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Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver tumor and its incidence is increasing. Since
this type of cancer is largely resistant to systemic therapies, there is urgent need to identify cellular and molecular
pathways involved in the pathogenesis of HCC. Recent evidence implicates inflammation-induced, immune cell-
derived amphiregulin (AREG) about interactions between immune cells of the innate and adaptive immune system
by AREG in HCC development. We postulate an immunological network with pro-tumorigenic activity comprising
AREG, type 2 innate lymphoid cells and regulatory T cells that might constitute a promising target for novel cancer
immunotherapies.
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Introduction
Hepatocellular carcinoma (HCC) is the most common primary

malignancy of the liver and is among the most lethal and prevalent
cancers in humans [1,2]. The majority of HCC cases develops in the
setting of hepatic cirrhosis as a result of chronic liver inflammation
predominantly caused by viral infection, alcohol, and nonalcoholic
steatohepatitis (NASH), the progressive form of nonalcoholic fatty liver
disease [3]. Chronic liver injury induces repeated cycles of hepatic
inflammation, necrosis, and compensatory regeneration causing
fibrogenesis, a reversible, organ integrity-maintaining response
characterized by excessive wound-healing and extracellular matrix
deposition. Progression of fibrosis towards non-reversible cirrhosis is a
result of hepatocyte necrosis, replacement of functional liver
parenchyma by scar tissue and regenerative nodules, as well as
hepatocyte dysplasia accompanied by loss of liver function and a high
risk to develop HCC. So far, there are very limited therapeutic options
and no effective targeted therapy exists for patients with advanced
HCC. The multikinase inhibitor Sorafenib is the only systemically
active drug approved for the treatment of advanced HCC but it
improves survival of HCC patients by only few months [4]. Therefore,
identifying cellular and molecular effectors involved in the
pathogenesis of HCC is essential for developing novel
immunotherapies to treat HCC and hence to improve patient
prognosis.

The AREG/EGFR Axis in HCC
The epidermal growth factor amphiregulin (AREG) mediates

mitogenic signals to various cell types and its expression was found to
be up-regulated in human and rat cirrhotic livers [5]. AREG conveys
anti-apoptotic signals in hepatocarcinoma cells thereby enhancing
their survival and chemoresistance [6]. In patients with HCC, elevated
AREG levels were associated with poor prognosis [7] and there are
multiple studies that have correlated AREG expression with
tumorigenesis and tumor progression in breast, lung, ovarian, and
gastric cancer [8], suggesting AREG as a potential target for cancer
therapy. Indeed, administration of an AREG neutralizing antibody
inhibited growth of lung [9] and ovarian tumors in mice and strongly
enhanced chemotherapy efficacy [10]. AREG binds to the epidermal
growth factor receptor (EGFR), which belongs to a family of tyrosine
kinases involved in the development and growth of various types of
cancer including HCC [11,12]. Upon ligand binding, EGFR induces
signal transduction cascades crucial for processes in tumorigenesis
such as cell proliferation and angiogenesis as well as resistance to
apoptosis and invasive behavior. Similar to AREG itself, EGFR is
frequently overexpressed in a variety of tumors and serves as a negative
prognostic factor for HCC [13,14]. Thus, several studies have
addressed inhibition of EGFR activity as therapeutic strategy in HCC
treatment and are reviewed elsewhere [15]. However, targeting the
AREG/EGFR axis in cancer therapy bear the risk of severe side effects
as AREG is involved in many physiological processes such as
mammary gland development and lung morphogenesis and is essential
for tissue repair and integrity following damage as demonstrated in
liver regeneration [5,16]. Thus, identifying tumor-associated,
inflammation-induced modulators of the AREG/EGFR axis may help
to establish more selective cancer immunotherapies.

IL-33, ILC2s and AREG
There is increasing body of evidence that the AREG/EGFR axis

plays an important role in immunological networks that are critical for
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mediating immunity and tolerance. During inflammation, AREG is
expressed by different activated immune cells such as Th2 cells,
macrophages, dendritic cells, mast cells, and basophils, but also
regulatory T cells (Tregs) and type 2 innate lymphoid cells (ILC2) [17].
Numerous mediators stimulate AREG expression in immune cells
including prostaglandin E2, transforming growth factor-β, and the
cytokine IL-33. Cytokines released during carcinogenesis are thought
to be essential mediators of interactions between immune cells in the
inflammatory tumor environment. In this context, IL-33 has been
implicated as a modulator of tumorigenesis in various cancers [18]. In
HCC patients, there are currently conflicting data about the correlation
of IL-33 with tumor progression and clinical outcome. One research
group correlated elevated IL-33 levels with tumor growth and
metastasis [19] while another study found no altered IL-33 expression
in HCC [20]. However, IL-33 has been proven as pathogenic factor in
patients with liver cirrhosis [21], chronic hepatitis C virus (HCV) [22]
and chronic hepatitis B virus (HBV) infection [23], all of them with a
high risk to develop HCC. This indicates that IL-33 facilitates
inflammatory responses in the context of chronic liver inflammation
thereby driving development of HCC. Indeed, IL-33 aggravated liver
inflammation in murine immune-mediated hepatitis [24] and was
further identified as a key mediator of fibrogenesis in mouse models of
hepatic fibrosis [21]. Both studies described a recently unknown
immunological network comprising IL-33 and ILC2s in liver disease.
ILC2s are tissue-resident cells [25] that become activated by IL-33
released from necrotic hepatocytes and start to express the cytokines
IL-5 and IL-13. ILC2-derived IL-5 worsened disease pathogenesis by
activation and recruitment of pro-inflammatory eosinophils [24].
Moreover, hepatic ILC2s were found to exert their pro-fibrotic
function by expression of IL-13, which in turn activates hepatic stellate
cells (HSCs), the most fibrogenic cell population in the liver, to
transdifferentiate to extracellular matrix (ECM)-producing
myofibroblasts [21].

So far, there is no direct link between hepatic ILC2s and HCC but
one might speculate that hyperactive ILC2s concur to progression of
liver fibrosis towards cirrhosis with the possibility to develop HCC. In
general, ILC2s have been considered as a population with predominant
pro-tumorigenic activity and the IL-33/ILC2/IL-13 circuit was shown
to be critically involved in promoting cholangiocyte hyperplasia in
murine cholangiocarcinoma [26] and in activating myeloid-derived
suppressor cells, which inhibit anti-cancer immunity in breast cancer
[27]. Interestingly, IL-33-activated ILC2s also express AREG early after
tissue damage. In murine models of colitis [28] and infection-induced
lung injury [29,30], AREG-expressing ILC2s were associated with
restoration of epithelial integrity and tissue function. However,
although early induction of AREG is important for the resolution of
acute inflammation, the situation is quite different in the context of
chronic inflammation where ILC2-derived AREG amplified excessive
wound healing in skin lesions of atopic dermatitis patients [31] and
triggered injury-induced regenerative responses driving development
of extrahepatic cholangiocarcinoma [26].

Although the activity of ILC2s is mainly regulated by cytokines such
as IL-33, there are other mechanisms involved in the modulation of
ILC2 function. Activated ILC2s increase expression of the inhibitory
killer-cell lectin like receptor G1 (KLRG1), a ligand of the cell adhesion
molecule E-cadherin. KLRG1/E-cadherin interaction limits ILC2
activity and down-regulation of E-cadherin expression was identified
as reason for chronically active ILC2s in patients with atopic dermatitis
[31]. In HCC, down-regulation of E-cadherin has been associated with
tumor progression [32] and liver-specific deletion of E-cadherin was

shown to promote development of HCC [33]. Thus, loss of E-cadherin-
mediated inhibitory signals during carcinogenesis might cause
hyperactivation of hepatic ILC2s, which exert their pro-tumorigenic
function by continuous expression of AREG and/or IL-13.

AREG, Macrophages and HSCs
Macrophages can adopt a pro-tumorigenic phenotype in the tumor

microenvironment thereby suppressing anti-tumor immune responses
and promoting tumor cell invasion and persistent growth [34]. Recent
data indicate that AREG participates in both recruitment of tumor-
associated macrophages (TAMs) by inducing macrophage-attracting
chemokines [35] and suppressive function of TAMs in carcinogenesis
[36]. Liver-resident macrophages, namely Kupffer cells, were shown to
up-regulate AREG expression during murine hepatic fibrosis that in
turn triggers ECM production by HSCs [37]. Moreover, in HBV-
infected livers, Kupffer cells also expressed AREG and promoted viral
persistence by promoting Treg-mediated inhibition of anti-viral CD8+

T-cell responses [38], indicating that Kupffer cell-derived AREG
supports chronic liver inflammation and thus, might increase the risk
to develop HCC.

HSCs are another liver-resident cell population that is activated
during chronic inflammation. The capability of activated HSCs to
express AREG was shown in murine models of liver fibrosis [37] and
NASH, as well as in NASH patients [39]. AREG induced proliferation,
survival and ECM production of HSCs [39] thereby stimulating their
pro-fibrogenic activity that may result in development of cirrhosis with
progression to HCC. Unlike Kupffer cells that do not express ST2 [40],
HSCs express the IL-33 receptor and become activated by IL-33 as
shown in murine bile-duct ligation-induced hepatic fibrosis [41],
pointing to another mechanism by which IL-33 drives chronic
inflammation and tissue remodeling in the liver.

AREG and Tregs
Tregs play an important role in tumorigenesis and constitute a

tumor escape mechanism, for example by inhibiting tumor-infiltrating
CD8+ T cells with anti-tumor activity as shown in various types of
cancer including HCC [42]. One recently described mechanism by
which hepatocarcinoma cells improve immunosuppressive
intratumoral Treg function is via release of AREG [43]. During
inflammation, activated Tregs up-regulate expression of EGFR and
AREG/EGFR signaling was found to be crucial for effective Treg
function in lung and gastric cancer [44]. In HBV infection, EGFR+

Tregs responded to increased AREG expression by potent inhibition of
anti-viral CD8+ T cells resulting in immune tolerance and persistent
HBV infection [45]. As chronic HBV infection is the major cause for
HCC, this indicates that infection-induced AREG might concur to
HCC development by activation of intrahepatic Tregs and
maintenance of Treg function in the chronically inflamed liver.

The function of Tregs is critically linked with sustained expression
of the transcription factor forkhead box protein P3 (Foxp3) and
AREG/EGFR signaling was found to stabilize Foxp3 expression in
Tregs thereby preserving Treg function during inflammation [44]. In
addition to the direct regulation of Tregs by AREG, it was shown that a
functionally distinct Treg subset expresses AREG upon activation [46],
suggesting an autocrine feedback loop to further maintain Treg
function independently of exogenous AREG. Tregs are also poised to
respond to IL-33 through expansion of a Treg subset expressing the
IL-33 receptor ST2 as well as AREG.
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Figure 1: The ILC2/Treg/AREG axis in HCC development. In the chronically inflamed liver, IL-33 is released by necrotic hepatocytes and leads
to activation of tissue-resident type 2 innate lymphoid cells (ILC2s) and hepatic stellate cells (HSCs) and recruitment of regulatory T cells
(Tregs). All cell populations start to express amphiregulin (AREG), which promotes regenerative processes following liver tissue damage.
Activated Tregs increase expression of the epidermal growth factor receptor (EGFR) and AREG/EGFR signaling further sustains Treg function
in the inflammatory environment. Chronic inflammation-induced constitutive activation of AREG-expressing ILC2s and Tregs might trigger
excessive wound healing and particularly Tregs might contribute to the development of hepatocellular carcinoma (HCC) by favoring an
immune tolerant milieu and by inhibiting anti-tumor activity of cytotoxic CD8+ T cells (CTLs). KC: Kupffer Cells, iMΦ: Inflammatory
Macrophages, TAM: Tumor-Associated Macrophages.

IL-33/ST2 signaling also ensures Treg function and adaption to the
inflammatory environment as demonstrated in intestinal inflammation
[47]. Interestingly, IL-33-activated ST2+ Tregs infiltrate the inflamed
liver during immune-mediated hepatitis [24,48] and murine
cytomegalovirus (MCMV)-induced liver damage [49]. IL-33-/- mice
showed reduced infiltration of ST2+ Tregs in the liver and developed
more severe immune-mediated hepatitis [48]. Similar results were
shown in MCMV-infected ST2-/- mice where ST2 deficiency
aggravated liver pathology due to impaired hepatic accumulation of
Tregs [49], indicating immunosuppressive function of ST2+ Tregs in
liver disease pathogenesis. In the setting of chronic inflammation, it is
conceivable that inflammation-triggered IL-33 and AREG expression
leads to constitutively active Tregs with high suppressive function
providing the basis of an immunotolerant milieu that allows and
supports the development of HCC.

Conclusion
Accumulating evidence indicates that dysregulation of the dialog

between the immune system and the AREG/EGFR signaling pathway
contributes to pathology in the context of chronic liver disease and
HCC. We here postulate a so far not described immunological network
that might concur to HCC development and therefore might be a
target for novel immunotherapeutic strategies in cancer treatment. In
this network, IL-33 is an important link between liver inflammation-
driven tissue damage and local immune response since it activates

tissue-resident ILC2s and HSCs and recruits Tregs, all of them
expressing the pro-tumorigenic growth factor AREG and other
immune mediators that favor carcinogenesis. AREG in conjunction
with IL-33 might further ensure effective intratumoral Treg function in
the inflammatory tumor environment and might induce recruitment of
TAMs resulting in immunosuppression of anti-tumor immunity
(Figure 1). However, despite the present data, a clear link between the
ILC2/Treg/AREG circuit and cancer has not been identified in humans
until now. Thus, further research is needed to characterize the
contribution of this immunological network to carcinogenesis and to
define its impact in the development of HCC.
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