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ABSTRACT
The regulation of gene expression in response to changes in cell population density is known as Quorum Sensing 

(QS). The bacterium called Pseudomonas aeruginosa utilizes QS to control gene transcription in humans. So it is 

essential to analyse the structural characteristics of Pseudomonas aeruginosa. Secondary structures of proteins have 

been identified as physical processes of primary sequences, folding into functional tertiary structures that allow 

proteins to participate in biological events of life science. Prediction of protein secondary structure from the 

associated amino acids sequence is importance in bioinformatics and it is a challenging assignment for machine 

learning based algorithms. Even though the utilization of NN for predicting secondary structure of protein is an 

innovative approach, it is complex at the time of network formulation. In order to overcome this problem, learning 

algorithm can be utilised to train the synaptic weights. Hence, in this work, the secondary structure analysis of QscR 

protein (Pseudomonas aeruginosa (PDB ID: 3 szT) is obtained by adopting PSO tuned neural network. It predicts the 

3 state secondary structure of QscR protein. This proposed algorithm has resulted prediction of single protein 

domain with higher accuracy.
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INTRODUCTION
The Amino Acid (AA) sequence is mostly responsible for the 
determination of the 3-D arrangement of protein. However, it is 
more challenging to determine the structure of protein based on 
AA sequence [1,2]. Thus, the major task in computational 
biology, understands of complex sequence/structure of protein 
as it is critical to analyse its functions and applications like drug/
enzyme design [3,4]. The accurate function and the structure 
prediction of protein depend on the efficiency of Secondary 
Structure (SS) prediction [5].

Protein Secondary Structure (PSS) refers to the arrangement of 
polypeptides, which are the backbone of proteins. Alpha helix 
(H) and beta strand (E) are the two regular SS states suggested by
Pauling before six decade and coil region (C) is the irregular SS

type [6]. To categorize the SS into 8 fine textured states, Sander
established a DSSP algorithm. DSSP precisely authorized Helix
in 3 Category- (G-helix, H-alpha-helix and I-pi-helix) Strand in 2
types-(E-beta-strand and B-beta-bridge) and Coil in 3 types-(T-beta
turn, S-high curvature loop and L-irregular).

Comprehensively, PSS can be considered as a link between the
primary sequence as well as tertiary structure. Thus, it is utilized
in many functional and structure analysis devices.

PSS prediction has been studied in a detailed manner [7].
Further, more computational methods have been established to
visualize both 3 state and 8 state SS. More detailed local
structure information is concurrently availed in 8 state
predictions [8,9] were the first who utilised NN to predict the
SS. Rost and [10,11] achieved the furthermost significant
development in SS prediction by utilizing the sequence profile
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inverse. In the hidden layer, sigmoidal activation function is
utilized and regarding the output neurons, linear activation
function is implemented.

In ANN algorithm, the elementary steps involved are as follows

• Choose the relevant activation function (G) and number of
hidden neurons from the given class labels and training
samples.

• Choose bias (b) and input weights (V) randomly and the
output weights (W).

• The class label can be calculated from the determined weights
(BVW) and the inaccuracy between the observed and
predicted values should be reduced. The best performances
are later tuned by the PSO.

PSO

One of the stochastic optimization methods is PSO. This
technique imitator of intelligent social act of colony of birds (or)
schools of fish, identified as a particles in a community. In a
minimum possible time, these particles by working together give
a transparent and excellent solution to a problem. A random set
of values called particles initialise the formation of PSO
algorithm. These particles contribute collectively to achieve the
desired solution. Several parameters defined by these values will
increase the performance of the system. To attain the finest
possible solution, this method constantly explore a multi-
dimensional space set on by a fitness basis, The best values for
input weights, hidden layer neurons and bias values are found
using a PSO [27,28].

PSO trained ANN: The following strategies are taken into
discussion to accommodate ANN with PSO algorithm [29]. In
the ANN models by using the PSO algorithm, the optimum
weights and the bias are realized. The search space of the
algorithm with ‘n’ dimensions is formed by the weights and
biases. Here ‘n’ represents the total number weights and biases
that are to be developed. There are n-dimensions of position
vector and velocity for every single particle. The letter ‘w’
denotes both the weights and biases. By flying the particles on
all sides of the search space, the exclusive set of weights are
acquired. On every repetition, a set of weights with their fitness
accessed comes up along with the algorithm. This occurs by
applying these weights to the nodes and by determining the
value to be achieved. Subsequently, the correctness of the
forecasting using the allocated weights is calculated by the
variation between the original and forecasted values, the
variation must be reduced using the optimization techniques.
Using this view, the particle with best fitness has been attained
and until now it is treated as the individual best.

Correspondingly, the swarm with the best fitness is treated as
the best one globally. The present procedure is reproduced for
the definite number of repetitions until the correct weight for
the ANN is earned. The procedures for an ANN optimized by
PSO is stated below. For a perceptron with three layers, W [1]
denotes the relation among the input layer and the hidden layer
whereas W [2] denotes the relation among the hidden layer and
the output layer commonly. Multi-layer perceptron is trained by
using the PSO method. The ith particle can be represented by
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obtained from multiple sequence alignment. Jones et al., [12] 
improved a NN method called PSIPRED that acquires 
PSIBLAST sequence profile as input. Few other machine 
learning devices that implicate bidirectional recurrent neural 
networks (that can obtain spatial dependency) [13-18], 
probabilistic graphical models, a backing vector model and 
HMM were also used to predict PSS [19-25].

To smash this long-lasting record, an inspiring technique has to 
be upgraded. However, the relatively shallow architectures 
(currently available modes) cannot model the accurate complex 
sequence–structure relationship. On the other hand, 3 state SS 
prediction can also be examined by SOV score which is referred 
as SS segment based accuracy.

So far, by implementing ANN, an innovative approach for 
predicting the PSS has been designed. It is a tedious task to 
frame an ANN, as the fabrication relies on the construction, the 
chosen transfer function and the learning algorithm which is 
utilized to train the synaptic weights. The SS of QscR (Q3 
prediction) is predicted in this suggested work using PSO which 
is utilized to train the ANN neural network.

MATERIAL AND METHODS

Data generation

By deriving the details from relative similarity groups of QscR, 
which includes both short and long range interactions existing 
among the AA of proteins, the database is created. The 
dictionary of Database of PSS (DSSP), has 8 categories of 
protein structures. In these categories, a shortened set of 3 SS 
termed as α-helix (H), β-Strand (E) and Coil (C) are considered 
in this work. By using 100 non- homologous protein sequences, 
a profile matrix is designed.

Design of PSO tuned ANN

In this, for categorization ANN is used. The variables of the 
ANN are tuned using the PSO.

Encoding of ANN: The input of an ANN has prearranged 
patterns (Residues). Each pattern is said to have 27 features with 
values lying between 0 and 1. There are three units in the output 
and these units correlate any one of the three secondary 
structure elements. The correlation is defined as 1 for a class of 
interest and a –1 for the remaining two classes. At the hidden 
layer, the given input along with a bias and weights generates an 
activation function. The hidden layer’s output associated with a 
different set of weights earns three outputs. The predicted class 
which has the maximum value is treated as an output with 
lowest MSE.

To construct a model, the ANN makes use of a set of training 
samples. At the time of training phase, the variables like weights, 
bias and designed hidden neurons of ANN is enhanced using 
the PSO [26].

The variables are stored and used at the time of the testing stage. 
Initially, input weights are selected randomly and later on they 
are adjusted by the PSO. The output weights obtained from the 
hidden layer are empirically determined by utilizing the pseudo
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Where

j = 1, 2;

m = 1,. . . ,Mj ;

n = 1,. . . ,Nj ;

Mj and Nj - row and column size

W, P, V, r , s-Constants;

a and b-Random numbers ranges within 0 to 1;

t - Time step between observations. Usually it is unity; 

V'' and W''-New values.

Applying Equation,

The current velocity of a particle is calculated by applying its
earlier velocity and the distance of its recent location based on
Pbest and Gbest value. On the right hand side of the equation,
the second element serves as the exclusive thinking of the
particle by its own and at the same time the third element,
represents the combination in the midst of the particle as a
group. The current location based on the recent velocity can be
resolved by the equation as follows

The MSE is the fitness function and is given by

Where

F-Fitness value,

n-No.of data points.

RESULTS AND DISCUSSION
For training 100 protein set and to test 5 protein set are used 
and the parameters adopted for this work is tabulated in Table
1. All the 3 SS (α-helix, β-strand and coil) exists in the form of a
mixture in every sets mentioned above.

Parameters Values

No. of Particles 100

C1 1

C2 2

Max. Iteration 1000

Among the training data set, 47% were about coil, 31% were 
strand and 21% were Helix. In the testing data set, it was about 
48% of C, 31% of E and 21% of H (Figure 1).

For training, validation and test steps the figure 1 depicts the 
MSE of ANN model. With reference to the graph at the epoch 
6, the least MSE occurs and it has best validation performance 
equivalent to 0.35. Thus, for the sequence of chain A of QscR, 
the predicted SS is tabulated in (Table 2).
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Table 1: The parameter configuration used in PSO.

Figure 1: Best validation performance curve.



Methods Secondary
structure

Sequence (1-50) MHDEREGYLE ILSRITTEEE FFSLVLEICG NYGFEFFSFG ARAPFPLTAP

Structure DSSP ******SHHH HHHH** SHHH HHHHHHHHHH HTT*SEEEEE EE***STTS*

MLNN CHHHHHHHHH HHHHCCCHHH HHHHHHHHHH HHCCCEEEEE EECCCCCCCC

Proposed PSONN CHHHHHHHHH HHHHCCCHHH HHHHHHHHHH HHCCCEEEEE EECCCCCCCC

Sequence(51-100) KYHFLSNYPG EWKSRYISED YTSIDPIVRH GLLEYTPLIW NGEDFQENRF

Structure DSSP *EEEEE*** H HHHHHHHHTT GGGT*HHHHH HHHS*S* EEE ETTT*SS*HH

MLNN CEEEECCCCH HHHHHHHHHC CHHHCHHHHH HHHCCCCEEE CCCCCHHHHH

Proposed PSONN HEEEECCCCH HHHHHHHHHC CHHHHHHHHH HHHCCCHEEE CCCCHHHHHH

Sequence(101-150) FWEEALHHGI RHGWSIPVRG KYGLISMLSL VRSSESIAAT EILEKESFLL

Structure DSSP HHHHHHHTT* *EEEEEEEE* GGG*EEEEEE EESSS*** HH HHHHHHHHHH

MLNN HHHHHHHHCC CCEEEEEEEC CCCCEEEEEE ECCCCCCCHH HHHHHHHHHH

Proposed PSONN HHHHHHHHCC CCEEEEEEEC CCCCEEEEEE ECCCCCCCHH HHHHHHHHHH

Sequence(151-200) WITSMLQATF GDLLAPRIVP ESNVRLTARE TEMLKWTAVG KTYGEIGLIL

Structure DSSP HHHHHHHHHH HHHHHHHHSG GGG**** HHH HHHHHHHHTT **HHHHHHHH 

MLNN HHHHHHHHHH HHHHCCCCCC CCCCCCCHHH HHHHHHHHCC CCHHHHHHHH

Proposed PSONN HHHHHHHHHH HHHHCCCCCH CCCCCCCHHH HHHHHHHHHE HCHHHHHHHH

Sequence(201-237) SIDQRTVKFH IVNAMRKLNS SNKAEATMKA YAIGLLN

Structure DSSP TS*HHHHHHH HHHHHHHTT* SSHHHHHHHH HHTT***

MLNN CCCHHHHHHH HHHHHHHHCC CCHHHHHHHH HHHCCCC

Proposed PSONN CCCHHHHHHH HHHHHHHHCC CCHHHHHHHH HHHCCCC

Isoleucine possess the highest number of helix residues while 
Cysteine as well as Proline possesses the exact number helix 
residues in them.

 The Strand, Serine, Leucine as well as Phenylalanine are 
having the highest content. On the other hand, most of the 
acids like Asparagine, Aspartic acid do not exist strand. 

  Similarly, Cysteine and Glutamine does not exhibit coil 
property. Serine and Proline are the acids which bear more 
number of residues in the coil structures. Alanine and 
Asparagine seem to have the same content in the coil and the 
same is depicted in Figure 2.
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With reference to the above table it is observed that the 
suggested PSOANN shows better accuracy in predicting PSS 
than that of the other conventional methods. Apart from the 
detection of SS of QscR, the domination of the configuration of 
the amino acids is also investigated for determining the 
structures.

The results obtained from many SS prediction methods are 
expressed in terms of commonly used three SS. At the AA level, 
it is strange to notice an investigation of the results with few 
deviations. To recognize the designs of prediction accuracies in 
connection to various AAs, the results of categorization from 
many SS prediction servers are observed [30]. Thus, the 
influence of the composition and physicochemical properties of 
AAs is investigated.

In SS analysis, the AAs are not present in uniform quantities. 
Very few amino acids such as Glutamine, Leucine and

J Proteomics Bioinform, Vol.16 Iss.1 No:1000630 4

Table 2: Predicted secondary structure of QscR under different topology.



Figure 2a: Content of AAs in SS of QscR.

From the above graph (Figure 2b), it is concluded that cys and 
gln are helix in nature and amino acids such as asn, glu and thr 
have not exhibited strand nature.

 From the analysis, it is concluded that alp xileh ys a vital 
role in QscR protein.

Various steps to calculate the forecasting efficiency have been 
used in this approach.

 In the three states of secondary structures, the 
percentage of residues which are correctly predicted is 
illustrated by Q3 accuracy.

 By adding together the identified and recognized segments 
and by calculating their overlap, the precision is furnished by 
Segment Overlap Measure (SOV) and it is depicted in the Table 
3 (Figure 3).

Qoverall (%) QH (%) QE (%) QC (%)

The Figure 3 shows the parameters like Q3-training, Q3-testing, 
Sensitivity and Specificity for a given set of proteins which is 
tested. By using the terms of TP correct and FP error, the 
achievement of allotment can be checked out. Regarding TN 
and FN, they are influenced by identical explanation. The 
forecasted class conforming to a pre-set threshold is determined 
by the calculated probabilities supplied by the output of a 
classification. The ROC is graphed by taking the TP rate and FP 
rate as the co-ordinate pairs. The region below the ROC assists 
to combine the achievement of all the tasks which are tested.

Comparative analysis

Finally, the results obtained using proposed methodology is 
compared with the performance of other networks which 
depicted the secondary structure of QscR (Tables 4,5 and 
Figures 4-6).
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Figure 2b: Percentage of secondary structures in an amino acid.

Table 3: Performance analysis of Q3 and SOV of the proposed topology.

Figure 3: Accuracy of the proposed topology.

Q3 77.71 85.23 60.41 87.5

SOV 77.6 85.4 72.9 52.7



Method Alpha (%) Beta sheet (%) Coil (%)

DSSP 54 13 -

STRIDE 54 11 -

MLNN 56.96 11.39 31.64

PSO-NN 59.07 12.23 28.69

Table 5: Performance comparison of Q3 and SOV of the proposed topology.

Overall (%) QH (%) QE (%) QC (%) Methodology

Q3 75.74 83.89 58.33 85 MLANN

SOV 75.6 85 72.9 42.6

Q3 77.71 85.23 60.41 87.5 PSOANN

SOV 77.6 85.4 72.9 52.7

Figure 4: Comparative analysis of performance of the other
methods in secondary structure prediction.

Figure 5: Overall Q3 comparison with other topologies.

Figure 6: Overall SOV comparison with other topologies

From the overall comparison study, it is concluded that the
proposed PSO-NN gives more and better prediction of
secondary structure than the other topologies. Similarly, it
exhibits greater accuracy and high per-residue accuracy than
MLNN topology.

CONCLUSION
An innovative method, ANN which depends on PSO, is
implemented to identify the secondary structure of a protein
during this research. The recommended predictor has achieved
encouraging results and has surpassed a lot of other advanced
predictors. In an individual dataset, an accuracy of 95% is
achieved. The empirical performance determined by the
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Table 4: Comparative analysis of performance of the other methods in secondary structure prediction.



suggested technique put up helpful hands for the detection of
major protein modifications and this approach will be dynamic
in the research domains where structure of proteins are
predicted.
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