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Introduction
New apple cultivars are usually bred by crossing between existing 

apple cultivars. New apple cultivars are also often selected from apple 
seeds generated by random pollination, whose male parents are not 
clear during breeding process. Simple selection of progeny plants 
showing favorable traits from segregating populations would have 
been usually adopted, but this is somewhat inefficient way of breeding. 
For example, wide area of apple orchard is necessary if all the progeny 
apple plants are grown and their phenotypes, including fruit qualities, 
are tested. The screening process also takes great time and labor, 
considering the long juvenile phase (5-12 years) of apple seedlings 
[1,2]. Estimation process of the phenotypes may also need time, labor, 
or cost, depending on the types of estimated phenotypes. This is why 
DNA markers which are genetically linked to agriculturally important 
traits are developed in many crops, including apple. By using DNA 
markers, breeders can select promising cultivars at the juvenile phase, 
then further estimate these restricted number of plants in the second 
round of screening [3].

As being one of the most produced fruits in the world, relatively 
large number of agronomically important DNA markers is reported 
in apple, among the other fruit trees (e.g. http://www.naro.affrc.go.jp/
genome/database/kaju/ringo/index.html, in Japanese). For example, 
the SSR (simple sequence repeat) -type DNA marker NZmsEB119405 

for Cg locus estimates crown gall resistance of apple rootstock cultivars 
[4]. Another SSR-type DNA markers such as Mdo.chr10.14 for the Co 
locus is genetically linked to the columnar tree shape of apple scion 
cultivar ‘Wijcik’ [5]. We have also recently developed a sequencing-
based DNA marker APPLid for determination of apple S alleles [6]. 
In the present study, we focused on other four DNA markers, because 
these four markers seem to be genetically linked to agricultural traits 
of any apple scion cultivars. These DNA markers target MdACS1 gene, 
MdMYB1 gene, MdAlt locus, and MfVf gene, respectively. Linkage 
between marker genotypes and phenotypes observed in 22 apple 
cultivars were re-estimated in the present study, to verify applicability 
of these markers in apple breeding, especially in Japanese apple 
cultivars.

MdACS1 gene encodes 1-aminocyclopropane-1-carboxylic acid 
synthase which catalyzes ethylene production in apple fruit [7-9]. 
In comparison with the functional MdACS1-1 allele, a 138-bp (base 
pairs) insertion is observed in the promoter region of the non-
functional MdACS1-2 allele, which may strongly inhibit transcription 
of this gene. Thus apple, a typical climacteric (ethylene-regulated) 
fruit, enjoys low level of ethylene production and long storage life, 
when produced on cultivars harboring homozygous MdACS1-2 
alleles such as ‘Fuji’ [10-12].

Abstract
Determination of agronomically important traits with DNA markers in genetically segregating populations is a key 

to high-throughput breeding of apple trees. In the present report, we first estimated usefulness of four PCR-based 
DNA markers of apple in a set of 22 apple cultivars, which include popular cultivars in Japan such as ‘Fuji’, ‘Orin’, 
and ‘Shinano Gold’. The four DNA markers are reported to determine fruit storage life (ethylene production), fruit skin 
color, Alternaria resistance, and scab resistance. The target genes/locus of these DNA markers are MdACS1 gene, 
MdMYB1 gene, MdAlt locus, and MfVf gene. The types of these DNA markers are SSLP, dCAPS, allele-specific, and 
gene-specific, thus the markers were designated MdACS1-SSLP, MdMYB1-dCAPS(BstEII), MdAlt-AS, and MfVf-GS, 
respectively. DNA band patterns after gel electrophoresis were reasonable and consistent with previous reports for 
MdACS1-SSLP and MfVf-GS markers. On the contrary, band patterns of the MdAlt-AS marker were not necessarily 
consistent with Alternaria tolerance of the apple cultivars. It was also quite difficult to determine genotypes from the 
band patterns of the BstEII-based dCAPS marker MdMYB1-dCAPS(BstEII). Attachment of DS6 adaptor sequence to 
the forward primer improved genotype determinations, by making clear difference between the sizes of allelic DNA 
bands. Further improvement of this DNA marker was also achieved by the MdMYB1-CAPS(PmlI) marker, which is a 
PmlI-based CAPS marker. MdMYB1 genotypes determined by the MdMYB1-CAPS(PmlI) marker was consistent with 
apple skin colors and their genetic segregations.
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Apple skin colors (red or non-red) are regulated by MdMYB1 
gene, encoding R2R3-type MYB transcription factor [13]. Gene 
expressions in the pathway of anthocyanin synthesis and anthocyanin 
accumulation in the skin are high when the strong allele MdMYB1-1 
is possessed by apple cultivars such as ‘Fuji’, but they are low when 
only weak alleles MdMYB1-2 and MdMYB1-3 are possessed by apple 
cultivars such as ‘Golden Delicious’. The strong MdMYB1-1 allele is 
experimentally discriminated from the other alleles by using a dCAPS 
(derived cleaved amplified polymorphic sequence) marker, based on 
the restriction enzyme BstEII.

Resistance to the diseases, ‘Alternaria leaf blotch’ and ‘scab’, 
can be estimated by PCR (polymerase chain reaction) amplification 
of MdAlt locus or MfVf gene, respectively. The MdAlt locus was 
detected by genetic comparison between a susceptible cultivar 
‘Starking Delicious’ and a resistance cultivar ‘Jonathan’ [14]. The 
dominant allele Alt causes susceptibility to fungus Alternaria 
alternata (apple pathotype) to cause the disease Alternaria leaf 
blotch, whereas the recessive allele alt does not cause susceptibility 
(resistant). These dominant and recessive alleles are discriminated 
by the DNA marker DR033892: a set of three primers generates a 
692-bp DNA fragment from alt allele, and a 429-bp fragment from 
Alt allele [15]. The MfVf gene (usually described ‘Vf’) is derived 
from a crabapple species Malus floribunda ‘821’ [16,17]. MfVf is 
a receptor-like gene, and the most popular genetic resource for 
resistance to fungus Venturia inaequalis, causing scab, among the 
other resistance genes. Possession of MfVf gene in apple cultivars 
like ‘Prima’ can be checked by gene-specific PCR amplification of a 
469-bp DNA fragment using the marker ACS-9 [18].

When these four PCR markers were tested and re-examined for 
genomic DNAs of randomly selected 22 apple cultivars, the markers 
for MdACS1 and MfVf amplified clear DNA fragments, with consistent 
band patterns. We also found that the band pattern of the MdAlt 
locus was not necessarily consistent with Alternalia resistance, whose 
reasons will be discussed. Both amplification of DNA fragments and 
discrimination between alleles were difficult with the reported primer 
set for MdMYB1 gene, then we developed improved primer sets which 
clearly determined apple skin colors.

Materials and Methods
Plant materials

Twenty-two cultivars of apple (Malus × domestica Borkh.) were 
used in this study. Young grafted plants of ‘Fuji’, ‘Orin’ and ‘Haruka’ 
were purchased from plant supplier and grown in open field. Young 
expanding leaves of ‘Golden Delicious’, ‘Indo’, ‘Starking Delicious’, 
‘Ralls Janet’, ‘Delicious’, ‘Senshu’ and ‘Prima’ were obtained from Iwate 
Agricultural Research Center (Kitakami city, Iwate, Japan). Young 
expanding leaves of ‘Sansa’, ‘Tsugaru’, ‘Jonagold’, ‘Akane’, ‘Aori-
9’, ‘Kitaro’, ‘Santaro’, ‘Shinano Sweet’, ‘Shinano Gold’, ‘Jonathan’, 
‘Beniiwate’ and ‘Aikanokaori’ were obtained from the Field Science 
Center of Iwate University (Takizawa city, Iwate, Japan).

DNA extraction

The same DNA stocks as in the analysis of S alleles [19] were also 
used in the present study. Immediately after sampling apple leaves, 
approximately 50 mg (45-55 mg) were weighed out, and kept in deep 
freezer (−80°C) for at least 1 h. DNA was extracted following the 
previously reported protocols with partial modifications as follows 
[19,20].

Frozen leaves were crushed by using Micro Smash MS-100R 
(Tomy, Tokyo, Japan) at 2500 rpm for 30 s, and 500 µL of ‘alkaline 
PVPP buffer’ with high salt (Tris-HCl, pH 9.5, 50 mM; EDTA, 10 
mM; NaCl, 4 M; CTAB, 1%; PVPP, 0.5%; β-mercaptoethanol, 1%) 
was added to the samples. Here, β-mercaptoethanol was added to the 
buffer immediately before use. ‘Tris’ represents tris(hydroxymethyl) 
aminomethane, ‘EDTA’ represents ethylenediaminetetraacetic acid, 
‘CTAB’ represents cetyltrimethylammonium bromide, and ‘PVPP’ 
represents polyvinylpolypyrrolidone. Samples were crushed again at 
3000 rpm for 30s by using Micro Smash. Crushed samples were heated 
at 80°C in a heating block for 30 min. Sample tubes were briefly shaken 
with hands, two or three times during eating.

Sample tubes were then centrifuged at 14000 rpm for 10 min at 
4°C. Supernatant (400 µl) was recovered to new tubes. PCI (phenol-
chloroform-isoamylalcohol, 25:25:1, v/v/v; 200 µl) was added to tubes, 
and vigorously mixed by vortex. After centrifugation at 14000 rpm for 
5 min at 4°C, water phase (350 µl) was recovered to new tubes. Again, 
PCI (200 µl) was added to samples, vortexed, and centrifuged at 14000 
rpm for 5 min at 4°C. Water phase (300 µl) was recovered to new tubes, 
and the same volume (300 µl) of sterilized ion-exchanged water was 
added to samples, to avoid salt precipitation in the next step. The same 
volume to the sample (600 µl) of isopropanol was added, mixed well by 
inverting tubes, placed at −80°C for at least 15 min, and then centrifuged 
at 14000 rpm for 60 min at 4°C. All supernatant was carefully removed 
from tubes, then the precipitate was dried by using hair drier. RNA was 
digested with 1 µg of RNase A in 100 µl of sterilized deionized water 
at 37°C for 5 min. A 100 µl of SDS buffer (Tris-HCl, pH 7.5, 200 mM; 
EDTA, 25 mM; NaCl, 250 mM; SDS (sodium dodecyl sulfate), 0.5%) 
was added to the solution, and mixed with 50 ml of PCI solution. After 
centrifugation at 14000 rpm for 5 min at 4°C, 180 µl of upper (water) 
phase was recovered to new tubes. Two volumes (360 µl) of ethanol was 
added to the tube, mixed well by inverting tubes, frozen at −80°C for 
at least 15 min, and DNA was precipitated by centrifugation at 14000 
rpm for 1 h at 4°C. All supernatant was removed from the tube, and 
the precipitate was dried by using hair drier. Dried precipitate was 
dissolved in 50 µl of sterilized deionized water, so that DNA extract 
approximately equivalent to 1 mg fresh weight of apple leaf was 
dissolved every 1 µl of water (1 mgFW-eq µl−1; [20].

The amount of DNA extracted from 5 mg of apple leaf was 
approximately quantified and qualified by agarose gel electrophoresis. 
Similar to our previous report on DNA extraction from other plants 
such as cyclamen by using alkaline PVPP buffer [20], DNA yield from 
apple leaves was relatively high, and DNA fragmentation was limited.

Primer sequences and primer design

Primer sequences are listed in Table 1. Some primers were newly 
designed in this study (such as MdMYB1-Pm-F). Primers for the 
following PCR markers are the same as the references in parentheses: 
MdACS1-SSLP [10,11], MdMYB1-dCAPS (BstEII) [13], MdAlt-AS 
[15], MfVf-GS [18]. Some of the primer names are the same as the 
previous reports (such as ‘DR033892-F5’). When specific primers 
names were not provided in the original report or the primers were 
designed in the present study, new primer names were generated in the 
present study (such as ‘MdMYB1-d-F’ and ‘MdMYB1-Pm-F’).

Three new primers (‘DS6-MdMYB1-d-F’, ‘MdMYB1-Pm-F’, and 
‘MdMYB1-Pm-R’) were designed in this study. DS6-MdMYB1-d-F 
primer was designed just by attaching a 68-base DS6 adaptor sequence, 
which is a partial sequence of the DS4 adaptor [21], to the MdMYB1-
d-F primer sequence. Here, ‘DS6’ represents ‘dissimilar synthetic DNA 



Citation: Kikuchi T, Kasajima I, Morita M, Yoshikawa N (2017) Practical DNA markers to Estimate Apple (Malus × domestica Borkh.) Skin Color, 
Ethylene Production and Pathogen Resistance. J Hortic 4: 211. doi: 10.4172/2376-0354.1000211

Page 3 of 12

Volume 4 • Issue 4 • 1000211J Hortic, an open access journal
ISSN: 2376-0354

sequence 6’. Length of the DS6-MdMYB1-d-F primer is 100 bases, 
which can be ordered at an ordinary oligo-DNA synthesis scale (Fasmac, 
Atsugi, Japan). MdMYB1-Pm-F and MdMYB1-Pm-R primers were 
designed by using Primer3 software [22,23]. The designed Tm (melting 
temperature) values of these primers were around 60°C, but test PCR 
amplification at a series of different annealing temperatures (from 48°C 
to 68°C, at 4°C intervals) showed that the annealing temperature of 
68°C is the most stable PCR condition with these primers.

PCR amplification

The successful conditions of PCR amplifications were tested by 
using Taq DNA polymerase (Ex Taq, Takara, and Kusatsu, Japan) 
and KOD DNA polymerase (KOD Plus Neo, Toyobo, Osaka, Japan) 
separately. Primer concentrations in the PCR reactions were 0.5 µM 
each for Ex Taq, and 0.2 µM each for KOD Plus Neo, unless otherwise 
described. Gradient PCR amplifications were performed at a series 
of different annealing temperatures (48°C to 68°C, at 4°C intervals) 
following manufacturers’ instructions. Extension was 1 min, and 
the number of PCR cycles was 40. One µl of 100-times diluted DNA 
solutions of control apple cultivars (such as ‘Fuji’ for MdMYB1 
primers) was added to 20-µl PCR solutions. PCR solutions were mixed 
well by vortex before PCR reaction. 10 µl of PCR products was loaded 
onto 2% agarose gels and electrophoresed at 100 V for approximately 
30 min, until the bromophenol blue dye moved 80% of the gels. Gels 
were stained with ethidium bromide for 1 h after electrophoresis, and 
DNA bands were visualized by UV illumination.

PCR amplifications shown in the figures were performed at the 
optimum PCR conditions, as were determined in the present study, of 
each primer set (PCR marker) as follows. MdACS1-SSLP and MfVf-
GS markers were amplified with KOD Plus Neo polymerase at the 
annealing temperature of 68°C (so that this is the ‘two-step’ PCR cycle, 
with the same annealing/extension temperatures). Extension was 1 
min, and the number of PCR cycles was 40, for all PCR markers. Other 
PCR conditions followed manufacturer’s instructions, or followed 
the conditions which are shown above. The sizes of DNA fragments 
generated by MdACS1-SSLP merker are 655 bp and 517 bp, for acs1 
and ACS1 alleles respectively. The size of DNA fragment generated by 
MfVf-GS marker is 469 bp.

MdAlt-AS marker was amplified with KOD Plus Neo polymerase 
at the annealing temperature of 60°C. Concentrations of DR033892-F5 
and DR033892-R primers in the PCR reactions were 1 µM, and the 
concentration of DR033892-S-R2 primer was 0.15 µM. The sizes of 

DNA fragments generated by MdAlt-AS marker are 692 bp and 429 
bp, for alt and Alt alleles respectively.

Because stable and clear amplification of MdMYB1-dCAPS(BstEII) 
and MdMYB1-dCAPS(BstEII)-DS6 markers were not observed when 
PCR was performed with Ex Taq or KOD Plus Neo polymerases, these 
markers were amplified with Platinum Taq polymerase (Thermo Fisher 
Scientific, Waltham, USA), the same polymerase as the original report. 
Annealing temperature was 55°C for MdMYB1-dCAPS (BstEII) and 
60°C for MdMYB1-dCAPS (BstEII)-DS6. MdMYB1-CAPS (PmlI) 
marker was amplified with KOD Plus Neo polymerase, at the annealing 
temperature of 68°C (two-step cycle). A bit weaker but similar quality 
of DNA bands were also amplified with Platinum Taq polymerase, 
at the annealing temperature of 60°C. The sizes of DNA fragments 
generated by MdMYB1-dCAPS (BstEII) marker are 291 bp and 263 
bp, for myb1 allele and MYB1 allele respectively. The sizes of DNA 
fragments generated by MdMYB1-dCAPS (BstEII)-DS6 marker are 
359 bp and 263 bp, for myb1 allele and MYB1 allele respectively. In 
the case of MdMYB1-CAPS (PmlI) marker, a 324-bp DNA fragment 
is generated for myb1 allele, whereas two DNA fragments (208 bp and 
116 bp) are generated for MYB1 allele.

Treatment with restriction enzymes

PCR products of the three markers MdMYB1-dCAPS (BstEII), 
MdMYB1-dCAPS (BstEII)-DS6, and MdMYB1-CAPS (PmlI) were 
digested by restriction enzymes as described below. Each PCR product 
(20 µl) was mixed well with 40 µl of ethanol by vortex, frozen at −80°C 
for at least 15 min, and centrifuged at 14000 rpm for 1 h at 4°C to 
precipitate DNA. All supernatant was removed by pipetting, and the 
precipitate was dried by using hair drier. These dried DNA samples 
were dissolved in 10 µl of enzyme mix, containing CutSmart buffer 
and 10 U of restriction enzymes: BstEII for MdMYB1-dCAPS(BstEII) 
and MdMYB1-dCAPS(BstEII)-DS6 markers, and PmlI for MdMYB1-
CAPS(PmlI) marker. Restriction enzymes were purchased from 
New England Biolabs (Ipswich, USA). The enzyme mixes containing 
amplified DNA were held at 37°C for 16 h in a thermal cycler. After 
reaction, samples were diluted with the same volume (10 µl) of sterilized 
deionized water, and 15 µl of the diluted samples were electrophoresed 
in 2% agarose gel.

DNA sequence alignment

Partial promoter sequences of MYB1, myb1-1, and myb1-
2 alleles (GenBank accessions DQ886414.1, DQ886415.1, and 

Gene/Locus PCR marker Primer name Primer sequence

MdACS1 MdACS1-SSLP
ACS1-5'F 5'-AGAGAGATGCCATTTTTGTTCGTAC-3'
ACS1-5'R 5'-CCTACAAACTTGCGTGGGGATTATAAGTGT-3'

MdMYB1

MdMYB1-dCAPS(BstEII)
MdMYB1-d-F 5'-CCTGAACACGTGGGAACCGGCCCGTTGGTAAC-3'
MdMYB1-d-R 5'-GTGAAGGTTGTCTTTATTAGTGACGTG-3'

MdMYB1-dCAPS(BstEII)-
DS6

DS6-MdMYB1-d-F
5'-ATCCGAAGTCACGATGATTCAGCGGCCTATAGC 
ACATCGGCGCATAGTTACGCGGTTAGTCGGATCCC 
CCTGAACACGTGGGAACCGGCCCGTTGGTAAC-3'

MdMYB1-d-R 5'-GTGAAGGTTGTCTTTATTAGTGACGTG-3'

MdMYB1-CAPS(PmlI)
MdMYB1-Pm-F 5'-GGATTTTGGGTGTTTGCTGT-3'
MdMYB1-Pm-R 5'-CTCAAAGTTGGAGGGACCAG-3'

MdAlt MdAlt-AS
DR033892-F5 5'-ATGGAGTGGTAGATTTATCATATTT-3'
DR033892-R 5'-TGGTGAAGAAACAAGAAAATGC-3'

DR033892-S-R2 5'-TTCAACAGCATAACCGGC-3'

MfVf MfVf-GS
ACS9-F 5'-ACATGGAAGATGAAGGAGAAGGAG-3'
ACS9-R 5'-GATAAATTGAGTGACTGCAAAGCG-3'

Table 1: List of PCR markers and primers.



Citation: Kikuchi T, Kasajima I, Morita M, Yoshikawa N (2017) Practical DNA markers to Estimate Apple (Malus × domestica Borkh.) Skin Color, 
Ethylene Production and Pathogen Resistance. J Hortic 4: 211. doi: 10.4172/2376-0354.1000211

Page 4 of 12

Volume 4 • Issue 4 • 1000211J Hortic, an open access journal
ISSN: 2376-0354

DQ886416.1) were first organized by using Sequence Assistant 
software (Haruta’s tool box; http://www2s.biglobe.ne.jp/~haruta/; 
released at Vector Inc., Tokyo, Japan; http://www.vector.co.jp/
soft/win95/edu/se480631.html, in Japanese). DNA sequences were 
aligned with Clustal W [24] and further organized by Box Shade 
(http://www.ch.embnet.org/software/BOX_form.html) with default 
setting of the parameters. Output data was edited by using Acrobat 
software (Adobe Systems, San Jose, USA).

Apple skin colors

Photographs of apple cultivars were obtained from a website 
‘From a rural district in blue forest’ (http://aomori.my.coocan.
jp/, in Japanese) with permission by the authors. The same dataset 
is also published in a book (Sugiyama and Sugiyama, 2015). Apple 
photographs for each cultivar were used for colorimetric calculations. 
Colorimetric values were gathered at 10 different points on the 
photograph of each cultivar.

Colorimetric calculations

Apple colors in photographs were converted to colorimetric values 
and coordinates on color circle (the round diagram), based on RGB 
color matching functions [25-27]. Calculation of colors in digital 
photographs is also described in these papers. Briefly, standardized 
RGB colors (IR, IG, and IB) were first obtained from photographs using 
Adobe Photoshop software. Hue (HRGB), lightness (LRGB), and saturation 
(SRGB) were then calculated from IR, IG, and IB. Coordinates on color 
circle (r and d values) were also calculated from SRGB2 (the same as SRGB, 
in the case of digital photographs) and HRGB values.

Results
Genotyping MdACS1 gene of apple cultivars

Alleles of MdACS1 gene were amplified with the same primer 
set (Table 1) as the previous studies. The two alleles of MdACS1 
are originally described as ACS1-1 and ACS1-2, where ACS1-1 is a 
functional, semi-dominant, and ethylene-producing allele. For ease 
of understanding, these two alleles are designated acs1 and ACS1 
respectively, in the present study. Thus, compared with the genomic 
sequence of the ACS1 allele, acs1 allele possesses a 138-bp insertion at 
894 bases upstream from the adenine residue of the start codon of the 
MdACS1 gene (Figure 1A).

The DNA marker to detect MdACS1 alleles is designated 
‘MdACS1-SSLP’ in the present study (Table 1). PCR amplification 
of the MdACS1-SSLP marker of 22 apple cultivars gave quite clear 
DNA band patterns, which discriminate MdACS1 alleles of apple 
cultivars as homozygous for ACS1 allele, homozygous for acs1 allele, 
or heterozygous (Figure 1B).

Genotyping MdMYB1 gene of apple cultivars

Alleles of MdMYB1 gene were first amplified with the same 
primer set as the previous study. This marker in the previous study 
is designated ‘MdMYB1-dCAPS(BstEII)’ in the present study (Table 
1). There are three alleles of MdMYB1, which are originally described 
as MYB1-1, MYB1-2, and MYB1-3, where MYB1-1 is a functional, 
dominant, and anthocyanin-accumulating allele causing red skin. The 
MYB1-1 allele is designated MYB1, and MYB1-2 and MYB1-3 alleles 
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Figure 1: The SSLP marker for MdACS1 gene. (A) Schematic representation of the MdACS1 gene. The approximate positions and directions of the primers for 
MdACS1-SSLP marker are indicated by arrowheads. The target sequence of BstEII digestion is underlined. (B) Amplification of the MdACS1-SSLP marker in 22 
apple cultivars. Estimated apple genotypes by this PCR analysis are indicated below the gel photograph: ACS1, homozygous for ACS1 allele; acs1, homozygous 
for acs1 allele; He, heterozygous. M, molecular weight marker BRG-100-02 (Watson, Tokyo, Japan). kb, kilo-bases. bp, base pairs.
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are designated myb1-1 and myb1-2 respectively, in the present study. 
DNA fragment including a single nucleotide polymorphism (SNP) at 
1659 bases upstream from the adenine residue of the start codon of 
the MdMYB1 gene is PCR amplified by dCAPS primers to generate 
the recognition sequence (5’-GGTNACC-3’) of a restriction enzyme 
BstEII, at the tail of the forward primer MdMYB1-d-F, then the DNA 
fragment is treated with BstEII. DNA fragment derived from MYB1 
allele is digested by BstEII, whereas DNA fragments derived from myb1 
alleles (myb1-1 and myb1-2) are not digested by BstEII due to the SNP 
(Figure 2A).

PCR amplification of the MdMYB1-dCAPS(BstEII) marker of 22 
apple cultivars, followed by treatment with BstEII, gave only ambiguous 
DNA band patterns, from which MYB1 and myb1 alleles are not clearly 
distinguishable (Figure 2B).

Adaptor-joined dCAPS marker for genotyping MdMYB1 gene

Poor discrimination between MYB1 and myb1 alleles will be 
partly because the sizes of DNA fragments for MYB1 and myb1 are 
not so much different from each other. As a matter of fact, sizes of 
these DNA fragments are different just by 30 bases. This situation 
cannot be helped for dCAPS markers in general, because the target 
sequences of restriction enzymes are always at the tail of one of the 
PCR primers in dCAPS markers. Then, we noticed a possible solution 
to this problem with dCAPS markers. That is, random nucleotide 
sequence is joined to the upstream of the forward primer of the 
MdMYB1-dCAPS(BstEII) marker, to enlarge the size of non-digested 
DNA fragment for myb1 alleles, without changing the size of digested 
DNA fragment for MYB1 allele.

Random DNA sequence joined to the forward primer was a 68-
base DS6 adaptor (Figure 2C). This dCAPS marker joined by the DS6 
adaptor is designated ‘MdMYB1-dCAPS(BstEII)-DS6’ (Table 1). PCR 
amplification of the MdMYB1-dCAPS(BstEII)-DS6 marker of 22 
apple cultivars, followed by treatment with BstEII, gave much clearer 
DNA band pattern than the MdMYB1-dCAPS(BstEII) marker (Figure 
2D). However, the DNA band pattern obtained by this adaptor-
joined marker could not completely discriminate alleles of MdMYB1 
genes. This could be partly because DNA fragment is not successfully 
amplified from apple genomes (e.g. cultivar ‘Prima’), and partly because 
non-specific DNA fragment with a similar size to the target sequence is 
amplified with this primer set (e.g. cultivar ‘Akane’; Figure 2D).

CAPS marker for genotyping MdMYB1 gene

To design a new DNA marker from the beginning, we checked 
DNA sequences of the MdMYB1 gene alleles, including the sequences 
around the target site of above dCAPS markers (Figure 3A). There are 
several SNP sites and one insertion/deletion site between MdMYB1 
alleles within the genomic region shown in Figure 3A. An SNP (C/A/A: 
MYB1/myb1-1/myb1-2) is the target of BstEII digestion in the dCAPS 
markers. Please note that a T to G mutation is introduced by the forward 
PCR marker of the dCAPS markers, generating the target sequence of 
BstEII (5’-GGTNACC-3’) in the PCR-amplified DNA fragment from 
MYB1 allele. Only 21 bases upstream from this SNP, another SNP 
(G/A/T) is also seen. Nucleotide sequences of MYB1 allele around this 
upstream SNP includes a 6-base palindrome (5’-CACGTG-3’), which is 
a typical target sequence of restriction enzymes. An investigation on the 
catalog of restriction enzymes actually identified a list of isoschizomers 
which digest this palindrome sequence: AcvI, BbrPI, Eco72I, PmaCI, 
PmlI, and PspCI, among which PmlI is provided by New England 
Biolabs. A CAPS (cleaved amplified polymorphic sequence) marker 

targeting this PmlI site will provide equivalent genetic information on 
MdMYB1 alleles, with the dCAPS markers targeting the BstEII site.

Forward and reverse PCR primers were designed around the 
PmlI site (Figure 3B). The binding sites of the primers were chosen so 
that SNP or insertion/deletion site between MdMYB1 alleles are not 
included, to certify even amplification of the alleles. This CAPS marker 
is designated ‘MdMYB1-CAPS(PmlI)’ (Table 1). PCR amplification of 
the MdMYB1-CAPS(PmlI) marker of 22 apple cultivars, followed by 
treatment with PmlI, gave clear DNA band pattern (Figure 3C). Alleles 
of MdMYB1 (MYB1 homozygous, myb1 homozygous, or heterozygous) 
in all 22 examined cultivars can be now determined from these DNA 
bands (Figure 3C and Table 2).

Colorimetric estimation of apple skin colors

The alleles of MdMYB1 are known to regulate apple skin color (red 
or yellow), but relationship between MdMYB1 alleles and apple skin 
colors have not been examined in Japanese apple cultivars, except for 
‘Fuji’, the most popular apple cultivar both in Japan and in the world. 
Judgement of skin colors have been also performed just by seeing 
photographs, without colorimetric measurements and calculations. 
Then we measured apple skin colors, and compared these colorimetric 
values with MdMYB1 genotypes which were determined in Figure 3C.

The set of 22 apple cultivars examined in Figure 3C includes red-skin 
cultivars such as ‘Fuji’, and yellow-skin cultivars such as ‘Shinano Gold’ 
(Figure 4A). Colorimetric values of apple skins were calculated from 
apple photographs, based on RGB color system (Table 2). Here, HRGB 
values represent hues such as ‘yellow’ and ‘red’. HRGB values (degrees) 
are evenly distributed around the color circle, for example pink (330°), 
red (0°), orange (30°), yellow (60°), and lawn (90°; yellow-green). The 
‘color’ of each apple cultivar is also described in Table 2, such as ‘red-
pink’ and ‘yellow-orange’. ‘Red-pink’ is an intermediate between red 
and pink, but closer to red. In the same manner, ‘yellow-orange’ is 
an intermediate between yellow and orange, but closer to yellow. SRGB 
values represent saturation, or deepness/vividness of the color (the SRGB 
value of the fully saturated colors is 1). LRGB values represent lightness, or 
relative brightness of the color (the highest value is 1).

Coordinates of apple skin colors on the color circle (or the ‘round 
diagram’) were also calculated from colorimetric values above, and 
apple skin colors were plotted on the color circle (Figure 4B). In Figure 
4B, different symbols are used to indicate apple cultivars with different 
MdMYB1 alleles (homozygous for MYB1, heterozygous, or homozygous 
for myb1). Hue angles of both apple cultivars harboring MYB1-
homozygous genotype and apple cultivars harboring heterozygous 
genotype are around 0° (red), ranging from −10.9° (‘Jonathan’) to 9.7° 
(‘Delicious’). The range of hue angles was relatively wide for apple 
cultivars harboring myb1-homozygous genotype, ranging from 17.2° 
(‘Indo’) to 62.6° (‘Orin’), although the range did not overwrap with 
those of MYB1-homozygous or heterozygous genotypes.

Genotyping MdAlt locus and MfVf gene of apple cultivars

Finally, two DNA markers estimating pathogen resistance were 
examined. Alleles of MdAlt locus were amplified with the same primer 
set (Table 1) as the previous studies. The dominant allele of this locus, 
Alt, causes susceptibility to Alternaria leaf blotch, and the MfVf gene 
introduced from Malus floribunda adds scab resistance, as already 
described.

The DNA marker to detect MdAlt alleles is designated ‘MdAlt-
AS’ in the present study, where ‘AS’ represents ‘allele-specific’ (Table 
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1). PCR amplification of the MdAlt-AS marker of 22 apple cultivars 
gave clear DNA band patterns, which discriminate MdAlt alleles of 
apple cultivars as homozygous for Alt allele, homozygous for alt allele, 
or heterozygous (Figure 5A). The band patterns of control cultivars 
(‘Jonathan’ and ‘Starking Delicious’) were consistent with the previous 
report [15].

The DNA marker to detect MfVf gene is designated ‘MfVf-GS’ in 
the present study, where ‘GS’ represents ‘gene-specific’ (Table 1). PCR 
amplification of the MfVf-GS marker of 22 apple cultivars detected the 
Vf gene only from the positive control cultivar ‘Prima’ (Figure 5B).

Discussion
Deduced levels of ethylene production from the DNA band 
patterns

Genotypes of the MdACS1 gene have already been reported in 
many apple cultivars [10-12]. We also determined MdACS1 genotypes 
in the present study (Figure 1B). Among the analyzed cultivars, 
MdACS1 genotypes of 13 already reported cultivars (‘Fuji’, ‘Orin’, 
‘Sansa’, ‘Tsugaru’, ‘Jonagold’, ‘Akane’, ‘Jonathan’, ‘Golden Delicious’, 
‘Indo’, ‘Starking Delicious’, ‘Ralls Janet’, ‘Delicious’, and ‘Prima’) were 
completely consistent with the previous results, demonstrating stable 
and reproducible amplification of MdACS1 alleles by MdACS1-SSLP 
marker.

MdACS1 genotypes of the other 9 cultivars will have been clarified 
for the first time in the present study. These cultivars were relatively 
recently bred in Japan. Two of these cultivars (‘Kitaro’ and ‘Santaro’) are 
heterozygous for MdACS1 alleles, then these cultivars are expected to 
have moderate levels of ethylene production. The other seven cultivars 
(‘Haruka’, ‘Aori-9’, ‘Shinano Sweet’, ‘Shinano Gold’, ‘Beniiwate’, 
‘Aikanokaori’, and ‘Senshu’) are all homozygous for acs1 allele. These 
cultivars are expected to have low levels of ethylene production, and 
have long storage lives.

Both parentage and MdACS1 genotypes of 21 apple cultivars 
examined in the present study, except for ‘Prima’, are shown in 
Figure 6. Although this is comparison between just 21 apple cultivars, 
there seems to have been preference for acs1-homozygous genotypes 
during selection of new apple cultivars. These cultivars are deduced 
to have been selected by growing hundreds of candidate plants for 
years, and estimating fruit qualities. If acs1-homozygous genotype, 
and its accompanying trait of long storage life, is always required 
for new apple cultivars, selection of this genotype by MdACS1-SSLP 
marker will greatly reduce the labor of the selection process. Another 
promising and high-throughput way to breed long storage-life apple 
is just crossing between acs1-homozygous cultivars, such as ‘Fuji’, 
‘Shinano Gold’, ‘Haruka’, and ‘Beniiwate’, to generate next-generation 
seedlings for selection.

Effective use of DS6 adaptor for improvement of a dCAPS 
marker

Amplification and discrimination of MdMYB1-dCAPS(BstEII) 
marker was not clear in our experiments (Figure 2B). We tried 
amplification of this marker repeatedly. We even performed PCR 
amplification using the same DNA polymerase with the reference 
paper, but we did never obtain clear DNA band patterns for this 
dCAPS marker. Such problem with this DNA marker was partly 
solved in MdMYB1-dCAPS (BstEII)-DS6 marker (Figure 2D). DS6-
MdMYB1-dCAPS (BstEII) marker is different from MdMYB1-dCAPS 
(BstEII) marker only in that the forward primer is attached with DS6 
adaptor.

DS6 adaptor is a partial sequence of the original DS4 adaptor 
[21]. DS4 adaptor was ligated to digest genomic DNA to perform 
genome walking [21,27]. Then attachment of DS5 adaptor was tried 
and successfully amplified apple S-RNase fragment [5]. Attachment 
of the DS5 adaptor to the forward primer slightly reduced PCR 
amplification of the target sequence, together with amplification of 

Cultivar
MdMYB1-

CAPS(PmlI) HRGB (degrees)
Color

SRGB LRGB

genotype av SD av SD av SD
Jonathan MYB1 -10.9 1.8 Red-Pink 0.86 0.10 0.27 0.03

Starking Delicious He -5.2 2.5 Red-Pink 0.53 0.09 0.16 0.05
Aori-9 He -4.5 3.4 Red-Pink 0.62 0.09 0.36 0.05
Akane MYB1 -2.7 2.3 Red-Pink 0.89 0.12 0.23 0.04
Sansa MYB1 -2.5 2.3 Red-Pink 0.60 0.10 0.37 0.06

Santaro He -1.7 2.0 Red-Pink 0.54 0.06 0.34 0.03
Beniiwate MYB1 -1.6 1.8 Red-Pink 0.38 0.07 0.30 0.03
Senshu He -1.4 2.7 Red-Pink 0.59 0.10 0.36 0.05

Aikanokaori He 3.1 8.9 Red-Orange 0.45 0.07 0.39 0.08
Jonagold He 3.7 4.6 Red-Orange 0.70 0.12 0.35 0.12

Ralls Janet MYB1 3.7 10.4 Red-Orange 0.41 0.08 0.45 0.03
Fuji He 3.9 4.9 Red-Orange 0.37 0.05 0.33 0.04

Shinano Sweet MYB1 5.2 4.8 Red-Orange 0.52 0.05 0.40 0.07
Tsugaru He 8.1 6.0 Red-Orange 0.42 0.09 0.45 0.10
Delicious He 9.7 15.7 Red-Orange 0.67 0.25 0.41 0.19

Indo myb1 17.2 12.4 Orange-Red 0.42 0.04 0.47 0.09
Kitaro myb1 30.5 16.7 Orange-Yellow 0.45 0.06 0.58 0.14

Shinano Gold myb1 45.8 3.0 Yellow-Orange 0.67 0.05 0.61 0.02
Haruka myb1 48.6 0.7 Yellow-Orange 0.63 0.04 0.59 0.01

Golden Delicious myb1 52.5 3.9 Yellow-Orange 0.40 0.04 0.79 0.04
Orin myb1 62.6 4.7 Yellow-Lawn 0.53 0.12 0.55 0.06

Note: av: average; SD: standard deviation; He: heterozygous.
Table 2: Apple skin colors.
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non-specific smear DNA band. On the contrary, attachment of the 
DS6 adaptor to the forward primer looks to strengthen amplification 
of the target sequence, when DNA bands in Figure 2B and 2D are 
compared. We have tested just these two examples at the moment, 
but the effects of DS4-related adaptors on PCR amplifications can be 
both positive and negative, depending on the target sequence and/
or primer sequence. Attachment of DS4-related adaptors is at least 
advantageous for clear discrimination of DNA band sizes after PCR 
amplification, digestion with restriction enzymes, and electrophoresis 
of dCAPS markers.

Consistency of MdMYB1 genotypes determined by DNA 
markers

The MdMYB1 genotypes of 22 apple cultivars were partly determined 
by MdMYB1-dCAPS(BstEII)-DS6 marker, as described above. The 
DNA band patterns were still somewhat ambiguous for part of the 
cultivars, and no amplification was obtained for ‘Prima’ (Figure 2D). An 
even better DNA band pattern was obtained in MdMYB1-CAPS(PmlI) 
marker (Figure 3C). Considering this result, there are some possible 
advantages of CAPS markers over dCAPS markers, even if dCAPS 
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Figure 5: The DNA markers for MdAlt locus and MfVf gene. (A) Amplification of the MdAlt-AS marker in 22 apple cultivars. Estimated apple genotypes by this PCR 
analysis are indicated below the gel photograph: Alt, homozygous for Alt allele; alt, homozygous for alt allele; He, heterozygous. (B) Amplification of the MfVf-GS 
marker in 22 apple cultivars. Apple cultivar harboring MfVf gene, as estimated by this PCP analysis, is indicated by ‘Vf’ below the gel photograph. M, molecular 
weight marker BRG-100-02.

markers have been improved by attachment of DS4-related adaptors. 
That is, there is wider range of the choice of the target sequence of primers 
in CAPS markers. In the cause of dCAPS primers, one of the primers 
must be designed at the proximity of the polymorphic nucleotide. This 
condition limits design of preferable sequence of primers for successful 

PCR amplification. The forward primer of MdMYB1-dCAPS(BstEII) 
marker also included SNP sites within its target sequence. This may 
cause inferior and biased amplification of different alleles. Primers for 
CAPS markers can be more freely designed, so DNA amplification will 
be better in CAPS markers in general.
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Figure 6: MdACS1 genotypes and parentage of apple cultivars. MdACS1 genotypes of 21 cultivars except for ‘Prima’ are indicated with different colors. Parentage 
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A clear inconsistency between the results obtained with MdMYB1-
dCAPS(BstEII)-DS6 marker and MdMYB1-CAPS(PmlI) marker 
is the genotypes of three cultivars (‘Fuji’, ‘Starking Delicious’, and 
‘Delicious’). Their genotypes were MYB1-homozygous with MdMYB1-
dCAPS(BstEII)-DS6 marker, but heterozygous with MdMYB1-
CAPS(PmlI) marker. The latter is correct, when considering parentage 
of ‘Fuji’ and ‘Starking Delicious’: these cultivars are parents of both 
red- and yellow-skin cultivars, respectively. Thus, ‘Fuji’ is the parent of 
both red-skin cultivars (‘Senshu’, ‘Shinano Sweet’, ‘Aikanokaori’, ‘Aori-
21’, ‘Akiakane’, ‘Akiyo’, etc.) and yellow/green-skin cultivars (‘Kitaro’, 
‘Aori-15’, ‘Akita Gold’, ‘Koko’, ‘Seirin’, and ‘Aoi’). Similarly, ‘Starking 
Delicious’ is the parent of red-skin cultivars (‘Priscilla’, ‘Komitsu’, 
‘Santaro’, ‘Hirodai-1’, ‘Jupiter’, and ‘Hazen’) and a yellow-skin cultivar 
‘Haruka’. ‘Fuji’ and ‘Starking Delicious’ can be the parents of both red-
skin and yellow-skin cultivars, only because these are heterozygous 
for MdMYB1 gene alleles. If so, the dCAPS markers will have failed 
to amplify myb1 alleles due to their inferiority in even amplification 
of different alleles. Examination of MdMYB1 genotypes of many more 
apple cultivars by using MdMYB1-CAPS(PmlI) marker will facilitate 
control of fruit skin colors in breeding programs.

Relationship between MdMYB1 genotypes and apple skin 
colors

As shown in Figure 4B and Table 2, MdMYB1 genotypes are able 
to roughly discriminate apple skin colors: MYB1-homozygous and 
heterozygous cultivars produce red-pink to red-orange-skin apples, 
and myb1-homozygous cultivars produce orange-red to yellow-lawn-
skin apples. There was no discrimination of the hues between MYB1-

homozygous cultivars and heterozygous cultivars, but the two red-skin 
cultivars with highest saturation values (‘Akane’ and ‘Jonathan’) were 
both MYB1-homozygous. It is easily imaginable that homozygous 
MYB1 alleles activate production of more anthocyanin in apple skin 
than heterozygous alleles (semi-dominancy), although all MYB1-
homozygous apple fruits did not necessarily show such high saturation 
values. Possession of homozygous MYB1 alleles may be prerequisite 
for high saturations values of red apple skins, together with some 
unknown genetic factor(s).

Both hues and saturations were variable within apple cultivars 
possessing homozygous myb1 alleles. For example, skin colors of cultivars 
‘Indo’ and ‘Kitaro’ were orange, rather than yellow. This seems to be 
because low levels of red anthocyanin pigment are generated in the skin, 
even with the recessive myb1 alleles. Such spontaneous production of 
anthocyanin in yellow cultivars would be widely observed, whose genetic 
or physiological mechanisms are not understood. The cultivars ‘Shinano 
Gold’ and ‘Haruka’ enjoyed high saturation values. These deep (vivid) 
yellow colors will attract consumers and beneficial for sales. The cultivar 
‘Orin’ is a bit greenish, which attaches this cultivar the unique identity as 
‘green apple’. Green coloration may be caused by enhanced chlorophyll 
synthesis or inhibition of chlorophyll degradation. The mechanism for 
green coloration in green apple cultivars should be also clarified.

Re-estimation of apple resistance to pathogens by DNA 
markers

Amplification of MdAlt-AS marker in 22 apple cultivars clarified 
their genotypes at the Alt locus (Figure 5A). Genotypes of the control 
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cultivars of this DNA marker, ‘Jonathan’ and ‘Starking Delicious’, were 
consistent with the previous report [14,15]. On the other hand, MdAlt 
genotypes were not necessarily consistent with the reported Alternaria 
resistance of the other cultivars [28]. For example, a sensitive cultivar to 
Alternaria, ‘Orin’, has homozygous alt alleles, which must be resistant 
to Alternaria. On the contrary, resistant cultivars including ‘Haruka’, 
‘Shinano Gold’, and ‘Golden Delicious’ are heterozygous at the MdAlt 
locus. The genotypes of ‘Sansa’ and ‘Akane’ were homozygous for alt 
allele, which are consistent with their resistance to Alternaria. Thus, 
genotypes of the MdAlt locus are not correlated with resistance of apple 
cultivars to Alternaria leaf blotch. This DNA marker will be effective 
on the progeny plants generated by the cross between ‘Jonathan’ 
and ‘Starking Delicious’, but extensive chromosomal recombination 
seems to have taken place between MdAlt locus and the sensitivity 
gene to Alternaria alternata in the other cultivars. Alternatively, other 
sensitivity/resistance gene may regulate Alternaria resistance in the 
other cultivars.

We have also investigated existence of MfVf gene in 22 cultivars, 
with the expectation for identifying new scab-resistant cultivars. PCR 
amplification revealed that none of the cultivars excepting the positive 
control cultivar ‘Prima’ has the MfVf gene (Figure 5B). This result shows 
that introduction of the MfVf gene into major apple cultivars should be 
promoted by using the DNA marker MfVf-GS, to make scab-resistant 
cultivars widely cultivated and to reduce the use of agrichemicals.

Conclusion
In the present study, we re-estimated and partly improved 

four different DNA markers for breeding and characterization of 
agricultural traits of apple cultivars. The results in two markers for 
pathogen resistance did not fully conform to our expectations. MdAlt 
gene marker was effective only on specific cultivars, and we could 
not detect new cultivar possessing MfVf gene. Further improvement 
of DNA markers or further breeding of resistant cultivars will be 
necessary to improve apple tolerance to pathogens. Breeding of new 
apple cultivars by using DNA markers can be also accelerated by 
combination with early-flowering technology of apple seedlings: Our 
research group has already developed such method by using the vector 
of Apple latent spherical virus [29-34]. The results with the MdACS1 
gene marker were quite reproducible, and we also clarified MdACS1 
genotypes of new apple cultivars such as ‘Haruka’ and ‘Shinano Gold’. 
We also noticed clear preference for acs1-homozygous genotypes in 
newly bred apple cultivars, supporting usefulness of the MdACS1 
gene marker for apple breeding. The MdMYB1 gene marker was 
improved by attachment of DS6 adaptor to the forward primer. The 
marker was even more improved by designing new CAPS marker, 
with which consistent and clear DNA band patterns were obtained. 
MdMYB1 genotypes can roughly determine apple skin colors (reddish 
or yellowish), but further analyses are necessary to predict precise 
colors of apple skins.
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