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Background
The knowledge of protein three-dimensional (3D) structures is 

vitally important for biomedical research, such as protein function 
analysis, mutagenesis experiments and rational drug design. Although 
the X-ray crystallography technique can determine protein 3D 
structures with high resolution, they are still time consuming, expensive 
and cannot be readily applied to the proteins that cannot be successfully 
crystallized, including most membrane proteins. The nuclear magnetic 
resonance (NMR) is a powerful tool that can determine the 3D 
structures of membrane proteins of small and medium size in solutions 
[1-3], but it is also time-consuming and costly. In order to acquire the 
protein structural information at a large scale and in a timely manner, 
high throughput fast computational protein structure prediction 
methods, such as homology modelling [4,5], need to be used. Since 
the accuracy of predicted protein structures depend on the relatedness 
of homologous structural templates and the correctness of sequence 
alignment [4], assessing the quality of protein structural models is 
important for controlling and analysing the quality of the predicted 
models. 

Thus, protein model quality assessment plays a profound role in 
protein structure prediction and related applications [6]. Accurate 
quality assessment of protein models can help rank a pool of candidate 
models predicted for a given query protein. A number of model quality 
assessment methods and tools, such as ModelEvaluator [7], APOLLO 
[8], QMEAN [9], have been developed. These methods evaluate the 
quality of models based on the structural information extracted from 
protein models, without considering the source information (e.g. 

sequence alignment, homologous template structure), used to generate 
the models. The quality assessment methods without utilizing the 
source information may be considered a black box approach, while 
those considering the source information [10], is a white box approach 
[11].

Since the factors of largely determining the quality of a model, such 
as the sequence similarity between a query protein and a homologous 
template structure are generally available in the template-based protein 
structure prediction (e.g. homology modelling and fold recognition), 
the white box approach can take advantage of the information to 
improve model quality assessment.

Here, extending from our previous model quality assessment 
method based on a query-single-template alignment [12], we designed 
and developed a support vector machine (SVM) [13] and alignment-
based model quality assessment method, taking either a query-single 
template pairwise alignment or a query-multi template alignment as 
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input to predict the GDT-TS score of a model generated from the input 
alignment. The method can be applied to select the protein models 
based on the query template alignments used to generate the models in 
the widely used template-based protein modelling process.

Methods
Figure 1 shows the workflow how the SVM model quality 

assessment method uses the features extracted from a query-single-
template pairwise alignment to predict model quality. The input features 
provided to the SVM predictor include the logarithm of e-value of the 
query template alignment, the percent of identical residue pairs in 
aligned positions, the percent of residues of the query that are aligned 
with a residue in the template and the average of BLOSUM [14] scores 
of all aligned residue pairs. The input feature vectors in the training 
data set were extracted from 245 pairwise protein sequence alignments 
generated for 50 CASP9 (the 9th Critical Assessment of Techniques 
for Protein Structure Prediction [15]) targets by PSI-BLAST [16]. 
The output score of each input feature vector was the real GDT-TS 
[17] score of the model generated from the corresponding pairwise 
alignment. The real GDT-TS score is the structural similarity score 
between a model and its corresponding native structure calculated 
by the TM-score program [18]. This data was used to train a SVM 
regression predictor equipped with a Gaussian radial basis kernel 
(RBF) to predict the GDT-TS scores of models from the input features. 
The SVM-Light software package [19] was employed to carry out 
the training and testing experiments. Three parameters of the SVM, 
including the epsilon width of the regression tube (w), the margin 
option (c) and the gamma in the RBF kernel (g) were tuned during the 
training process. The root mean square error (RMSE) and the absolute 
mean error (ABS) between the predicted and real GDT-TS scores were 
used as the evaluation scheme to optimize the parameter values. Three 
standard crossvalidation methods are commonly adopted to check the 
effectiveness of a predictor, including independent dataset test, K-fold 
cross-validation and jackknife test [20]. Here, we utilized the five-
fold cross validation approach as many other SVM based prediction 
methods do in order to achieve higher computational efficiency. 
Specifically, many rounds of five-fold cross validations were applied to 
the training data to select the best parameter values of w from 0.5, 0.2, 
0.1, 0.05, 0.02 and 0.01 and c from 2.0, 1.0, 0.5, 0.1, 0.05 and 0.01 and g 
from 0.5, 0.3, 0.2, 0.1, 0.05, 0.01, 0.005 and 0.001, in order to reduce the 
average ABS and RMSE on all the five folds. The set of parameter values 
with the lowest RMSE and ABS was selected.

Similarly, Figure 2 shows the workflow of the SVM model quality 
assessment method based on the features extracted from the query-
multi template alignment used to generate the model. The input 
features include the percentage of the residues of the target sequence 
aligned with those in one or more templates, the percentage of identical 
residues of the target sequence that are the same as that of any one 
template, the average BLOSUM score of aligned residues, and the 
average Gonnet160 score [21] of aligned residues. Specifically, as for 
the average BLOSUM score, if a residue of the target is aligned with 
those in multiple templates, the BLOSUM score between the residue of 
the target and that of the template ranked higher in the alignment file 
(e.g. more significant) is counted. Consequently, the average BLOSUM 
score associated with all aligned residues of the target sequence was 
calculated as one feature. The average Gonnet 160 score of all aligned 
residues is calculated in a similar way. The input feature vectors in the 
training data set were extracted from 4850 multiple protein sequence 
alignments generated for 60 CASP9 targets by different alignment 

tools, such as BLAST, PSI-BLAST [16], HHSearch [22], SAM [23], and 
SPEM [24], and the output score of each input feature vector was the 
real GDT-TS score of the model generated from the corresponding 
multiple alignment. Many rounds of ten-fold cross validations were 
applied to the training data to select the best parameter values of w 
from 0.1, 0.08, 0.06, 0.05, 0.02 and 0.01 and g from 0.5, 0.4, 0.3, 0.2, 0.1, 
0.05, 0.01, 0.005 and 0.001 and c from 2.0, 1.0, 0.5, 0.1, 0.05 and 0.01.

Results
Evaluation of the pairwise alignment based SVM model 
quality assessment method

The global average RMSE and ABS of the SVM trained with the 
best set of parameter values (w, c, g)=(0.02, 1.0, 0.5) on the five-fold 
training data set were 0.083 and 0.061, respectively. The trained pairwise 
alignment based SVM predictor was applied to predict the GDT-TS 
scores of models of 46 CASP9 targets generated from 225 PSI-BLAST 
alignments that were not used in training. The RMSE and ABS were 

 

Figure 1: The workflow of the pairwise alignment based SVM model quality 
prediction method.

 

Figure 2: The workflow of the multiple alignment based SVM model quality 
prediction method.
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respectively 0.098 and 0.073, demonstrating that the predicted GDT-
TS scores are close to the real ones. The RMSE and ABS of the trained 
SVM with the best parameter set on each fold of the training data, as 
well as the testing data set are shown in Table 1.

Moreover, we used the predicted model quality scores to rank the 
models of 46 CASP9 targets [11]. The total real GDT-TS score of the top 
1 models selected by the SVM predictor for these targets was compared 
with that of the top 1 models selected, according to the e-values (i.e. 
significance) of the PSI-BLAST alignments and that of the top 1 models 
selected by APOLLO [8], a black box quality assessment tool using a 
pairwise model comparison approach. The total GDT-TS score of the 
models selected by the SVM predictor is 20.95, which is higher than 
20.10 of the pure e-value based model selection method, as well as 19.53 
of APOLLO [8]. The ttest and Wilcox-test were respectively performed, 
in order to calculate the p-values on the scores of our SVM predictor 
and the e-value based model selection method, as well as on the scores 
of our SVM predictor and the APOLLO method. The p-values are 
reported in Table 2. The results suggest the SVM predictor based on 
pairwise alignments performed significantly better than the e-value 
based predictor and APOLLO, according to the standard pvalue 
threshold (i.e. 0.05). Moreover, the Pearson’s correlation coefficient 
score between the predicted and true GDT-TS scores on the testing 
data set is 0.913, indicating that the predicted and true scores are highly 
linearly correlated. The results demonstrate that integrating alignment 
e-value with other features by SVM can improve the accuracy of 
ranking models over the naïve e-value based model ranking method 
and a state-of-art-black-box model evaluation method (i.e. APOLLO).

Evaluation of the multiple-alignment based SVM model 
quality assessment method

The global average RMSE and ABS of the SVMtrained with the best 
set of parameter values (w, c, g)=(0.1, 2.0, 0.05) on the ten-fold training 
data set were 0.185 and 0.149, respectively. The trained SVM predictor 
was applied to predict the GDT-TS scores of models of 47 CASP9 
targets generated from 3809 multiple protein sequence alignments that 
were not used in training. The RMSE and ABS were respectively, 0.176 
and 0.142. This error is higher than that of the pairwise alignment-
based predictor tested on models generated from PSI-BLAST 
alignments alone in the previous experiment, probably due to the 
higher diversity in alignments and model quality in this experiment. 
However, the advantage of this SVM predictor is that it can be applied 
to the alignments generated from any alignment methods and does not 
require an alignment e-value as input, which varies from one alignment 
method to another. The RMSE and ABS of the trained SVM predictor 
with the best parameter values on each fold of the training data, as well 
as the test data set are shown in Table 3.

We also used the predicted model quality scores to rank the models 
of 47 CASP9 targets in the testing data [11]. The total real GDT-TS 

score of the top 1 models selected by the multiple alignment based SVM 
predictor for these targets was compared with that of the top 1 models 
selected by APOLLO. The total GDT-TS score of the top 1 models 
selected by the multiple-alignment based SVM predictor is 22.59, 
which is lower than 25.26 of APOLLO. The lower performance of this 
multiple sequence alignment based SVM predictor is probably due to 
the lack of the alignment e-value feature used in the pairwise alignment 
based SVM predictor. Thus, one direction of improving multiple 
sequence alignment-based method is to include some features similar 
to the e-value of measuring the significance of alignments. And despite 
the lower performance of the current implementation of the multiple 
sequence alignment based SVM predictor, it is likely complementary 
with the black-box model quality assessment methods like APOLLO, 
because it used completely different features in prediction. And 
compared to the pairwise model comparison method like APOLLO 
that needs a pool of models of a protein as input, the alignment-based 
model quality assessment methods can be applied to assess the quality 
of one single model.

Furthermore, the Pearson’s correlation coefficient score between 
the predicted and true GDT-TS scores on the testing data set is 0.969, 
indicating that the predicted and true model quality scores are highly 
linearly correlated.]

Conclusions
In this work, we designed and developed a SVM protein model 

quality prediction method, taking either a pairwise sequence alignment 
or a multiple-sequence alignment as input. The evaluation results 
showed that integrating pure sequence alignment features with a SVM 
is an effective approach to protein model quality assessment. The new 
method can be integrated with template-based protein modelling 
methods to rank and select models. Since user-friendly and publicly 
accessible web-servers are important for making bioinformatics 
methods available to the community [25], we will make the model 
quality assessment methods developed in this work available as an 
easy-to-use web service for the community in the future.

The data set RMSE ABS
Fold 1 of the training data 0.0868 0.0606
Fold 2 of the training data 0.0923 0.0674
Fold 3 of the training data 0.0821 0.0631
Fold 4 of the training data 0.0771 0.0557
Fold 5 of the training data 0.0783 0.0566

Test data 0.0978 0.0734

Table 1: The RMSE and ABS of the pairwise sequence alignment based SVM 
with the best parameter set on each fold of the raining data as well as the testing 
data set.

Table 2: The p-values on the scores of our SVM predictor and the e-value based 
model selection method and on the scores of our SVM predictor and the APOLLO 
based on t-test and Wilcox-test.

Methods P-value (t-test) P-value (Wilcox-test)
SVM predictor VS
e-value based method

0.044 0.042

SVM predictor VS 
APOLLO

0.044 0.016

Table 3: The RMSE and ABS of the trained multiple sequence alignment based 
SVM with the best parameter set on each fold of the training data as well as the 
test data set.

The data set RMSE ABS
Fold 1 of the training data 0.2057 0.1678
Fold 2 of the training data 0.1516 0.1238
Fold 3 of the training data 0.1746 0.1393
Fold 4 of the training data 0.1538 0.1226
Fold 5 of the training data 0.1677 0.1383
Fold 6 of the training data 0.1692 0.1348
Fold 7 of the training data 0.1900 0.1487
Fold 8 of the training data 0.2330 0.1873
Fold 9 of the training data 0.2287 0.1939

Fold 10 of the training data 0.1721 0.1377
Test data 0.1764 0.1423
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