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Introduction
Several organic compounds showing anti-malarial activities such as 

aminoquinolines [1], 3,4,5-hydroxybenzoic acid [2], 2-hydroxybenzoic 
acid derivatives [3] and hydroxynaphthoic acid [4] have clear and 
distinct acid base properties as well as hydrogen bond abilities. Due to 
acid-base properties associated with quinolines and carboxylic acids, 
they are suitable to form salts and co-crystals [5,6]. Formation of a salt 
between two active pharmaceutical ingredients leaves scope to bring 
together two potent molecules easily to make a stable formulation 
which may act altogether in different manners. Recently activity of 
several antimalarial drug molecules have been reviewed and showed 
how such combinations in the form of co-crystal formed through weak 
interactions can alter antimalarial drug activities [7]. On other hand 

protein–myosin a complex has important role in regulating depletion 
of red blood cells caused by the Plasmodium during malaria [8]. Thus, 
it may be expected that peptide mimics of such protein complex may 
help to develop in drugs that can disrupt the invasion motor [8]. Hence 
quinoline molecules with peptide bond may be of interest to test for drug 
activity towards malaria, as some of them may have additional effect 
due to the peptide unit attached to the quinoline unit. In this context 
a quinoline amide derivative was shown to adopt hair-pin structure 
[9] which is a common feature found in many small oligo-peptide 
compounds which easily adopt hair-pin structure [10-12]. Based on 
these points, we have studied anti-malarial activities of a series of 
salts, co-crystal of aminoquinolines with hydroxyaromatic carboxylic 
acids and also functionalized quinoline derivatives to distinguish their 
differences in antimalarial activities. The list of compounds, salts that 
are studied is listed in Chart 1. 

Abstract
Antimalarial activities of salts of aminoquinolines with hydroxyaromatic acids were found to be higher than the 

parent components. The IC50 values of the salts were in the range of 5.9-20.3 μM against the chloroquine-resistant 
strain. Antimalarial actions on the parasites were found to be independent of iron chelation, inhibition of haemozoin 
formation, as well as independent of the anti-oxidant activity of the salts. A covalently linked amide containing 
compound N-(quinolin-8-yl)-2-(quinolin-8-yloxy)acetamide was identified to have potency similar to the other salts 
studied in the article.

Materials and Method
Synthesis and characterization of the salts and co-crystal

Salts I-III and co-crystal IV were prepared by crystallization of 
solution of 1:1 mole ratio of the corresponding aminoquinoline and 
respective hydroxyaromatic acid. In each case, aminoquinoline and 
hydroxyaromatic acid was dissolved in methanol and kept undisturbed 
for crystallization. Spectroscopic and analytical details of the salts and 
co-crystal are as follows: Salt I: Elemental anal Calcd. For C16H16N2O4, 
C, 63.99; H, 5.37; N, 9.33; and found C, 63.97; H, 5.41, N 9.46. 1H-NMR 
(DMSO-d6): 8.79 (d, J=4.0 Hz, 1H), 8.59 (d, J=8.4 Hz, 1H), 7.79 (d, 
J=7.6 Hz, 1H), 7.49-7.37 (m, 3H), 7.41 (q, J=4.0 Hz, 1H), 7.19(d, J=8.4 
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 Chart 1: Aminoquinoline salts, co-crystal and derivatives.
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Hz, 1H), 6.93 (d, J=8.0 Hz, 2H), 6.73(d, J=8.0 Hz, 2H), 4.18 (s, 2H). IR 
(KBr, cm-1): 3444 (s), 3321(m), 3082 (w), 1627 (s), 1589 (s), 1566 (m), 
1482 (m), 1454 (m), 1432 (w), 1384 (m), 1361(m), 1330 (m), 1305 (w), 
1252 (w), 1138 (w), 1028 (w), 859 (w), 787 (m), 702 (w), 664 (w). Salt II: 
Elemental anal Calcd. For C16H16N2O6, C, 57.83, H, 4.85; N, 8.43; found 
C, 57.79, H, 4.88; N, 8.45. 1H-NMR (DMSO-d6): 9.23 (s, 1H), 8.76 (d, 
J=4.0 Hz, 1H), 8.53 (d, J=8.4 Hz, 1H), 7.43 (t, J=8.0 Hz, 2H), 7.36 (q, 
J=4.0 Hz, 1H), 7.19 (d, J=8.0 Hz, 1H), 6.94 (s, 3H), 6.72 (d, J=7.6 Hz, 
2H), 5.9 (s, 2H). IR (KBr, cm-1): 3458 (s), 3348 (s), 3241 (m), 3076 (w), 
2671 (w), 1644 (w), 1599 (w), 1526 (m), 1471 (w), 1360 (s), 1307 (m), 
1228 (m), 1179 (w), 1102 (w), 1035 (m), 886 (w), 786 (m), 746 (w), 703 
(w), 575 (w). Salt III: Elemental anal Calcd. for C20H16N2O3, C, 72.28; 
H, 4.85; N, 8.43; found C, 72.33; H, 4.86; N,8.69. 1HNMR (DMSO-d6, 
400MHz): 8.72 (d, J=8Hz, 1H), 8.30 (d, J=8Hz, 1H), 8.17 (d, J=8.4 Hz, 
1H), 7.90 (d, J=8 Hz, 1H), 7.76 (d, J=8.8 Hz, 1H), 7.67 (t, J=1.2, 1H), 
7.59 (t, J=8.4 Hz, 1H), 7.46-7.39 (m, 1H), 7.39 (d, J=8.4 Hz, 1H), 7.31 
(t, J=7.6 Hz, 1H), 7.07 (d, J=8Hz, 1H), 6.89 (d, J=7.6 Hz, 1 H). IR (KBr, 
cm-1): 3424 (m), 3210 (m), 2923 (w), 1631 (m), 1582 (s), 1504 (m), 1467 
(m), 1405 (s), 1377 (m), 1328 (m), 1309 (m), 1213 (w), 1017 (w), 863 
(w), 815 (m), 795 (m), 771 (m), 693 (m). Cocrystal IV: Elemental anal 
Calcd. for C16H14N2O5; C, 61.14; H, 4.49; N, 8.91; found C, 61.20; H, 
4.47; N, 9.10. 1H-NMR (DMSO-d6): 9.23 (s, 1H),8.87 (s, 1H), 8.71 (dd, 
J=1.6 Hz, J=2.4 Hz,1H), 8.17 (dd, J=1.6 Hz, J=6.8 Hz, 1H), 7.46 (q, J=4.0 
Hz 1H), 7.30 (t, J=8.0 Hz, 1H), 7.06 (dd, J=0. 8 Hz, 1H), 6.91 (s, 2H), 
6.86 (dd, J=1.2 Hz, 1H), 5.90 (s, 1H), 4.09 (s, 3H). IR (KBr, cm-1): 3516 
(m), 3400 (m), 3309 (m), 1686 (s), 1620 (m), 1519 (w), 1425 (m), 1374 
(w), 1324 (s), 1272 (w), 1188 (m), 1032 (m), 900 (w), 857 (w), 825 (w), 
787 (w), 766 (w), 718 (w). 

Derivatives of aminoquinolines

Compounds V-VI was prepared by reported procedure [13]. 
Compound VII was prepared by published procedure [5]. Synthesis 
of ethyl-4-(2-oxo-2-(quinolin-8-ylamino)ethoxy)benzoate (VIII): To a 
solution of 8-aminoquinoline (0.72 g, 5 mmol) in dry dichloromethane 
(20 ml), triethylamine (0.71 ml, 5 mmol) was added. Solution was stirred 
at 0ºC for 15 min, followed by which bromoacetyl bromide (0.52 ml, 6 
mmol) was added. Reaction mixture was then stirred overnight and 
filtered. Filtrate was washed with water (10 ml), dried over anhydrous 
sodium sulphate and then the solvent was removed under reduced 
pressure. Product was obtained as a brown solid that was purified by 
recrystallisation from dichloromethane. Amide obtained from above 
reaction (0.53 g, 2 mmol), ethyl-4-hydroxybenzoate (1.66 g, 10 mmol) 
and potassium carbonate (1.07 g, 7 mmol) were added to dry acetone 
(20 ml) under nitrogen and the reaction mixture was stirred at 60ºC for 
9 h. After completion of reaction solvent was removed under reduced 
pressure to obtain a pale yellow solid which was recrystallized from 
methanol. FT-IR (KBr, cm-1): 3430 (m), 3323 (m) 2977 (w), 1701(s), 
1691(s), 1607 (s), 1544 (s), 1507 (m), 1485 (m), 1427 (w), 1388 (w), 
1367 (w), 1330 (w), 1318 (w), 1301 (w), 1279 (m), 1248(s), 1167 (m), 
1107 (m), 1055 (m), 841(w), 823 (w), 791 (m), 764 (w), 755 (w), 686 
(w), 638 (w), 567 (w), 500 (w). 1H-NMR (CDCl3, 400 MHz): 10.88 (s, 
1H), 8.82 (q, J=1.6 Hz, 1H), 8.78 (t, J=4.4 Hz, 1H), 8.14 (dd, J=1.6 Hz, 
1H), 8.05 (dd, J=2.0 Hz, 2H), 7.52 (d, J=4.0 Hz, 2H), 7.44 (q, J=4.0 Hz, 
1H), 7.11 (d, J=8.8 Hz, 2H), 4.76 (s, 2H), 4.35 (q, J=7.2 Hz, 2H), 1.37(t, 
J=7.2 Hz, 3H). ESI mass: 351.0266. Calcd. Mass for [M+1]: C20H19N2O4, 
351.1345.

Methyl-3-(2-oxo-2-(quinolin-8-ylamino)ethoxy)benzoate (IX): 
Similar procedure was followed for the synthesis of IX as for VIII 
except methyl-3-hydroxybenzoate (0.45 g, 3 mmol) was used instead of 
ethyl-4-hydroxybenzoate. FT-IR (KBr, cm-1): 3410 (m), 3332 (m) 2990 

(w), 2926 (w), 1708 (s), 1683 (s), 1585 (w), 1541 (s), 1485 (m), 1458 
(m), 1435 (m), 1377 (w), 1372 (w), 1313 (w), 1296 (s), 1283 (m), 1222 
(w), 1187 (w), 1103 (m), 1075 (m), 988 (w), 889 (w), 827 (w), 793 (w), 
758 (m), 733 (m), 678 (w), 600 (w), 576 (w), 550 (w). 1H-NMR (CDCl3, 
400MHz): 10.91(s, 1H), 8.84 (q, J=1.2 Hz, 1H), 8.79 (t, J=4.4 Hz, 1H), 
8.14 (dd, J=1.6 Hz, 1H), 7.74 (dd, J =1.2 Hz, 2H), 7.52 (d, J=4.4 Hz, 2H), 
7.45 (m, 1H), 7.32 (dd, J=2.4 Hz, 2H), 4.76 (s, 2H), 1.21(s, 3H). ESI 
mass: 337.0094.Calcd. Mass for [M+1]: C19H17N2O4, 337.1188.

In vitro antimalarial assay

Antimalarial activity of the compounds, against the chloroquine-
resistant (FCR-3) and chloroquine-sensitive (3D7) strains of P. 
falciparum, were determined using [3H]-hypoxanthine incorporation 
assay [14,15]. The parasites were continuously maintained in vitro 
in supplemented RPMI-1640 culture media at a 5% haematocrit. 
The culture was incubated at 37°C in 5% CO2, 3% O2, 92% N2 and 
synchronized [16] at the ring stage with 5% D-sorbitol beforethe final 
parasitaemia and haematocrit were adjusted to 0.5 and 1%, respectively. 
This suspension was incubated with the test compounds and controls 
(final concentration of dimethylsulphoxide <1% did not have an 
inhibitory effect on the parasite) for 24 h at 37°C. Thereafter, 25 μL 
[3H]-hypoxanthine (Amersham; 1.85 μCi/well) was added to each well. 
The microtiter plate was further incubated for 24 h; following which 
the parasitic DNA was harvested onto glass fibre filter mats. The dry 
mats were then transferred to sample bags containing scintillation fluid 
(Wallac®) and the β-radioactivity counted on the Wallac® 1205 Betaplate 
scintillation counter. Counts per minute (cpm) were generated and 
the percentage parasite growth calculated taking the uninfected red 
blood cells into account. The concentration required to inhibit parasite 
growth by 50% (IC50 value) was determined from log sigmoid dose 
response curves using the GraphPad Prism® 5.0 software. Chloroquine 
and quinine were used as the positive controls. Each experiment was 
repeated, at least, in triplicate.

Inhibition of β-haematin formation

To ascertain if the mechanism of action was similar to that of 
chloroquine, the compounds were incubated with 1 mg/mL haemin 
in 0.5 M acetate buffer with a final pH of 4.7 [17]. The plates were then 
incubated for 24 h before the unreacted haemin was removed and the 
β-haematin crystals were quantified by dissolving them in 2 M sodium 
hydroxide. The absorbance at 405 nm was used to calculate the IC50 
value at which β-haematin formation was inhibited using GraphPad 
Prism® 5.0 software. Chloroquine was used as positive control and each 
experiment was repeated three times.

Iron chelation assay

The ferrozine-iron chelation assay was used to determine the 
ferrous ion chelating properties of the derivatives [18]. The derivatives 
were incubated at room temperature in the dark with 0.48 mM 
ferrous chloride dissolved in 5% (w/v) ammonium acetate for 5 min 
before 1.2 mM ferrozine was added and further incubated for 30 min. 
Thereafter the absorbance was measured at 540 nm in an ELISA plate 
reader (Labsystems Multiskan RC) with Ascent Software (version 2.4). 
Percentage inhibition of ferrozine-Fe2+ complex was calculated with 
ethylenediamine tetra-acetic acid used as a positive control.

Free radical scavenging assay

The stable free radical-scavenging activity was determined 
by the 1,1-diphenyl-2-picrylhydrazyl (DPPH•) assay wherein the 
bleaching rate of a stable free radical, DPPH• was monitored at 540 



Citation: Baruah JB, Khakhlary P, Holland S, Zyl VRL (2016) Potent Anti-Malaria Salts, Co-Crystals and Derivatives of Aminoquinolines with 
Hydroxyaromatic Acids. J Pharma Reports 1: 111. 

Page 3 of 5

Volume 1 • Issue 2 • 1000111
J Pharma Reports
ISSN: JPR, an open access journal 

nm in the presence and absence of the test compounds and positive 
control, Trolox . The percentage free radical scavenging activity was 
determined from at least three independent experiments.

 Results and Discussion
Aminoquinolines generally interact with aromatic carboxylic acids 

to form hydrogen bonded co-crystals as illustrated by taking example 
of 6-aminoquinoline with a carboxylic acid shown in Figure 1. In 
general salt between an acidic and a basic organic compound is formed 
when ∆pKa.

[∆pKa = pKa (base) - pKa (acid)] is greater than 2. When ∆pKa value 
is less than zero, such pair of compounds exclusively forms co-crystal 
[19,20]. In our case, the differences in pKa (∆pKa) of corresponding 
aminoquinoline counterpart with hydroxyaromatic carboxylic 
acid counterpart in I-IV are 2.49, 0.96, 1.29 and -0.51 respectively. 
Accordingly, 5-aminoquinoline with 2-hydroxybenzoic acid formed a 
salt I; 5-aminoquinoline with 3,4,5-trihydroxybenzoic acid formed salt 
II; 8-aminoquinoline with 1-hydroxy-2-naphthoic acid formed salt III 
whereas a co-crystal of 8-aminoquinoline with 3,4,5-trihydroxybenzoic 
acid, IV was formed from reactions of respective hydroxyaromatic acid 
with corresponding aminoquinoline. Thus, salts I-III and co-crystal IV 
were confirmed by determining the respective structure by single crystal 
X-ray diffraction and further confirmed by powder X-ray diffractions 
(PXRD) technique. To differentiate between the cocrystal and salts, IR 
spectra of the OH region (2000 cm-1-4000 cm-1) and carbonyl stretching 
region (1400cm-1-1800cm-1) of salt II and co-crystal IV are compared 
with the corresponding IR spectra of gallic acid. It is found that the 
OH stretching region of gallic acid and co-crystal IV are broad, have 
resemblances (Figure 2a), whereas IR spectra of the salt II shows sharp 
stretching frequencies at 3458 cm-1, 3348 cm-1 and 33241 cm-1; which 
differentiated the structural differences due to proton transfer to form 
salt in the case of II. On the other hand, the carbonyl stretching of gallic 
acid appears at 1703 cm-1, which appears at 1644 cm-1 and 1686 cm-1 
respectively (Figure 2b) in the salt II and in the co-crystal IV. We have 
confirmed that no overlapping peaks from the quinoline counterpart in 
the latter region are present. 

Quinoline derivatives V-VI were prepared by reacting 
corresponding acid chloride with aminoquinoline. The compound 
VII was prepared by a reported procedure [5], whereas compounds 
VIII-IX were prepared by reaction sequences illustrated in Scheme 1, 
by reacting aminoquinoline with bromoacetyl bromide followed by 
reacting the product of this reaction with phenolic compounds. These 
compounds were characterized from their 1H-NMR, IR and mass 
spectra. Carbonyl frequencies for amide of compound VIII appeared 
at 1701 cm-1 and 1691 cm-1 and for the compound IX these signals were 
observed at 1708 and 1683 cm-1.

Anti-malaria and pharmacological studies

Salts I-III and co-crystal IV showed anti-malaria activity with 
IC50 values in the 6-20 μM range for the chloroquine-resistant strain, 
but were four fold less active against the chloroquine-sensitive strain 
(resistance index: 2.0-5.3) (Table 1). However, the activities were less 
than the quinine standard for both strains. The IC50 values displayed 
by 8-aminoquinoline and 5-aminoquinoline [1] were found to be 
greater than 10 µM. On the other hand, structurally related compounds 
such as 6-(8′-pentadecenyl)-2-hydroxybenzoic acid [3] were reported 
to have IC50 value 10.1 µM; for 3,5-dihydroxy-2-naphthoic acid [4] 
25 µM and for gallic acid [2] 71.5 μM. These indicate that the IC50 
values for the salts and co-crystals were much less than the individual 
component. These results point out the combined effects of the two 
active components influences their effective antimalarial activities and 
changes the efficiency of the individual component. Derivatisation 
of aminoquinoline did not enhance antimalarial activity, but instead 
displayed minimal antimalarial activity at 50 µM when tested 
against the chloroquine sensitive strain (Table 1). Aminoquinoline 
compounds are known to chelate metal ions such as iron, thus 
associated themselves with potential free radical scavenging activity 
through complex formation [16]. But such antioxidant properties 
were not retained when the salts, co-crystal and derivatives that were 
tested. None among these adducts were able to inhibit β-haematin or 
haemozoin formation which was found to be the case with 2-amino-8-
hydroxyquinoline [18-21]. The result is suggestive of the fact that salt of 
gallic acid (IV) has the lowest IC50 value with respect to the other tested 
compounds listed in Table 1. Use of poly-hydroxyaromatic carboxylic 
acid namely gallic acid in this salt as one component, enhanced water 
solubility and maintained a neutral condition by neutralizing quinoline 
counterpart. In order to gain support towards the importance of use of 
a salt over a covalent compound, we studied the antimalarial activity 
of compound V-IX (Table 1). IC50 value of II<IV, in these cases the 
gallic acid is a common component. Thus the quinoline counterpart 
affected the antimalarial activity. The salts and co-crystals given in 
Table 1, which were tested for antimalarial activity retained good 
safety profiles [1]. Among individual quinoline derivatives the bis-
quinoline derivative VII was a found to be a good chelator for iron, 
and it displayed antimalarial activity comparable to the salts. The 
other compounds V, VI, VIII, IX were poor in showing antimalarial 
activity. It is interesting to note that particular compound VII shows 
least binding affinity to amino acid such as glycine and methionine but 
have selectivity in binding hydroxy carboxylic acids such as ascorbic 
acid and lactic acid [5]. From the structural differences among these 
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Figure 1: Salt or co-crystal of 8-aminoquinoline with a carboxylic acid.

OH

R2
R1

+ N
HN O

K2CO3

Dry Acetone

N
HN O

O

Br
R2

R1
When R1 = R2 = H (VIII)

R1 = H (IX)R2 = COOCH3

COOC2H5

Scheme 1: Synthesis of compounds VIII and IX.



Citation: Baruah JB, Khakhlary P, Holland S, Zyl VRL (2016) Potent Anti-Malaria Salts, Co-Crystals and Derivatives of Aminoquinolines with 
Hydroxyaromatic Acids. J Pharma Reports 1: 111. 

Page 4 of 5

Volume 1 • Issue 2 • 1000111
J Pharma Reports
ISSN: JPR, an open access journal 

Compound Name and structure

Antimalarial activity
IC50 ± S.D. (µM)

(% Parasite growth at 50 µM)

Resistance 
index

% β-Haematin 
formation inhibition 

at 50 M

% Iron chelation 
at 50 µM

% Free radical 
scavenging activity 

at 50 µM
3D7 strain FCR-3 strain

5-Aminoquinolinium-2-
hydroxybenzene-1-carboxylate (I) 34.6 ± 3.2 9.3 ± 2.1 3.7 0.1 ± 0.01 0.1 ± 0.01 21.4 ± 0.6

5-Aminoquinolinium gallate 
monohydrate (II) 25.1 ± 1.3 5.9 ± 1.1 4.3 10.8 ± 1.9 0.1 ± 0.01 18.5 ± 3.7

8-Aminoquinolium 
1-hydroxynaphthalene-2-carboxylate 

(III)
104.1 ± 16.5 20.3 ± 3.8 5.1 0.1 ± 0.01 0.1 ± 0.01 6.1 ± 0.9

Co-crystal of 8-aminoquinoline and 
gallic acid (IV) 75.4 ± 5.1 14.2 ± 3.1 5.3 0.1 ± 0.01 0.1 ± 0.01 5.2 ± 0.3

N-(quinolin-8-yl)benzamide (V) >50
(80.9 ± 3.4%) n.d. - 0.1 ± 0.01 0.1 ± 0.01 0.1 ± 0.01

4-nitro-N-(quinolin-8-yl)benzamide 
(VI)

>50
(95.4  ± 2.4%) n.d. - 0.1 ± 0.01 18.6 ± 4.6 0.1 ± 0.01

N-(Quinolin-8-yl)-2-(quinolin-8-yloxy) 
acetamide (VII) 25.2 ± 3.6 12.5 ± 2.1 2.0 0.1 ± 0.01 22.4 ± 5.0 2.0 ± 0.2

Ethyl 4-(2-oxo-2-(quinolin-8-ylamino)
ethoxy)benzoate (VIII)

>50
(76.5 ± 6.3%) n.d. - 0.1 ± 0.01 13.6 ± 1.8 0.1 ± 0.01

Methyl 3-(2-oxo-2-(quinolin-8-
ylamino)ethoxy)benzoate (IX)

>50
(76.7 ± 4.5%) n.d. - 0.1 ± 0.01 21.4 ± 4.3 0.1 ± 0.01

Quinine 0.09 ± 0.01 0.17 ± 0.03 0.5 46.6 ± 2.4 n.d. n.d.

Chloroquine 0.0065 ± 0.001 0.12 ± 0.01 0.1 92.0 ± 1.72 n.d. n.d.
n.d=not done.

Table 1: Antimalarial activities of the compounds.

  
Figure 2: FT-IR spectra of salts/ co-crystal (a) in range 2000 cm-1 to 4000 cm-1 (i) Salt II, (ii) co-crystal IV and (iii) Gallic acid; and (b) in range 1400 cm-1 to 1800 cm-1 
of (i) Salt II, (ii) Co-crystal IV and (iii) Gallic acid. 

compounds the compound VII has a hydroxyquinoline part which 
probably is responsible for iron-chelation and thereby causing an 
enhancement in the antimalarial activities. Thus it may be suggested 
that the there is a clear difference between the the mechanistic course 
of action of antimalarial activities by the adducts and the covalently 
linked compounds.

Conclusion
We have shown that salts and cocrystal of quinoline with 

hydroxyaromatic carboxylic acids enhance antimalarial activities 
over parent compounds. Enhanced potency could be attributed to the 
increase in hydrophilicity of these salts and co-crystals. Antimalarial 

potency of covalently linked amides derivatives of aminoquinolines 
was not observed but incorporation of a hydroxyquinoline part to 
such a frame has induced potency as in the case of compound VII. It 
was also observed that the antimalarial action of salt II was directed 
against the intra-erthyrocytic parasite is of comparable safety profile 
to chloroquine and its mechanism of action is independent of iron 
chelation and inhibition on haemozoin formation. 
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