counts were normalized to the 
interval size and ChIP-seq library size, to generate a ChIP reads per 
kilobase per million reads value. H3K4me3 and H3ac ChIP reads per 
kilobase per million read values for each cellular state were summed 
to yield a cumulative ChIP reads per kilobase per million reads, 
which we refer to as the ‘cRPKM’ score. We calculated cRPKM for 
promoter regions, identified as 200 bp upstream and downstream of 
each annotated murine protein-coding RefSeq TSS (cRPKMP). For 
comparison, we further examined intervals of 400 bp from regions 2 
kilobases (kb) upstream of TSSs (cRPKMU) and from 1 million random 
genomic intervals (cRPKMR). All ChIP-seq analysis was performed on 
Galaxy Cloudman using Amazon web services (AWS) [22,23].

GRO-seq analysis

Global run-on sequencing was performed on E2a -/- pre-pro-B cells 
and Rag1 -/- pro-B cells in Lin et al. [17] (GEO accession: GSE40173). 
Corresponding raw data were obtained from ENA in fastq format, 
then cleaned by ‘Fastq quality trimmer by sliding window’ to trim both 
ends of the reads examining a window size of 3 nucleotides (nt), with 
a step size of 1 nucleotide, requiring ‘aggregates’ (windows) to meet 
a mean quality score greater than 20.0 for inclusion in the ‘cleaned’ 
data sets [24]. To filter reads of repetitive genes, cleaned GRO-seq reads 
were aligned to a custom genome consisting of all rRNA sequences 
(including immature) and the most canonical entry of each repetitive 
element in Repeat Masker (based on the Smith Watterman alignment 
score) with Bowtie [20]. Unmapped reads were mapped to a second 
custom genome consisting of the whole gene sequences of all mouse 
protein-coding RefSeq genes. Mapped reads were quantified as in [25] 
to generate reads per kilobase per million reads (RPKM) expression 
values for all protein-coding RefSeq genes. All differential RPKM 
expression values are expressed as log10(RPKMpro-B/RPKMpre-pro-B). 
All GRO-seq data analysis was performed with Galaxy Cloudman 

using AWS [22,23]. E2a -/- progenitor cells were derived from female 
embryonic E13.5 livers and Rag1 -/- pro-B cells were derived from male 
adult bone marrow.

RNA-seq analysis

Total RNA was extracted from Ebf1 -/- pre-pro-B cells and Rag2 
-/- pro-B cells by TRIzol, then subject to DNAse digestion to remove 
residual DNA and cleaned over a RNeasy (Qiagen 74104) column 
using the manufacturer’s ‘cleanup protocol’ to remove contaminants 
and deplete RNAs < 200 nt. RNA quality was assessed using a RNA 
6000 nano total RNA kit (Agilent 5067-1511) with a 2100 Bioanalyzer 
(Agilent G2938C); all samples had RNA integrity numbers of 9.9. RNA 
samples were depleted of mature ribosomal RNA (rRNA) transcripts 
with Ribo ZERO (Epicentre RZH1064) following the manufacturer’s 
recommendation, using 2 μg of RNA as input. RNA depleted of rRNA 
was converted to indexed, strand-specific RNA sequencing libraries 
using the ScriptSeqv2 system (Epicentre SSV21106) following the 
manufacturer’s recommendation, using 50 ng of rRNA-depleted RNA 
as input. These RNA-seq libraries were sequenced on a HiSeq 2000 
(Illumina SY-401-1001) to a read depth of ~90,000,000 single end 97 bp 
reads per sample. Raw reads were ‘cleaned’ using ‘Fastq quality trimmer 
by sliding window’ as described above. Cleaned reads were aligned to 
the mouse reference genome (mm9) with TopHat using strand-specific 
parameters [26]. Transcript abundance (measured as fragments per 
kilobase per million reads, FPKM) and differential expression estimates 
were generated by running Cuffdiff2.1.1 on the aligned reads using the 
protein-coding genes of RefSeq as the reference. RNA-seq analysis 
parameters are listed in Supplemental file 1 [27]. All differential FPKM 
expression values are expressed as log10(FPKMpro-B/FPKMpre-pro-B). All 
RNA-seq analysis was performed on Galaxy Cloudman using AWS 
[22,23]. FPKM/RPKM ratios were generated for each protein-coding 
RefSeq gene by dividing FPKM values of RNA-seq by RPKM values of 
GRO-seq.

iTRAQ-based quantification of differential protein 
abundance

Ebf1 -/- pre-pro-B cells and Rag2 -/- pro-B cells were harvested 
as above, lysed in 0.5% SDS supplemented with complete EDTA-free 
protease inhibitors (Roche 11836170001) on ice, sonicated at 55 watts 
for 10 seconds for 5 cycles with an Ultrasonic Processor (GE601) at 
4°C; samples were placed on ice for 1 minute between cycles. Lysates 
were clarified by centrifugation at 16,000 x g for 20 minutes at 4°C; then 
protein concentrations were determined using the BCA concentration 
assay (Pierce 23227), and samples were subsequently processed for 
iTRAQ analysis with the iTRAQ Reagents Multiplex Kit (AB Sciex 
4352135) following the manufacturer’s recommendations with minor 
modifications. Briefly, 100 μg of each protein lysate was diluted to 
equal volumes with 0.5 M triethylammonium (dissolution buffer), then 
reduced using 3 mM tris-(2-carboxyethyl)-phosphine (TCEP, Reducing 
reagent) for one hour at 60°C and alkylated with iodoacetamide at a 
final concentration of 5.7 mM for 10 minutes at room temperature. 
Samples were diluted with 0.5 M triethylammonium to reduce SDS 
to < 0.05% and then digested with 1 μg Lys-C (Wako Chemicals USA, 
Inc.125-05061) for four hours at 37°C. Lys-C was inactivated by heating 
the digested peptides for 30 minutes at 60°C. Peptides were further 
digested with 1 μg trypsin (Promega V5111) for 12 hours at 37°C, then 
concentrated in a cooled speed vacuum to a volume of ~5 μL and diluted 
to 30 μL with 0.5 M triethylammonium. 3 μL of each peptide sample was 
removed to verify protein digestion by SDS-PAGE. The remaining 27 
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μL of the pre-pro-B and pro-B samples were labeled with iTRAQ 114 
and iTRAQ 115, respectively. The labeled peptides from the two samples 
were mixed in equal amounts and diluted in 5 mM potassium phosphate 
buffer, 25% acetonitrile (pH 2.7) (solvent A). The labeled peptides were 
fractionated by offline strong cation exchange chromatography in the 
first dimension using a polysulfoethyl A column (5 µm, 200 × 2.1 mm, 
PolyLC) on an Agilent 1100 series HPLC system using a gradient of 
increasing salt concentration of up to 350 mM KCl in solvent A. A total 
of 9 fractions were prepared, dried in a vacuum dryer, reconstituted 
in 40 µL of 0.1% trifluoroacetic acid and desalted by STAGE-tips. 
Desalted peptides were loaded onto a trap column (2 cm, 3 µm size, 
100 Å pore), separated in the second dimension by reversed phase 
liquid chromatography on an analytical column (15 cm, 3 µm, 100 Å) 
using Easy-nLC system (Thermo Scientific) and analyzed on a LTQ-
Orbitrap Elite mass spectrometer (Thermo Scientific). The peptide ions 
were generated by spraying through a nanoelectrospray emitter tip 
(New Objective). The column contained 0.1% formic acid (solvent A) 
and was developed with solvent A mixed with the following steps or 
linear gradients of 90% acetonitrile, 0.1% formic acid (solvent B): 5% 
of solvent B for 2 min, 5-10% of solvent B for 2 min, 10-30% of solvent 
B for 70 min, 30-95% of solvent B for 11 min and 95% of solvent B for 
17 min, all at a constant flow rate of 250 nL/min. The nanoelectrospray 
voltage used was 1.8 kV. Tandem mass spectrometry data were 
acquired in a data dependent manner. Briefly, the 15 most intense 
precursor ions from a precursor scan were selected for sequencing. 
Both MS and MS/MS scans were acquired using the high-high mode on 
an Orbitrap mass analyzer at resolution settings of 120,000 and 30,000, 
respectively. Higher energy collision dissociation technology was 
employed to fragment peptide ions with normalized collision energy 
of 35. The automatic gain control for full MS was set to 1,000,000 ions 
while for MS/MS it was set to 50,000 ions with maximum accumulation 
times of 100 msec and 300 msec, respectively.

The tandem mass spectrometry data obtained were searched 
against the mouse RefSeq 52 protein database using the Mascot 
database searching algorithm via Proteome Discoverer platform 
(version 1.4, Thermo Fischer Scientific). Search parameters were set as 
following: trypsin as the digestion enzyme allowing up to one missed 
cleavage; carbamidomethylation at cysteine and iTRAQ labeling 
at the N-terminus and lysine as a static modification; oxidation at 
methionine, protein N-terminal acetylation and pyroglutamine 
modification at glutamine as variable modifications; mass tolerance 
of 10 ppm for precursor ions and 0.8 Da for fragment ions. The cut-
off of 1% false discovery rates was applied to peptide identification. 
Peptides unambiguously mapped to a single RefSeq gene were used for 
downstream integrative analysis.

Results
Examining the ability of chromatin modifications to predict 
changes in protein abundance – initial approach

To experimentally explore the power of differentially active 
chromatin modifications at promoters (which we will henceforth call 
predicted ‘active’ promoters) to predict differential protein levels from 
that gene, we first compared previously published chromatin data with 
proteomic data generated in our laboratory. Specifically, differential 
protein abundance between pre-pro-B and pro-B cells was determined 
using iTRAQ-based proteome quantification, a mass spectrometry 
technique that monitors relative changes in protein abundance across 
divergent cell types [28]. The resulting peptides were mapped to the 

RefSeq database to identify their cognate genes, enabling multi-omics 
analysis with genome-wide data. In addition, we used H3K4me3 and 
H3ac ChIP-seq data from pre-pro-B (Ebf1 -/- or ‘Ebf1 null’) and pro-B 
(Rag1 -/- or ‘Rag1 null’) cell lines (GEO accession: GSE21978) [5]. 
Initially, we employed the MACS peak calling strategy for identifying 
regions enriched in H3K4me3 and H3ac in both pre-pro-B and pro-B 
cells (see Methods). The identified peaks were then intersected with a 
database of murine protein-coding RefSeq promoters. A promoter was 
predicted to be ‘active’ if either a H3K4me3 or a H3ac peak overlapped 
the promoter.

As a first step in determining how closely changes in promoter 
chromatin state correlated with protein differential abundance, we 
identified predicted differentially active promoters between pre-pro-B 
and pro-B cell stages. ‘Exclusively pro-B’ promoters have a peak of 
either or both of the active chromatin modifications overlapping the 
promoter region in pro-B cells but not in pre-pro-B cells. We then 
examined whether a substantial portion of the proteins corresponding 
to the ‘exclusively pro-B’ active promoters were differentially abundant 
by iTRAQ-based proteome quantification. Plotting the differential 
protein abundance [log2(iTRAQpro-B/pre-pro-B)] as a frequency graph 
shows a general lack of concordance between promoters predicted 
by the MACS algorithm to be in the ‘exclusively pro-B’ active class 
and higher levels of their proteins in pro-B cells (Figure 2A). We had 
expected that these proteins would show a sizable population of positive 
differential abundance (i.e. skew to the right) indicating that many 
would be up-regulated in pro-B cells (Figure 2A). There was a similar 
lack of concordance between promoters predicted to be ‘exclusively 

Figure 2: Comparison of MACS and cRPKMP based chromatin prediction 
methods. Directly comparing differential expression of proteins from genes 
predicted to be exclusively active in pro-B cell by the (A) MACS and (B) 
cRPKMP (cut-off > 8) methods. The Y-axis represents the frequency in the 
population (‘relative frequency’) and the X-axis represents the log2(iTRAQpro-B/

pre-pro-B) of our iTRAQ-based proteome quantification data.
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pre-pro-B’ active class and higher levels of their proteins in pre-pro-B 
cells (data not shown).

This discordance led us to revisit our analyses of the ChIP-seq data, 
but we were unable to find parameters for the MACS algorithm that 
successfully discriminated many promoters as active, even though 
visual inspection clearly showed they had peaks in both chromatin 
modifications (Supplemental Figure 1, black bars). MACS missed 
even intense signals when they were in broad peaks, and further 
modifying our parameters resulted in a large number of false positives 
(Supplemental Figure 1 and data not shown).

Examining the ability of chromatin modifications to predict 
changes in protein abundance in early B cell development – a 
modified approach

Given these issues with the MACS algorithm, we asked if we could 
use RPKM (reads per kilobase per million reads), similar to methods 
employed in quantifying RNA-seq data, to categorize promoters into 
‘active’ versus ‘inactive’ based on their cumulative H3K4me3 and H3ac 
modifications. We postulated that by using a defined promoter region 
for each gene and not requiring a ‘peak’ to have a particular shape, this 
approach would not suffer from some of the issues we encountered 
when using MACS to identify promoters enriched in these active 
chromatin modifications. We identified promoters as within 200 bp 
(+/-200 bp) of the transcription start site (TSS) of all protein-coding 
RefSeq genes and then counted the number of reads for H3K4me3 
and H3ac in the ChIP-seq data that overlap these regions. Summing 
the values for both active chromatin modifications provides what 
we are calling the cumulative ChIP RPKM (cRPKM, see Methods), a 
cumulative index of predicted promoter activity. Its cumulative nature 
should improve analyses since we need to overcome sequencing depth 
issues as we note that the sequencing depths of the previously published 
H3K4me3 and H3ac ChIP-seq libraries were 70% lower and 17% lower, 
respectively, in pre-pro-B cells than in pro-B cells (library depth can be 
found in Supplemental File 2 and in reference [5]).

As an initial attempt to validate the cRPKM method, we determined 
the distribution of cRPKM values for promoter regions of all annotated 
protein-coding genes in RefSeq (cRPKMP) in both pre-pro-B and 
pro-B cells, and compared that to the distribution of cRPKM values 
for corresponding regions 2 kb upstream (cRPKMU) and for randomly 
generated 400 bp genomic intervals (cRPKMR) (Supplemental Figure 
2A and B). These data demonstrate that a substantial proportion 
of promoters display higher cRPKM distribution than regions 2 kb 
upstream or random genomic regions, which uniformly displayed 
relatively low cRPKM scores (Supplemental Figure 2A and B). 
Notably, the distribution of cRPKMP values of promoters of all protein-
coding RefSeq genes exhibits a clear separation into sub-populations 
displaying low and high cRPKMP scores in both pre-pro-B and pro-B 
cells (Supplemental Figure 2A). Since only a fraction of all promoters 
would be expected to be active in pre-pro-B or pro-B cells, and since 
the distribution of the low cRPKMP scores of promoters reflects the 
distribution of cRPKMU and cRPKMR scores of regions not selected 
to be promoters, we infer that this low cRPKMP sub-population of 
promoters corresponds to ones that are inactive in this cell type. 
Conversely, the high cRPKMP sub-population corresponds to the 
active promoters. As shown in the plot in Supplemental Figure 2A (see 
arrow), a cRPKM value of 8 discriminates these distinct populations of 
active from inactive promoters.

To validate our cRPKMP of > 8 cut-off for active promoters we 

calculated cRPKMR for one million random 400 bp genomic intervals 
irrespective of RefSeq promoter location and determined if those 
with cRPKMR values > 8 selectively identified promoter regions 
(Supplemental Figure 3). This was expected because H3K4me3 
and H3ac modifications have previously been demonstrated to be 
enriched on transcriptionally active promoters [29]. We employed the 
Genometricorr package [30], using relative distance tests to determine 
whether the random genomic intervals with cRPKMR > 8 and with 
cRPKMR < 8 are positioned closer to or further away from RefSeq TSSs 
than expected by chance. Both the Jaccard similarity coefficient and 
the projection statistical test (Genometricorr’s name for a binomial test 
of query positions compared to reference intervals) indicate that the 
random genomic intervals of cRPKMR > 8 showed significantly more 
overlap with RefSeq promoters than expected by chance (Supplemental 
Figure 3A and B; p < 0.01), and conversely that the random genomic 
intervals of cRPKMR < 8 were depleted in these regions (Supplemental 
Figure 3C and D; p < 0.01). Using the Genomic Hyper browser to 
perform analogous statistical tests yielded similar results (Supplemental 
Figure 3E) [31]. Given that these H3K4me3 and H3ac chromatin 
modifications reside on the 5’ region of active genes, the cRPKMP > 
8 cut-off predicts active promoters. Gratifyingly, this new cRPKMP 
method to assess RefSeq protein-coding promoter regions is able to 
accurately capture representative active promoter elements that were 
missed using the MACS peak-calling algorithm (Supplemental Figure 
1, gray bars). Thus, we will use cRPKMP > 8 to predict active promoters 
for our subsequent main analyses.

We next used the new cRPKMP method with a cut-off of 8 to 
identify active or inactive promoters and grouped them into four 
classes according to their predicted differential activity between 
pre-pro-B and pro-B cells. The ‘active in both’ and ‘inactive in both’ 
classes represent a similar number of promoters (11,767 and 12,666, 
respectively) (Figure 3A). As expected, the exclusively active classes 
contain much lower numbers of promoters, with 325 identified as 
exclusively active in pre-pro-B cells (‘exclusively pre-pro-B’) and 1,656 
as exclusively active in pro-B cells (‘exclusively pro-B’) (Figure 3A). 
However, those precise numbers might be affected by the depth of the 
ChIP-seq libraries, as addressed below. Very few genes displayed only 
H3K4me3 or only H3ac modifications on their promoters and all of 
these were the result of a single spurious amplicon skewing the number 
of reads observed, so those promoters were considered to be ‘inactive’. 
Importantly, this new cRPKMP method correctly categorizes known 
differentially active genes, examples of which are shown in Figure 3B-E. 
As expected, the E2a promoter is classified as ‘active in both’, while the 
promoter of the muscle-specific MyoD gene [9] is classified as ‘inactive 
in both’ (Figure 3B and E). An example of a gene with a promoter 
representing the ‘exclusively pre-pro-B’ class is Cd34, which is known 
to be expressed in early hematopoiesis, including in multi-potent cells 
(Figure 3C) [32]. Also as expected, the developmentally regulated Ikzf3 
(Aiolos) promoter is in the ‘exclusively pro-B’ class, in agreement with 
previous data and its well documented transcription status during B 
cell development (Figure 3D and Figure 1) [33].

Using the now-verified cRPKMP method to determine active 
promoters, we revisited our initial comparison of differentially active 
promoters with differential protein abundance. We again plotted the 
distribution of relative protein levels [log2(iTRAQpro-B/pre-pro-B)] from 
promoters that were predicted to be exclusively active in pro-B cells 
(cRPKMP method with a cut-off of 8, Figure 2B) and again we expected 
a substantial sub-population displaying higher protein abundance 
in pro-B than pre-pro-B cells (skewed to the right). This indeed was 
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observed (Figure 2B), indicating that our cRPKMP method yields a 
better correlation between predicted differential promoter activity 
and differential protein abundance. However, even using the cRPKMp 
method to predict exclusively active pro-B promoters, an appreciable 
fraction does not display higher protein levels in pro-B cells (Figure 2B), 
contrary to expectation from a naïve strictly transcriptional regulatory 
model. An analogous comparison performed for genes with promoters 
predicted by cRPKMp to be exclusively active in pre-pro-B cells also 
revealed an appreciable fraction that does not have higher protein 
levels in pre-pro-B cells (data not shown). Therefore, these populations 
indicate a lack of concordance between differential protein regulation 
and differential chromatin state. We next endeavored to investigate 
the coupling of chromatin regulation with the transcriptional and 
post-transcriptional steps of gene expression during these stages of 
B cell development by assaying the differential regulation occurring 
between pre-pro-B and pro-B cell stages by monitoring ongoing 

transcription (GRO-seq) through steady state mRNA levels (RNA-
seq) and differential protein abundance (iTRAQ), relative to promoter 
chromatin status.

cRPKMP identified ‘active’ promoters identify stage specific 
transcriptionally active promoters

Since the predicted promoter classes have correctly identified 
key genes whose expression is known to be differentially regulated in 
the two different cell types (Figure 3) but do not fully correlate with 
differentially abundant proteins (Figure 2B), we asked how well these 
predicted promoter activity classes correlate with ongoing genome-
wide transcription. To this end, we used publicly available global run-
on-deep-sequencing (GRO-seq) data generated in murine pre-pro-B 
and pro-B cells (GEO accession: GSE40173) [17]. We aligned these 
strand-specific reads to a custom genome consisting of all gene loci 
that correspond to protein-coding RefSeq entries, and quantified the 
alignments to obtain reads per kilobase per millions reads (RPKM), as 
in [25]. We initially explored the relationship between cRPKMP and 
RPKM by asking if our cRPKMP cut-off of 8 delineates promoters that 
yield significant levels of transcription from those considered ‘inactive’, 
as would be expected. The cRPKMP values for promoters of genes in the 
highest and with lowest quartiles of RPKM values were plotted against 
the extent of the RPKM value within that quartile, for pre-pro-B cells 
(Supplemental Figure 4A) and pro-B cells (Supplemental Figure 4B). 
As a group, the highly transcribed genes in the top quartile of GRO-seq 
values clearly have higher cRPKMP values than the lowly transcribed 
genes in the bottom quartile (Supplemental Figure 4A and B), and 
the cRPKMP cut-off of 8 is validated as it discriminates between these 
groups.

We next examined the interrelationship between our promoter 
classes and ongoing active transcription. To enable such an analysis, we 
plotted RPKM values of the four predicted promoter classes (described 
above), both as quartile distributions in box-and-whisker plots (Figure 
4A and B) and as frequency distributions of log10(RPKM) (Figure 4C 
and D). We would expect that genes with promoters in the predicted 
‘exclusively pre-pro-B’ class would be enriched for high RPKM values 
in pre-pro-B cells (Figure 4A) but should not be enriched for high 
RPKM values in pro-B cells (Figure 4B). The converse should also be 
true for genes whose promoters are in the predicted ‘exclusively pro-B’ 
class. Also, genes with promoters in the ‘active in both’ and ‘inactive in 
both’ classes should, consistently in both cell types, display higher and 
lower RPKM values, respectively. We do indeed find that if a promoter 
is classified as either ‘active in both’ or ‘exclusively pre-pro-B’, that gene 
is much more likely to have a higher RPKM value by GRO-seq in pre-
pro-B cells (Figure 4A and C). The same holds true for the ‘active in 
both’ and ‘exclusively pro-B’ classes in pro-B cells (Figure 4B and D).

In considering the above data, we note that the numbers of RefSeq 
genes represented in the ‘inactive in both’ (12,666) and ‘active in both’ 
(11,767) predicted promoter classes are substantially higher than the 
exclusively active classes (325 for pre-pro-B and 1,656 for pro-B), 
so the sum of the distribution of the GRO-seq values for ‘inactive in 
both’ and ‘active in both’ predicted promoter classes represents the 
general distribution of GRO-seq values. Given this, we note that the 
distribution of GRO-seq values form two quite distinct populations, 
one that is transcribed two to three orders of magnitude lower than 
the other and that our cRPKMP > 8 cut-off discriminates between these 

Figure 3: Representative genes in predicted promoter classes. (A) 
Numbers of genes in the four predicted promoter classes: ‘active in both’, 
‘exclusively pre-pro-B’, ‘exclusively pro-B’, and ‘inactive in both’. (B-E) An 
example of a gene in each of the four predicted promoter classes: Tcf3 
(B), Cd34 (C), Ikzf3 (D), Myod1 (E). Each panel shows the H3ac (red) and 
H3K4me3 (blue) abundance for the indicated locus in each cell line. Promoters 
with cRPKMP > 8 are indicated by black bars. Directional tick marks on the 
gene depictions indicate direction of transcription. The tall shaded boxes 
indicate the promoter regions of each gene. Genomic coordinates correspond 
to the most distal tick marks.
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two populations. In fact, we find that while approximately one quarter 
of the genes with predicted ‘inactive in both’ promoters had an RPKM 
of zero (and therefore are not represented in Figure 4C and D), the 
remaining three quarters did show expression, primarily at very low 
levels (Figure 4C and D). This expression may represent transcription 
in only a very small fraction of the cells at any one time, and when 
assayed by ChIP-seq, these promoters may well not have appreciable 
active chromatin modifications yielding cRPKM < 8 scores. Some 
of these RNAs could also reflect initiation from TSSs that were not 
annotated by RefSeq. In addition, while genes in both ‘exclusively 
active’ promoter classes have markedly different RPKM distributions 
between the two cell types, the distinctions between these classes are 
less pronounced than those between the ‘inactive in both’ and ‘active in 
both’ classes (Figure 4A-D). The cause of this discordance is unclear but 
could be due to many possible causes, including to a potential temporal 
discordance between alterations in active transcription and acquisition 
of promoter chromatin modifications. Statistical analyses using the 
Wilcoxen-Mann-Whitney test (WMW or U-test), a non-parametric 
analog of the t-test used in determining significance between skewed 
or non-normally distributed populations [33,34], revealed that all four 
predicted promoter classes were significantly different from each other, 
in both cell lines (p < 0.0001).

We found that the ‘active in both’ predicted promoter class 
contained not only numerous housekeeping and pleiotropic genes, as 
expected, but also genes previously shown as being involved B cell and 
early progenitor stage identity. For example, special AT-rich sequence 

binding protein 1 (SatB1), AT-rich interactive domain 3a (Arid3a), 
Foxo1, homeobox protein A3 (Hoxa3), and runt-related transcription 
factor 2 (Runx2), all factors implicated in hematopoiesis, are in this 
group, but show different levels of ongoing transcription [5,35-38]. 
Thus, it is important to note that some of these genes do display 
differential expression, even though they are in the ‘active in both’ 
class, indicating a co-transcriptional means of regulation uncoupled 
from changing promoter chromatin status as assayed by these two 
modifications (see later sections). In the exclusively active classes, by 
essentially filtering the GRO-seq data with predicted promoter status, 
we are able to identify and enrich for genes that are regulated at the 
transcription level coupled to a specific chromatin state change and 
implicated in B cell development. Examples of genes that are included 
in this group are Pituitary-specific Pit-1, Octamer transcription factor, 
and neural Unc-86 transcription factor class 2 associating factor 1 
(Pou2af1), Aiolos (Ikzf3) and Interferon regulatory factor 4 (Irf4), 
which are upregulated in pro-B cells, and Cd34, which is up-regulated 
in pre-pro-B cells [1,13,32,33,39].

As expected, when plotting the frequency distributions of 
differential ongoing transcriptional activity [log10(RPKMpro-B/RPKMpre-

pro-B)], the ‘exclusively pre-pro-B’ and ‘exclusively pro-B’ predicted 
promoter classes segregate, demonstrating that a large fraction of 
genes in these classes exhibit differential ongoing transcription 
levels (Figure 4E and F). The MACS peak calling strategy (shown in 
Supplemental Figure 5) does not predict ongoing transcriptional 
levels of the exclusively active predicted promoter classes as clearly as 
does the cRPKMP method (compare especially Figure 4C and F with 
Supplemental Figure 5C and F).

cRPKMP identified ‘active’ promoters identify stage specific 
steady-state mRNAs

Since ongoing transcription was expected to be highly correlated 
with promoter status and differential transcription with differential 
promoter status, we next asked if these general trends hold true when 
comparing the various predicted promoter classes with steady state 
RNA levels (Figure 5). To enable such an experimental test, we generated 
genome-wide RNA-seq data in our model system. Specifically, isolated 
total RNA from Ebf1 null pre-pro-B cells and Rag2 null pro-B cells 
was depleted of ribosomal and small RNAs using RiboZero and size 
exclusion columns, respectively. This mRNA-enriched preparation was 
subjected to standard RNA-seq library preparation and sequenced on 
an Illumina HiSeq 2000. Sequence reads were aligned with TopHat, 
quantitative estimation of FPKM (fragments per kilobase per million 
reads) was assigned to each protein-coding RefSeq gene for each cell 
type, and differential expression was determined using Cuffdiff2.1.1 
[26,27]. Not surprisingly, these steady state RNA levels demonstrate a 
general concordance with expected gene activity based upon predicted 
promoter classes (Figure 5A-D). The distribution of FPKM values for 
the different predicted promoter classes demonstrates higher steady 
state mRNA levels for active promoters, whether ‘active in both’ or 
‘exclusively’ active in the appropriate cell type. Thus, the ‘exclusively 
pre-pro-B’ predicted promoter class displays higher FPKM levels than 
the ‘exclusively pro-B’ class in pre-pro-B cells, and vice versa in pro-B 
cells.  However, the differences between these ‘exclusive’ classes appear 
less substantial, although statistically significant, than the different 
distributions of abundance between the ‘active in both’ and ‘inactive in 
both’ predicted promoter classes (Figure 5A-D), as was also observed 
in the GRO-seq analysis (WMW p < 0.0001) (Figure 4). Only one third 

Figure 4: Relationship between predicted promoter class and ongoing 
transcription (GRO-seq). (A and B) Genes categorized based on their 
predicted promoter class (‘active in both’, ‘exclusively pre-pro-B’, ‘exclusively 
pro-B ‘, and ‘inactive in both’) are shown in box and whiskers plots representing 
the quartiles of GRO-seq values plotted versus GRO-seq transcription levels 
(RPKM on a log10 scale) in pre-pro-B cells (A) and pro-B cells (B). In these 
representations, all protein-coding genes in RefSeq are considered, including 
genes with RPKM = 0. (C and D) Graphs showing the relative frequency 
distribution of GRO-seq transcription levels [log10(RPKM)] for each predicted 
promoter class (see color key) in pre-pro-B cells (C) and pro-B cells (D). (E 
and F) Graphs showing the relative frequency distribution of the differential 
ratio of GRO-seq transcription levels [log10(RPKMpro-B/RPKMpre-pro-B)] for each 
predicted chromatin class, with the magenta box of (E) magnified in (F). In 
these representations, frequency was assessed at increments of 0.1 of the 
log10 converted transcription level (C and D) or calculated differential (E and 
F), and genes with RPKM = 0 are not included (C-F). All classes demonstrated 
statistically significant differences (WMW p < 0.0001).
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of the genes in the predicted ‘inactive in both’ predicted promoter 
class yielded transcripts with detectable RNA by RNA-seq (FPKM > 
0), consistent with their inactive chromatin status, and the majority 
of these transcripts displayed several orders of magnitude lower RNA 
abundance than genes in the ‘active in both’ predicted promoter class. 
As expected, the exclusively active promoter classes display global 
differential steady-state mRNA expression levels [log10(FPKMpro-B/
FPKMpre-pro-B)] (Figure 5E and F). The MACS strategy was employed 
to predict promoter classes (Supplemental Figure 6) and was much 
less successful at faithfully classifying differentially active promoters 
(compare Figure 5C and F with Supplemental Figure 6C and F).

Within the cRPKMP defined ‘active in both’ predicted promoter 
class some genes do display differential steady state RNA levels 
between pre-pro-B cells and pre-B cells.  As indicated above, numerous 
genes also displayed differential ongoing transcription (GRO-seq), 
thus there are likely co-transcriptional and post-transcriptional means 
of regulating mRNA levels (e.g. RNA stability, see below). In the 
exclusively active classes, by filtering the RNA-seq data with predicted 
promoter status, we are able to identify and enrich for genes that are 
likely mostly transcriptionally regulated in a specific developmental 
program (i.e. at the level of chromatin—active in both-, but differential 
ongoing transcription and differentially maintained steady-state RNA 
levels). Examples of known B cell development regulatory genes that 
are included in this group are Pou2af1, Aiolos (Ikzf3), and Irf4 that are 
upregulated in pro-B cells, while Cd34 and Flt3 are upregulated in pre-
pro-B cells, most of which were also identified as displaying differential 
ongoing transcription (GRO-seq) [1,6,13,32,33]. However, there are 

a number of genes that appear to have differential mRNA abundance 
that cannot be ascribed to differential levels of ongoing transcription 
(see below).

A subset of genes with ‘active’ promoters are regulated by 
RNA stability

In order to understand the role that RNA stability may play in 
regulating early B-cell development, we next compared our GRO-seq 
with our steady-state RNA-seq data for all expressed genes. Specifically, 
we plotted RPKM (ongoing transcription) versus FPKM (steady state 
mRNA) for both cell types, scoring each promoter class separately as 
well as all genes together (Supplemental Figure 7). These data were 
divided into quadrants to more easily separate active and relatively 
inactive genes. As expected, genes with promoters in the predicted 
‘active in both’ class display the densest distribution in the upper right 
quadrant for both cell types, i.e., high RPKM and high FPKM values 
(Supplemental Figure 7A and B). Conversely, genes with promoters 
in the predicted ‘inactive in both’ class display the greatest density in 
the lower left quadrant, i.e., low RPKM and low FPKM (Supplemental 
Figure 7C and D), with the majority of the genes in this promoter class 
not represented on these plots as they did not have measurable RPKM 
and/or FPKM values. For genes with promoters in the exclusively 
active predicted classes, one would expect the high density signal to be 
in the upper right quadrant (high RPKM and FPKM) for the cognate 
cell type and in the lower left quadrant for the alternate cell type (low 
RPKM and FPKM). This is indeed the case for genes with promoters 
in the predicted ‘exclusively pre-pro-B’ class (Supplemental Figure 
7E and F) and for genes with promoters in the predicted ‘exclusively 
pro-B’ class in pro-B cells (Supplemental Figure 7H). However, genes 
with promoters in the predicted ‘exclusively pro-B’ class in pre-
pro-B cells show a significant deviation from this pattern, with two 
obvious populations, not only the expected low RPKM and low FPKM 
population but also an appreciable amount of a high RPKM and high 
FPKM population (Supplemental Figure 7G). That population could 
potentially be explained if the lower ChIP-seq library depth in pre-
pro-B cells, which was noted above, led to under-calling of promoters 
with activating chromatin modifications in this cell type. This would 
cause some promoters that should really be in the ‘active in both’ class 
to be mis-classified as ‘exclusively pro-B’. Nonetheless, there is a clear 
enrichment of differentially active genes based upon our predictions in 
both ‘exclusively pre-pro-B’ and ‘exclusively pro-B’ classes, compared 
to the distribution of all genes (Supplemental Figure 7I and J) and the 
‘active in both’ and ‘inactive in both’ classes.

A small but obvious minority of the genes in each promoter class, 
but especially the ‘active in both’ predicted promoter class, have much 
lower FPKM (steady state RNA) than RPKM (ongoing transcription) 
levels (bottom portion of the graphs in Supplemental Figure 7A and 
B and highlighted in Supplemental Figure 8A and B). This suggests 
that the transcripts of these genes may be markedly unstable and that 
RNA stability of these genes could possibly play a significant role in 
early B cell development. To examine whether the genes displaying 
this apparent RNA instability are the same or different between the 
two cell types, we specifically compared their differential expression 
values in the two cell types by plotting the differential steady state 
mRNA abundance [log2(FPKMpro-B/FPKMpre-pro-B)] on the Y axis and 
differential ongoing transcription [log2(RPKMpro-B/RPKMpre-pro-B)] on 
the X axis, color-coding these data for the two cell types (Supplemental 
Figure 8C). There are three discrete sub-populations, with the majority 
of these genes exhibiting large positive or negative differential levels 

Figure 5: Relationship between predicted promoter classes and steady 
state mRNA levels. (RNA-seq) (A and B) Genes categorized based on 
their predicted promoter class (‘active in both’, ‘exclusively pre-pro-B’, 
‘exclusively pro-B’, and ‘inactive in both’) are shown in a box and whiskers 
plots representing the quartiles of RNA-seq values plotted versus RNA-seq 
transcription levels (FPKM on a log10 scale) in pre-pro-B cells (A) and pro-B 
cells (B). In these representations, all protein-coding genes in RefSeq are 
considered, including genes with FPKM = 0. (C and D) Graphs showing the 
relative frequency distribution of RNA-seq transcription levels [log10(FPKM)] 
for each predicted promoter class (see color key) in pre-pro-B cells (C) and 
pro-B cells (D). (E and F) Graphs showing the relative frequency distribution 
of the differential ratio of RNA-seq steady state mRNA levels [log10(FPKMpro-B/
FPKMpre-pro-B)] for each predicted chromatin class, with the magenta box 
of (E) magnified in (F). In these representations, frequency was assessed 
at increments of 0.1 of the log10 converted transcription level (C and D) or 
calculated differential (E and F), and genes with RPKM = 0 are not included 
(C-F). All classes demonstrated statistically significant differences (WMW p 
<0.0001).
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of steady state mRNA level between the two cell types but minimal 
differential levels of ongoing transcription. Color-coding the genes 
to indicate ones that are in this low-FPKM sub-population only in 
pre-pro-B cells (orange), only in pro-B cells (burgundy) or in both 
cell types (blue) shows that a large proportion of these genes exhibit 
this striking instability only in pre-pro-B cells or only in pro-B cells, 
although some genes exhibit the same differential in both cell types 
(Supplemental Figure 8C). Intriguingly, several genes encoding 
transcription factors and chromatin modifiers (along with many 
others) previously implicated in B cell development were identified 
to be amongst these differentially unstable mRNAs, including [(DNA 
methyltransferase 3a (Dnmt3a) and cyclic AMP responsive element 
binding protein 1 (Creb1)] [40,41]. These analyses also identified genes 
encoding many zinc finger proteins (Zfp) and zinc finger and BTB 
(Zbtb) transcription factors of unknown import to B cell development 
(Zfp27, Zfp94, Zfp120, Zfp275, Zfp710, Zfp821, Zbtb3, Zbtb25, Zbtb43, 
Zbtb44) as potentially being regulated post-transcriptionally through a 
mechanism that affected RNA stability (see supplemental file 3).

Since we observed that certain populations of genes could have 
such dramatic cell type specific differential between steady state 
mRNA levels and ongoing transcription levels, we explored the global 
relationship between our predicted promoter classes and mRNA 
stability—specifically asking if promoter status may somehow be linked 
to this type of post-transcriptional regulation. By taking the ratio of 
FPKM (steady state mRNA) and RPKM (ongoing transcription) values 
for all protein-coding RefSeq genes, we generated an inferred measure 
of stability for each transcript. While the frequency distributions of 
these calculated ratios for the two exclusively active predicted promoter 
class appears quite similar in both cellular state (Figure 6A and B), and 
when compared between cellular states (Figure 6C), statistical analyses 
reveal that these actually represent different populations (WMW p < 
0.0001), with the ranked means of the active classes being larger than 
the inactive classes (i.e. active groups appear to generate more stable 
mRNAs). Thus, it is tempting to speculate that the modifications on 
active promoters (in this case H3K4me3 and H3ac) not only affect 
the transcriptional on/off state, but also transcript stability, perhaps 
through their reported role in facilitating elongation [42]. This same 
analysis performed with the MACS-based promoter prediction strategy 
showed no striking global differences (Supplemental Figure 9). Taken 
together, these data show that a number of genes display differential 
stability in a developmental stage specific manner.

The majority of differentially abundant proteins do not derive 
from differentially active promoters

We next returned our focus to the relationship of the predicted 
promoter classes with differential protein abundance and, thus, 
regulation of B cell development. The above mentioned iTRAQ-based 
proteome quantification from pre-pro-B cells and pro-B cells generated 
in our laboratory yielded 27,662 peptides which mapped to 3,129 unique 
proteins. While most proteins displayed no differential abundance, 
we identified 337 differentially abundant proteins between the cell 
types (based on +/-1.5 fold change) (Figure 7A-D, unshaded area). 
A number of these agree with previously published results, verifying 
our analyses and appropriate differential expression of these genes in 
our model system. Ikzf3 (Aiolos), Pou2af  and Irf4 , genes previously 
shown to be up-regulated in pro-B cells, are in our ‘exclusively pro-B’ 
predicted promoter class and are up-regulated in our proteome data 
(Figure 3, Supplemental File 3) [33,39,42,43]. Also, Cd34 and Flt3, 
well-established to be down-regulated upon progression through the 

hematopoietic differentiation program [32], are in our ‘exclusively pre-
pro-B’ predicted promoter class (Figure 3, Supplemental Data File 3) 
and are down-regulated in our proteome data. Interestingly, our data 
identify a number of additional proteins that display lower abundance 
levels at the pro-B cell than pre-pro-B cell stage, consistent with a 
role in the earliest stages of B cell specification. One example is Cst7 
(leukocystatin), which is known to regulate effector serine proteases 
in thymocytes (T cells) and natural killer cells (NK cells) [44], and we 
find is ~7 fold down-regulated in pro-B cells at the protein level. Since 
pre-pro-B cells are a common lymphoid progenitor with the capacity 
to differentiate towards many immune cell lineages, Cst7 may be in a 
poised state in pre-pro-B cells, to be up-regulated if the differentiation 
cascade follows a T cell or NK cell pathway or down-regulated if the 
differentiation cascade proceeds down the B cell pathway.

Figure 6: Relationship between predicted promoter classes and FPKM/
RPKM ratio. (A and B) Graphs showing the relative frequency distribution of 
FPKM/RPKM ratios [log10(FPKM/RPKM)] for each predicted promoter class 
(see color key) in pre-pro-B cells (A) and pro- B cells (B). Plot displaying the 
differential ratio of log10[(FPKMpro-B/RPKMpro-B)/(FPKMpre-pro-B/RPKMpre-pro-B)] for 
each predicted promoter class (C). Frequency was assessed at increments of 
0.1 of the calculated ratio and genes with zero value for either RPKM or FPKM 
were excluded from this analysis (A-C). All classes demonstrated statistically 
significant differences, with the exception of ‘exclusively pre-pro-B’ and ‘active 
in both’ in pre-pro-B cells (WMW p < 0.0001).
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Given the mass spectrometry methodology and strategy we 
employed, we were able to perform integrated analyses on only a subset 
of the genes and promoters used in our previous analyses (with all 
identified peptides mapping to 3,129 RefSeq genes, versus 26,414 genes 
assayed by ChIP-seq, GRO-seq and RNA-seq). The largest number 
of iTRAQ identified proteins come from genes with unchanging 
predicted promoter classes, almost all of these are from the predicted 
‘active in both’ promoter class (2,808 proteins). However, a few are 
from the predicted ‘inactive in both’ class (189 proteins); they could 
derive from gene products with TSSs that are not annotated, genes that 
are only active in a very small fraction of the cells or for a very small 
fraction of the time but give protein products that yield peptides that 
are favored for detection by our LC-MS/MS strategy, or from genes 
with mis-classified promoters. As expected, the vast majority of the 
proteins encoded by the genes in the ‘active in both’ and ‘inactive in 
both’ classes do not have significant differential abundance values 
(Figure 7A and B, shaded area). Conversely, when focusing on the 
proteins from the predicted exclusively active promoter classes, a 
substantial number display differential abundance (Figure 7C and D). 
This is especially striking for the ‘exclusively pre-pro-B’ class (Figure 

7C); the data for the ‘exclusively pro-B’ class (Figure 7D) may appear 
less dramatic because the low ChIP-seq library depth for the pre-pro-B 
cells could cause this predicted chromatin class to be contaminated with 
promoters that are truly ‘active in both’, as noted above. Nonetheless, 
the majority of the differentially abundant proteins do not appear to 
come from promoters that are predicted to be differentially active 
by our cRPKMP method, suggesting post-chromatin regulation, and 
likely post-transcriptional regulation. The MACS-based prediction of 
exclusively active chromatin classes performs poorly in enriching for 
differentially abundant proteins (Figure 2A and Supplemental Figure 
10).

Multi-omics analyses reveal that differential protein 
abundance in early B cell development is predominantly due 
to post-transcriptional regulatory mechanisms

We further considered the inter-relationships between predicted 
promoter classes and differential transcription, transcript steady state, 
and protein levels. For these mutli-omics differential analyses, there are 
27 possible regulatory combinations of differential abundance at the 
ongoing transcription, steady state mRNA, and protein levels. Defining 
differential abundance as a change of at least 2-fold, 2-fold, and 1.5-
fold, respectively, Supplemental Table 1 shows the numbers and 
percent of genes that are within each of these regulatory combinations, 
for all genes and for each of the four predicted chromatin classes. 
Due to the limited dynamic range of our quantitative proteomic data, 
we were not able to use the classical 2-fold cut-off to define the most 
differentially abundant — even using a less-stringent cut-off of 1.5-
fold resulted in limiting these analyses to the top 7-15% differentially 
expressed proteins. A large fraction of genes with predicted exclusively 
active promoters exhibit corresponding changes at the ongoing 
transcription, steady state mRNA, and protein levels (Supplemental 
Table 1). Furthermore, the vast majority of genes with predicted ‘active 
in both’ promoters do not exhibit differential ongoing transcription, 
steady state mRNA, or protein levels (Supplemental Table 1). While 
this analysis is certainly a broad view, and the precise placement of 
genes into the regulatory combinations is in part subject to the precise 
cutoffs for differential abundance, a significant fraction of genes 
appear to display potentially unexpected regulatory combinations with 
differential RNA expression but not substantially differential protein 
levels as detected by iTRAQ. These remain to be further investigated. 
To further interpret and summarize these data, we established broader 
regulatory groupings: 1) differential protein abundance (iTRAQ) 
with supporting differential transcription (GRO-seq) and steady 
state mRNA levels (RNA-seq), 2) differential protein abundance 
evidently due to post-transcriptional mechanisms (no change in 
ongoing transcription (GRO-seq), irrespective of mRNA steady-state 
levels), 3) undetermined or ambiguous inter-relationships, and 4) 
no called changes in protein abundance, irrespective of the ongoing 
transcriptional and steady state mRNA data (Supplemental Table 1). 
Table 1 summarizes the percent of genes that fall into these broader 
regulatory groupings. Strikingly, for genes displaying high confidence 
differential protein abundance, not parsed out by predicted promoter 
class, over half appear regulated predominantly by post-transcriptional 
mechanisms (Table 1, ‘DE genes’ 52.5%). Approximately 1/3 of them 
appear to be regulated at the steady state RNA level (possibly due 
to differential efficiencies of RNA maturation or differential RNA 
stability), while approximately 2/3 of them appear to be regulated 
at a subsequent step (possibly due to differential efficiencies of 
translation or differential protein stability) (Supplemental Table 1). 

Figure 7: Relationship between predicted promoter classes and protein 
differential abundance. Histograms of differential protein abundance 
[log2(iTRAQpro-B/pre-pro-B)] for genes of the ‘active in both’ (A), ‘inactive in both’ 
(B), ‘exclusively pre-pro-B’ (C), and ‘exclusively pro-B’ (D) predicted promoter 
classes. The shaded region of the plot represents non-differentially abundant 
proteins and the unshaded region indicates differentially abundant proteins 
based on a 1.5 fold difference threshold. Each bar on the plots represents a 
bin with a range of 0.25.
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Parsing out the genes that display high confidence differential protein 
abundance (above the 1.5 fold cut-off for protein differential) into 
predicted chromatin classes, post-transcriptional regulation is also the 
predominant regulatory mode in the ‘active in both’ and ‘inactive in 
both’ classes (58% and 54.9%, respectively) (Table 1), again about 1/3 at 
the steady state RNA level and 2/3 at a subsequent step (Supplemental 
Table 1). In contrast, the vast majority of the genes in the ‘exclusively 
pre-pro-B’ and ‘exclusively pro-B’ classes with differentially abundant 
proteins follow a transcriptional regulatory mode (Table 1, 87% and 
71%, respectively), as expected. We find these observations to be 
striking: that chromatin modifications leading to a direct transcription 
based model of differential protein expression account for less than 
half of the observed high confidence protein differential between these 
developmental stages.

We next asked whether transcriptional or post-transcriptional 
regulatory mechanisms yielded, in general, larger changes in protein 
levels in our developmental system. A box and whiskers plot indicates 
that the magnitude of differential expression was substantially larger 
for genes that are transcriptionally regulated than genes that are 
post-transcriptionally regulated when assessed at the steady state 
mRNA level, as expected (Supplemental Figure 11A), and apparently 
also larger when assessed at the protein level (WMW p < 0.0001) 
(Supplemental Figure 11B). Thus, while transcriptional regulatory 
mechanisms accounted for less than half the differential protein levels 
noted, regulation by post-transcriptional mechanisms yielded more 
genes with changes in protein levels. Further interrogating our multi-
omics data set confirmed that many genes previously implicated in 
stage-specific expression patterns in our developmental model and 
mentioned above are regulated by transcriptional mechanisms, as 
expected (Supplemental Table 2). This is not surprising since networks 
of transcriptional regulation and changing chromatin state are clearly 
important for driving the B cell developmental program. However, 
we also found differentially abundant proteins that were regulated by 
either transcriptional or post-transcriptional mechanisms and that 
have not previously been implicated in our developmental model as 
shown in Supplemental Table 2 (and data not shown). Of these genes, 
Galnt11 is of particular interest, as it has recently been shown to be up-
regulated in chronic lymphocytic leukemia (CLL) and associated with 
poor disease prognosis [45].

Notably, the most dramatically differentially abundant protein 
observed in our developmental model is encoded by 2410004B18Rik 
(24-fold down regulated between pro-B and pre-pro-B cell states), 
even though this gene is in the ‘active in both’ predicted promoter 
class (Supplemental Figure 12, Supplemental Table 2). A preliminary 
literature search revealed no known function for 2410004B18Rik, 
although it appears evolutionarily conserved and is present in humans 
(C1orf52). While in silico protein functional analyses failed to predict 
known functional domains or sequence similarity with proteins of 

known structure or function (data not shown), querying the IntAct 
protein-protein interaction database revealed that 2410004B18Rik 
interacts with two important transcription factors implicated in 
immune pathways, NFκB (nuclear factor of kappa light polypeptide 
gene enhancer in B cells) and Ets-1 (E26 avian leukemia oncogene 1) 
[46]. Interestingly, 2410004B18Rik displays no differential ongoing 
transcription (GRO-seq), steady-state RNA (RNA-seq), or inferred 
stability levels (Figure 8A), possibly suggesting regulation at the 
level of translation or protein stability. To investigate the regulatory 
mechanism(s) that mediate such a dramatic change in 2410004B18Rik 
protein levels, without affecting transcriptional and steady state 
mRNA levels, we explored the possibility of microRNA-mediated 
regulation. Published microRNA:mRNA target prediction databases 
(microRNA.org/miRanda, PITA, miRwalk, and miRTcat) revealed 
only one microRNA, miR-139-5p, is predicted by all four databases 
to have binding site(s) in the 2410004B18Rik 3’ UTR (Figure 8B) [47-
50]. Interestingly, miR-139-5p has previously been shown to regulate 
Foxo1 protein levels in hepatocytes without changing its mRNA levels 
[51]. Furthermore, mining of published microRNA deep sequencing 
data from murine lymphoid lineage cells shows that miR-139-5p is up-
regulated 15.5 fold between pre-pro-B and pro-B cells (Figure 7C) [52]. 
Based on published evidence that miR-139-5p can regulate protein 
levels independent of corresponding mRNA transcript levels, predicted 
interactions of miR-139-5p with the 3’ UTR of 2410004B18Rik by four 
miR: mRNA interaction databases, and an up-regulation of miR-139-
5p that is reciprocal to 2410004B18Rik protein level down-regulation 
in pro-B cells relative to pre-pro-B cells, we propose that miR139-5p 
could act to down-regulate 2410004B18Rik protein levels independent 
of changes in transcript levels. This awaits further investigation.

Discussion
Numerous studies have demonstrated that promoters enriched in 

H3K4me3 and H3ac are correlated with gene activity [29]. The majority 
of these studies have either focused on correlation with steady-state 
transcript levels, or more recently, utilized differential chromatin 
modifications as a proxy for identifying genes whose protein products 
may be regulated in and important for developmental progression 
[53,54]. To date, integrative studies demonstrating a direct link between 
changes in chromatin state during development and differential protein 
expression have been lacking [18,19]. Using existing and new data 
from an early B cell developmental model system, we addressed how 
gene expression is regulated from the chromatin state to the protein 
level and how these inter-relationships may affect B cell development.

In this systems biology approach, we determined whether 
gene expression is regulated by chromatin, ongoing transcription, 
transcript steady state, and/or post-transcriptionally, using differential 
protein levels as the end point measure of gene expression—the 
end point that actually is an effector of cellular state. We affirm that 

% All genes % Active in both % Exclusively pre-pro-B % Exclusively pro-B % Inactive in Both
Transcriptional (1) 4.0 2.8 52.0 22.4 5.3

All Genes
Post-transcriptional (2) 6.1 5.5 8.4 6.0 10.7
Undetermined or ambiguous mechanism (3) 1.5 1.2 0.0 1.9 6.9
No protein change (4) 88.4 90.6 40.0 68.2 73.0
Transcriptional (1) 34.6 29.9 86.7 70.6 19.6 DE

(iTRAQ)
genes

Post-transcriptional (2) 52.5 58.0 13.3 23.5 54.9
Undetermined or ambiguous mechanism (3) 12.9 12.1 0.0 5.9 25.5

Table 1: Mechanisms of differential protein abundance. The percent of all genes (top) and of genes with protein differential abundance (‘DE’, bottom) that fall in the 
broad regulatory groups: ‘transcriptional’, ‘post-transcriptional’, ‘undetermined or ambiguous mechanism’, and ‘no protein change’, as determined in Supplemental Table 1.
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active chromatin modifications at promoters can in general be used 
to predict genes that are actively transcribed (Figure 4) and have 
significant steady state mRNA accumulation (Figure 5). We further 
show that developmentally differential promoter-proximal chromatin 
modifications also predict differential protein levels for an appreciable 
fraction of their assessed proteins (Figure 7C and D). However, we 
show that such predictions of activity from chromatin state miss 
many proteins that are differentially abundant, largely due to post-
transcriptional regulation (Table 1; Supplemental Table 1). Indeed, our 
analysis confirms the striking finding that over half of all differentially 
abundant proteins appear to be regulated by some post-transcriptional 
mechanism (Table 1; Supplemental Table 1) [55,56]. However, 
the distribution between transcriptional and post-transcriptional 
regulation is dramatically different for the various predicted promoter 
classes. Although transcriptional regulation is the predominant mode 
to modulate protein abundance in genes whose promoter is predicted 
to be exclusively active in one of the cell types, we notably demonstrate 
that changes in protein levels from genes harboring non-differentially 
active promoters are largely post-transcriptional and therefore 
uncoupled from active chromatin state (Table 1). Evidently about 
1/3 of those instances are regulated at mRNA steady-state abundance 
and about 2/3 at a subsequent stage (Supplemental Table 1). Thus, a 
change in chromatin state often predicted transcriptional and protein 
level changes, while changing protein levels did not indicate a change 
in promoter chromatin state. We identified many genes who display 
differential regulation that is uncoupled from their chromatin state, 
such as SatB1, Arid3a, and Foxo1, all genes involved in hematopoiesis 
[5,35,36]. In fact, the most up-regulated protein in our model system 
displayed no changes in its promoter status (Supplemental Figure 12). 
It is from gene 2410004B18Rik, which we show is regulated beyond 
the level of steady-state mRNA abundance, and our analyses further 

provide evidence that expression of this gene is regulated by miR-139-
5p post-transcriptionally (Figure 8).

To enable these analyses, we introduce a new robust cRPKMP 
method of analyzing ChIP-seq data (Figure 3) that appears more 
efficient at identifying active chromatin modifications at promoters, 
and thus at predicting gene activity, than is the MACS algorithm as we 
used it (Supplemental Figure 1). We showed that a number of genes 
that are implicated as hallmarks of our differentiation model agree 
with previous observations (Supplemental Table 2), and our collective 
integrated data can be mined at the gene level to uncover gene expression 
patterns that are involved in differentiation (e.g., Supplemental Table 
1). Many leukemias are hypothesized to arise from early immune 
developmental stages, and further interrogation of our data could lead 
to a better understanding of the developmental mechanisms perturbed 
in such diseases. Moreover, with further advancement of proteomics 
tools, such as stable isotope labeling by amino acids in cell culture 
(SILAC) and iTRAQ, the next generation of such analyses will likely 
uncover more developmentally important proteins that are regulated 
post-transcriptionally and thus provide further examples where the 
dynamic epigenome is uncoupled from protein expression. Finally, 
we submit this type of data integration should be of great use in 
elucidating relationships between miRNAs and their potential targets 
on a genome-wide scale, as the GRO-seq data provide a means to rule 
out transcriptional regulation in modulation of mRNA levels.

Data Access
Data used in this work can be found on Galaxy and GEO. All RNA-seq data, 

including fastq reads, aligned reads, and quantitative abundance measurements 
can be found on Galaxy. Bedgraph files corresponding to all ChIP-seq, GRO-seq, 
and RNA-seq data are available on Galaxy as well.

https://usegalaxy.org/u/thereddylab/p/prediction-of-gene-activity-based-on-
an-integrative-multi-omics-analysis

Raw fastq RNA-seq reads and transcript quantification data are hosted on 
GEO under the accession: GSE52450.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE52450

Supplementary File information.
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