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Abstract

Agriculture is an indispensable part of every person’s life, ensuring that nutritious and inexpensive food is readily
available. Agriculture continues to be confronted with epidemics, having devastating effects on economies and the
plant sources essential for human and animal life. Plants and their pathogens have developed evolutionary
adaptations, each shaping the other’s defence and invasive strategies. Many different plants produce toxic ribosome
inactivating proteins that aid in their defence mechanisms against pathogenic invaders. Viruses must adapt to the
host translational machinery, several having evolved to include viral genome-linked proteins that carry numerous
viral functions. Here, we review how a potyviral protein from turnip mosaic virus linked to its genome is able to inhibit
pokeweed plant defence protein, and perhaps potentially conferring viral resistance to the toxin.

Introduction
For eons, plants and their pathogens have been developing and

shaping survival strategies. Plant defence mechanisms include
preformed and induced defences, which prevent pathogens from
entering the plant cell, limit availability and/or restrict nutrients
necessary for the growth and replication of the pathogen [1-3].
Essential pre-invasive defences include: physical barriers that prevent
access of the pathogen, leading to the inability of most microbes to
infiltrate outer epidermal wall [4]. The plant actin cytoskeleton
network is another important impediment encountered upon
pathogen ingress [5]. Chemical barriers, including phytoanticipins,
have many roles in plant development and growth; many have evolved
to affect pathogenesis. Some examples include saponin glucosinalates,
sterols, and glycoalkaloids [6,7].

Ribosome inactivating proteins (RIPs)
Many members of the kingdom of Planta manufacture protein

phytotoxins that include various lectins, pore-forming toxins,
antimicrobial proteins, protease inhibitors, arcelins, and ribosome
inactivating proteins (RIPs) [8]. RIPs are believed to play a vital role in
plants defence mechanisms against foreign pathogenic invaders. The
toxicity of several RIPs has been explored since antiquity for their
homicidal capabilities, with such well-known examples as ricin (from
R. communis) and abrin toxin (from A. precatorius) [9]. RIPs are RNA
N-glycosidases [10] that cleave adenines selectively from the conserved
sarcin/ricin loop (SRL) of prokaryotic and eukaryotic large rRNAs,
inhibiting protein synthesis [11,12]. American pokeweed plant
(Phytolacca americana) and common soapwort (S. officinalis) produce
pokeweed antiviral protein (PAP) [13] and saporin [14], respectively;
both exert potent antifungal and antiviral properties. Commonly, RIPs
being potent cellular toxins are exported out of the cell once they are
synthesized, and localized within the cell wall matrix [15-17]. It is
hypothesized that RIPs gain access into the cytoplasm as the pathogen
enters the cell, thus promoting their antiviral activity by impairing host
ribosomes [18,19].

RIPs are categorized into two major classes based on their physical
properties: holo-RIPs and chimero-RIPs [20]. Holo-RIPs consist
exclusively of a single RNA N-glycosidase catalytic domain. Most holo-
RIPs consist of a single, intact polypeptide of approximately 30 kDa
and are often referred to as type 1 RIPs [13,21,22]. Examples of holo-
RIPs include PAP, saporin, and barley (H. vulgare) translational
inhibitor. The majority of RIPs characterized thus far fall into this
category [21]. Chimero-RIPs are constructed of one or more
protomers consisting of catalytic N-glycosidase domain (A chain)
linked through a disulfide bond to a structurally and functionally
different domain with carbohydrate binding properties (B chain). Most
chimero-RIPs are known as type 2 RIPs, like ricin and abrin, and are
acutely toxic heterodimeric proteins, each of approximately 30 kDa
[23,24]. The type 2 RIPs have been quite valuable for studies of
endocytosis and intracellular transport in mammalian cells [16,25,26].
Some chimero-RIPs are rather classified into type 3 class RIPs, which
are much less common. Type 3 RIPs are synthesized as inert precursors
(proRIPs) that undergo proteolytic modifications, allowing for
acquisition of full enzymatic activity [20]. Presently, type 3 RIPs have
been identified from maize (Z. mays) and barley [27-30].

American pokeweed plant produces several PAP isoforms [22].
PAP-I (or simply PAP), PAP-II and PAP-III are leaf isoforms that
appear in spring, early summer and late summer respectively
[13,22,31-35], whereas PAP-S1 and PAP-S2 are isoforms isolated from
seeds that exhibit the highest activity in vitro of all the isoforms
[36-38]. A further isoform, α-PAP, is similar in sequence to PAP-S1,
and essentially expressed in all organs of the plant [38,39]; it shares
74% identity with PAP. PAP-R has been isolated from the roots of
pokeweed plant [40,41] and PAP-H is from hairy roots [40].
Interesting to note that RIP-free callus and suspension cultures of P.
americana have been acquired [40,42]. All PAP isoforms present
prominent antiviral characteristics with high anti-ribosomal activity
[31], and the molecular antiviral mechanism of PAP has been
deciphered [43]. Examination of PAP’s viral selectivity is of pivotal
importance, for it lowers infectivity of many plant and animal viruses,
such as HIV-1 [44], human T-cell leukemia virus-1 (HTLV-1) [45],
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herpes simplex virus (HSV) [46], brome mosaic virus (BMV) [47],
tobacco mosaic virus (TMV) [42], influenza [48], hepatitis B virus
(HBV) [49], and poliovirus [50]. Understanding of PAP antiviral
mechanism will contribute to the development of practical solutions
for the control of plant, animal and human diseases, and is important
for design of novel efficient antiviral agents through genetic
modifications, control of signaling mechanisms, or other therapeutic
agents.

Positive strand RNA viruses: the genus potyvirus
The majority of positive strand plant RNA viruses differ from the

typical 5ʹ-cap/3ʹ-poly(A) tail organization found in host mRNAs. The
cap and poly(A) tail increase the stability of mRNA, and recruit
translation initiation factors, supporting a format of closed loop
mRNA translation [51]. The assorted collection of cis-acting motifs,
found in numerous viral mRNAs, compensate for the lack of a cap,
poly(A) tail, or both. Elaborate higher-order structural non-coding
elements in the 5ʹ and 3ʹ untranslated regions (UTRs), or tRNA-like
structures (TLS) of viral transcripts, aid in the recruitment of
translation factors, leading to the preferential translation of viral genes
[52-55]. Zeenko and Gallie [54] showed the 5ʹ-UTR of tobacco etch
virus (TEV) includes an internal ribosome entry site (IRES). This
allows ribosomes to dock, leading to the initiation of viral RNA
translation.

The genus Potyvirus includes over two hundred members and is
classified as one of the most extensive plant virus family – Potyviridae
[56]. The genome of Potyviruses is comprised of approximately 10 kb
positive-sense single stranded RNA molecule, covalently connected to
a viral protein (VPg) at the 5ʹ end via a tyrosine residue [57], and
poly(A) tail at the 3ʹ end [58-60]. The potyviral RNA contains a single
open reading frame, translated into a large polyprotein, proteolytically
cleaved into mature proteins by specific virus-encoded proteases [61].
This viral protein is known to serve as an analog of the 5ʹ-m7G cap of
the mRNAs, and has been shown to play an important role in mRNA
translation since it interacts with the cap-binding proteins (e.g., eIF4E,
eIFiso4E, eIF4F, eIFiso4F) [62,63]. VPg is vital for the infectivity of the
virus [64], cell-to-cell movement [65-68], and has been linked to an
array of other viral functions. Khan et al. [69] have revealed that
potyviral VPg stimulates the in vitro translation of uncapped IRES-
containing RNA, while inhibiting capped RNA translation in wheat
germ extract. These effects have shown to be dependent on VPg-
eIF4E(4F) or VPg-eIFiso4E(iso4F) interactions. These studies
demonstrate that VPg competes for the cap-binding site in these
translation initiation factors. Binding studies [63] show that VPg and
cap bind competitively to eIFiso4E.

Interactions between pokeweed antiviral protein and
potyviral protein

Recent studies examined the interactions between PAP (cap-binding
protein) and VPg from TuMV [70], and revealed that VPg competes
with TEV RNA for PAP binding [71]. These PAP-VPg interactions are
enthalpically-driven and entropically favorable [70], exhibiting a
similarity to those of eIFiso4E- and eIFiso4F-VPg binding [63].
Moreover, PAP demonstrated greater affinity for this viral protein, as
compared to m7GTP-cap analog [35] and eIFiso4F [63]. PAP, having
greater binding affinity for VPg than that for the cap structure, would
certainly create an advantage for the cell if VPg were to target PAP
toward viral RNA for depurination. Interestingly, we have determined
that VPg displays strong inhibitory effect on PAP’s activity, decreasing

the amounts of purines released from different RNAs (SRL oligo RNA,
TEV RNA and luciferase mRNA) [70], implying that VPg may
contribute to a viral strategy of overcoming one of the potential host
cell defence mechanisms – the depurinating activity of PAP. This is
further supported by Baldwin et al. [35], and solidifies the accepted
function of PAP as a RIP.

Conclusion
Generally, viral RNA is translated less efficiently than capped host

RNA, and has to compete for available cell resources to sustain
translation. Formation of VPg-eIFiso4F complex would lead to a non-
productive complex, reducing host cell protein synthesis. Conversely,
VPg-eIF4F complex would also lead to the inhibition of capped mRNA
translation, but in this case the complex would bind more tightly to
IRES-containing mRNA leading to the preferential production of viral
protein [63]. These complementary functions offer a significant
competitive advantage for viral RNA translation. Plant-pathogen
interactions continuously drive rapid evolutionary changes on both
sides of the interactions. Plants produce toxic proteins that help them
in battle viruses; meanwhile, viruses develop even more elaborate
strategies to overcome these plant defence mechanisms. Here we see an
example of how viral genome-linked protein may confer resistance to
plant defence mechanisms. Further studies of VPg inhibitory effects on
the activity of other RIPs may provide researchers with new avenues to
design novel and natural protein inhibitors of RIP cytotoxicity [22,70].
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