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Introduction
Agricultural development relies largely on the production and 

consumption of fertilizers; however, addition of fertilizers does not 
ensure the enhanced crop production. Excessive input of fertilizers and 
poor application methods can cause fertilizer movement into the ground 
and surface waters [1]. In order to feed the increasing population and 
maintain a sustainable development, the amount of nitrogen (N) to be 
used should be double that of the amount currently in use, if the N use 
efficacy of crops is not going to be improved [2]. The wrong notion of 
achieving increased growth and yield by applying excessive N-fertilizers 
alone, with inadequate supply of other nutrients, especially potassium, 
has led to imbalanced fertilization in the developing countries [3-6].

Nitrate is the main form of N to be taken up and assimilated by 
annual crops [7]. In many parts of the world, nitrate concentrations 
in ground water exceed the maximum limit of 50 mg l-1, equivalent to 
11.3 mg l–1 as NO3

– -N as recommended by the WHO [8]. Intensive 
agricultural production, domestic and industrial wastes, sewage 
and atmospheric nitrogen pollution are the main sources of nitrate 
contamination in water [9]. Inefficient use of available N leads to 
accumulation of nitrate in plants that causes toxicity to animals, which 
feed on them. When the input of nitrogen exceeds the demand, plants 
are no longer able to absorb it, and N then builds up in the soil, mostly 
as nitrates, and leaches into the groundwater [10,11]. Nitrate leaching, 
due to excessive N fertilization, leads to eutrophication of freshwater 
bodies [12,13] and the marine ecosystems [14,15]. Nitrate (NO3

-) 
accumulation in plant tissue is usually observed during drought, long 
periods of cloudy or cool weather, or following a heavy fertilization 
with manures and nitrogen-containing fertilizers and due to herbicide 
applications [16]. Anything that slows down the rate of plant growth 
can lead to increased nitrate levels in well-fertilized plants. Nitrate per 
se is not very toxic to animals. Inside the body, nitrates are converted to 

nitrites and then to nitrosamines that result in gastric cancer and other 
diseases in the consumers [17]. Methemoglobinemia is another adverse 
effect of nitrate poisoning [18,19].

Increase in N at the cost of decrease in K has major repercussion 
on the utilization of N itself. The depletion of K in agricultural 
ecosystems has, in fact, prevented increases in crop yields [4,5,20]. 
K is an essential mineral element for plant growth and development 
[21] and plays a key role at various points in N metabolism. Zhang et 
al. [3] reported that rapid nitrate uptake depends upon adequate K in 
the soil solution. The significance of potassium in affecting the uptake, 
translocation and reduction of NO3

− is well documented by Ruiz and 
Romero [22]. Shrotriya [23] reported that balanced application of N, 
P and K might cause up to 122% increase in sorghum yield in India. 
Therefore, improving the crop performance and wisely handling the 
nutrient management are prerequisites for optimizing crop production 
and minimizing environmental risks due to N losses. 

Sorghum is capable to accumulate toxic levels of nitrate even at 
moderate N fertility levels [24]. It is the fifth most important cereal crop 
grown in the world and is also valued for its fodder and stover [25]. 
According to Mahanta and Pachauri [26] in India, forage sorghum is 
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Abstract
Forages tend to accumulate elevated levels of nitrate when fields are heavily fertilized with nitrogenous fertilizers 

or are environmentally stressed due to drought, cold, frost, hail, etc. Elevated levels of nitrate have detrimental effects 
on animal health and are regarded as a causative factor for several mass cattle-death incidents. It was observed 
that nitrate concentration in Sorghum bicolor L. obtained from local fields of Uttar Pradesh (Ghaziabad and Meerut) 
and Haryana (Gurgaon and Faridabad) exceeded the safe limit (2500 mg of nitrate kg-1 of fresh wt.) in a significant 
number of samples (31.7%) studied. Given this, the investigation was conducted in earthen pots to determine nitrate 
contents in 16 genotypes of S. bicolor L. A significant difference in nitrate content was observed among genotypes, 
many of which accumulated nitrate to toxic levels. POP-52 (V9), a high nitrate reductase (HNR) genotype and 
EB-15 (V7), a low nitrate reductase (LNR) genotype of sorghum were selected to study the effect of potassium (K) 
application on nitrate accumulation in specially designed PVC-drums. The minimum nitrate concentration (V9= 816.6 
mg/kg fresh wt. and V7= 2691.8 mg/kg fresh wt.), coupled with maximum NR activity (V9= 9.916 µmol NO2

–1 h–1 g–1 
fresh wt. and V7= 5.018 µmol NO2

–1 h–1 g–1 fresh wt.) were observed in 60 day old K60 treated plants. K application 
reduced the nitrate concentration by 35.24% in V9 and by 25.54% in V7 genotypes by increasing nitrate reductase 
(NR) activity by 86.23 % in V9 and lesser increase of 32.07% in V7 genotype of sorghum at 30 days. A two- fold 
(approx.) decrease in nitrate concentration was observed at K60 in both genotypes from 30 to 60-days-after-sowing. 
K application also reduced considerably the nitrate in the leachate indicating that K is effective in mitigating nitrate 
pollution in plants and soil. The data emphasizes the importance of K in increasing the nitrogen use efficiency and 
of balanced fertilization in combating the nitrate-related implications on human beings, animals and environment.
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grown in 2.6 m ha mainly in the states of western UP, Haryana, Punjab, 
Rajasthan and Delhi, which fulfill over two third of the fodder demand 
during Kharif (summer) season.

In order to minimize the risk of nitrate poisoning in ruminants 
and protect the soil and underground water from potential nitrate 
pollution without compromising with the yield, a balanced fertilization 
with application of K and maintaining a proper harvesting time may 
be beneficial [27]. The present study was undertaken on sorghum 
to investigate the role of K in increasing the utilization of applied 
nitrogen to increase plant growth and to prevent the environmental 
contamination. 

Materials and Methods
Growth conditions and materials

Sorghum leaf samples (15 in number) were randomly collected 

from agricultural fields located at different districts in the states of 
Uttar Pradesh (Ghaziabad and Meerut) and Haryana (Gurgaon and 
Faridabad) just prior to an thesis. Leaf nitrate concentration was 
estimated in the fresh samples so as to evaluate their fitness for intake 
by livestock with reference to safe limits propounded by Evans et al. 
[28]; according to which, 0-2500 mg/kg of NO3

-1 is the safe nitrate limit 
to feed all the classes of livestock, while 2500-5000 mg/kg of NO3

-1 is 
the caution limit to feed the pregnant and young animals. Moreover, 
5000-15,000 mg/kg of NO3

-1 is considered as the dangerous toxic limit, 
while over 15,000 mg/kg of NO3

-1 is extremely toxic and should not be 
fed to animals under any circumstances. Based on the results obtained 
further experiment was conducted in the Herbal Garden of Jamia 
Hamdard, New Delhi, during the kharif (summer) season of 2010-
2011. A pot-culture experiment was carried out on sixteen genotypes 
of sorghum (Sorghum bicolor L.) under naturally illuminated green 
house (photosynthetically activity radiation [PAR] >960 µmol m2 
s-1, day/night temperature 25/20 ± 4°C and relative humidity of 70 ± 
5%) in the Department of Botany, Hamdard University, New Delhi, 
India (28°38´ N, 77°11´ E and 228 m altitude). Authentic seeds were 
procured from Sorghum Research Institute, Hyderabad (India) (Table 
1). The experiment was conducted in 10 inches diameter earthen pots 
according to randomized block design using three replicates in order to 
screen the genotypes of sorghum on the basis of NR activity and nitrate 
concentration in the leaves. Prior to sowing, the pots were lined with 
polythene bags provided with holes thereafter, the pots were filled with 
8 kg soil taken from the Herbal Garden of Jamia Hamdard, New Delhi. 
The soil belonged to the Lukhi soil series of Gurgaon. It was sandy 
loam (83.6% sand, 6.8% silt and 9.6% clay) with a neutral pH 7.1. The 
available nitrogen (30 mg kg-1), phosphorus (4 mg kg-1) and potassium 
(40 mg kg-1) contents of the soil were low. The soil was air-dried, passed 
through 4 mm mesh for removing plant litter and mixed thoroughly. 
On the basis of soil test recommendations, a uniform basal dressing 
of fertilizers comprising nitrogen (120 mg kg-1), phosphorus (30 mg 
kg-1), potassium (80 mg kg-1) and zinc (25 mg kg-1) was applied to the 
soil before sowing. Sources of N, P, K and Zn were urea, single super 
phosphate, muriate of potash (KCl) and zinc sulphate, respectively. 
Fresh leaf samples were analyzed simultaneously for NR activity and 
nitrate concentration at 30 days after sowing (DAS). Two sorghum 
genotypes, viz. POP-52 and EB-15, were identified as high and low 
NRA genotypes, respectively, which were employed for further studies 
with various levels of potassium. 

The high and low NRA genotypes were sown in 25 cm×120 cm 
(diameter × height) PVC drums with a total capacity of 60 liters. 
The experiment was conducted using the same soil as that of the pot 
experiment obtained from the Herbal Garden of Jamia Hamdard, New 
Delhi (India). The experimental drums had drainage system at three 
different places (30, 60 and 100-cm height of the soil column). The 
lower opening (drainage system) of the drum was filled with glass wool, 
followed by that at 10 cm height filled with washed fine gravels. Plastic 
funnels (10 cm diameter) with PVC tubes (5 mm diameter) were fitted 
with each drain to collect the leachate. The funnels were filled with 
washed fine sand after putting a piece of glass wool in the lower opening 
of the funnel. The Herbal Garden soil was filled in the drums above 
10 cm gravel layer to reach the height of 100 cm after the saturation 
process for the filled soil. Before planting, the soil was irrigated to 20% 
water content. Ten seeds per pot were sown. The pots were weeded 
and scarified weekly. The experiment was laid out with randomized 
block design using three replications. The schematic diagram of the 
experimental set up is given (Figure 1).

Sl. no. Code no. Accession no.
1 V1 CSV 15
2 V2 CSV 21F
3 V3 CSV23
4 V4 E-68-1
5 V5 E73
6 V6 E77
7 V7 EB-15
8 V8 HC-308
9 V9 POP-52
10 V10 SPSSV 5
11 V11 SPSSV 6
12 V12 SPSSV 7
13 V13 SPSSV 20
14 V14 SPSS 422
15 V15 SPV-462
16 V16 SPV-913

Table 1: Accession numbers and codes used in the study for Sorghum bicolor L. 
genotypes obtained from Sorghum Research Institute, Hyderabad.

Crop

10 cm vacant column
for irrigation

PVC funnel
at 30 cm depth

PVC funnel
at 60 cm depth

10 cm graduated
fine gravel

Leachate collection
  tube at 100 cm depth

Leachate collection
 glass bottles

Stand

Figure 1: Schematic sketch of the column used showing the collection of 
leachate at various depths of the soil.
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PVC drum experiment treatments 

In addition to the uniform basal dressing of N, P and Zn, four levels 
of potassium, viz.0, 30, 60 and 120 mg K2O kg-1 soil (K0, K30, K60 and 
K120, respectively), as muriate of potash, were applied prior to sowing.

Sampling in PVC pot experiment

The youngest fully expanded leaves from the same position were 
sampled in triplicates from each treatment pot at two different stages, 
viz. 30 and 60 DAS. The leaf-tissue, lacking midrib, was used to 
determine NRA and nitrate concentration.

Determination of leaf nitrate concentration

Nitrate was extracted using the method of Grover et al. [29]. 
Ground dried leaf material (100 mg) was taken to which, 50 mg 
activated charcoal and 50 ml distilled water were added and boiled 
on a hot plate for 10 minutes. This was filtered through Whatman No. 
42 filter paper, allowed to cool to room temperature and the volume 
was made to 100ml. Downe’s improved reduction hydrazine method 
[30] was adopted for the estimation of nitrate. An aliquot of 0.6 ml 
of the sample was drawn, mixed with 0.1 ml each of catalyst (0.0354 
g CuSO4.5H2O + 0.9 g ZnSO4.7H2O in one liter of water), sodium 
hydroxide (1N) and hydrazine sulphate (1.71 g l-1) solution in a 
sequence. The reduction time was 7.5 min at a temperature of 33°C. 
Subsequent to reduction of nitrate to nitrite, it was diazotized by the 
addition of 0.32 ml of sulphanilamide and 0.1 ml of naphthyl ethylene 
diamine dihydrochloride and the pink colored solution was read in a 
spectrophotometer at 540 nm. The nitrate concentration was expressed 
as mg g-1 fresh weight of leaves.

Determination of in- vivo NRA

Random sampling of the youngest fully extended fresh leaves 

was carried out to estimate the activity of NR (E.C. 1.6.6.1) The NRA 
in the leaves was determined by the intact tissue assay method of 
Jaworski [31]. Chopped leaf pieces (200 mg) were incubated for 2 h at 
30oC in a 5.5 mL reaction mixture, which contained 2.5 mL of 0.1 M 
phosphate buffer, 0.5 mL of 0.2 M potassium nitrate, and 2.5 mL of 5% 
isopropanol. The nitrite formed was subsequently determined by using 
the spectrophotometer recording the OD at 540 nm after azo-coupling 
with sulphanilamide and naphthylene diamine dihydrochloride. The 
enzyme activity was expressed as µmol NO2 h

-1g-1 FW.

Determination of biomass
Fresh weight (g/plant) in triplicates was measured using a digital 

balance and the mean values obtained. This was followed by oven-
drying the plants at 65°C ± 2°C for 48 hours to constant weight in order 
to record the corresponding plant dry weight (g/plant).

Determination of biomass nitrogen utilization efficiency
Whole plant (stem + leaf) nitrogen concentration (WPNC, %) was 

determined by using carbon- hydrogen- nitrogen-sulphur (CHNS) 
analyzer (Elementar, Analytic, Jena, Germany). Total nitrogen content 
(g plant-1) was calculated by multiplying whole plant N concentration 
with plant biomass (g plant-1) and dividing it by100 [i.e. (WPNC × plant 
biomass)/100]. Biomass nitrogen utilization efficiency was calculated 
using the formula: NutE = Biomass (dry matter) (g plant-1)/Total N 
content (g plant-1).

Collection and analysis of leachate 
Each time, the leachate was collected after irrigating the plants; 

it was used for the analysis of content of N, using PC-based UV-vis 
double beam spectrophotometer (Systronics 2202) at 210 nm [32, 33].

Statistical analysis 
Data were analyzed statistically and given as mean ± Standard 

Error (SE). Analysis of variance was performed by SPSS (16.0 Inc., 
USA). Duncan multiple range tests (DMRT) were performed to test the 
significance of the differences between treatment means at a threshold 
P value of 0.05. Simple linear correlation and regression analysis was 
carried out using MS Excel 2007.

Results 
Leaf nitrate levels in the farmers’ fields

The range and mean values of nitrate concentrations in the leaf 
samples of Sorghum bicolor L., collected from the farmers’ fields located 
in the districts of Uttar Pradesh (Ghaziabad and Meerut) and Haryana 
(Gurgaon and Faridabad), are summarized in Table 2. On fresh weight 
basis, the nitrate content in the leaf-samples ranged from 3500 to 7102 
mg kg-1 (Ghaziabad), 1549 to 4981 mg kg-1 (Meerut), 528 to 2822 mg 
kg-1 (Gurgaon), and from 794 to 2919 mg kg-1 (Faridabad). The highest 
nitrate concentration was recorded in Ghaziabad samples (7102 mg kg-

1). This is far beyond the safe limit of nitrate concentration (2500 mg 
kg-1) reported in the forage crops [28]. Nitrate concentration in Meerut 
samples (4981 mg kg-1) was also relatively high, almost reaching the 
caution limit of 5000 mg kg-1. On the other hand, the samples from 
Gurgaon and Faridabad were lower in nitrate concentrations, though 
all of them were not safe for consumption as some of them exceeded the 
safe limit. Thus, many of the collected forage samples were not suitable 
for consumption by the animals as they could result in toxicity. 

Pot experiment results 

Leaf nitrate concentrations in 30 days old plants of sorghum 

Location Number of samples NO3(mg kg-1 fresh wt of 
samples) Mean (range)

Ghaziabad 15 5316 (3500-7102)
Meerut 15 2769 (1549-4981)

Gurgaon 15 1621 (528-2822)
Faridabad 15 1771 (794-2912)

Table 2: Nitrate concentration in fodder samples collected from different districts of 
Uttar Pradesh and Haryana.
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Values represent mean ± SE. Bars showing different  letters (a-l) indicate  
significant differences according to Duncan’s test at p<0.05.
Figure 2: Genotypic variation in nitrate concentration in leaves of sorghum 
genotypes in 30-days-old plants.
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genotypes: Of the sixteen sorghum genotypes grown in earthen pots, 
leaf nitrate concentrations varied significantly in 30 days old plants 
(Figure 2). The minimum and maximum nitrate concentration was 
2308.67 and 7121.3 mg kg-1 fresh wt. noted in V9 (POP-52) and V7 
(EB-15) genotypes, respectively. Leaf nitrate concentration of three 
sorghum genotypes V2 (CSV 21F), V9 (POP-52) and V13 (SPSSV 20) 
were under safe limit (below 2500 mg of nitrate kg-1 fresh wt.), while 
seven of the genotypes V1 (CSV 15), V3 (CSV 23), V4 (E-68-1), V8 
(HC-308), V11 (SPSS V6), V14 (SPSS 422) and V16 (SPV-913) were 
not fit for feeding the pregnant and young animals as they reached 
the caution limit of 2500 - 5000 mg of nitrate kg-1 fresh wt. Out of the 
genotypes under investigation, six genotypes V5 (E-73), V6 (E-77), V7 
(EB-15), V10 (SPSS V5), V12 (SPSS V7) and V15 (SPV-462) exceeded 
the safe limit and were categorized under the dangerous toxic level 
(5000 - 15,000 mg of nitrate kg-1 fresh wt.).

Leaf NR activity in 30 days old plants of sorghum genotypes: 
Genotypic variation was evident in the leaf NR activity in 30 days old 
plants (Figure 3). V9 genotype had the highest level of NR activity (5.99 
µmol NO2

–1 h–1 g–1 fresh wt.) with minimum nitrate concentration, 

while the minimum level of NR activity was observed in V7 genotype 
(1.813 µmol NO2

–1 h–1 g–1 fresh wt.). There was a significant negative 
relationship (r = -0.913) between level of NR activity and leaf nitrate 
concentration among the sixteen genotypes (Figure 4).

Leaf nitrate concentration under potassium application: 
Application of potassium decreased the nitrate accumulation 
significantly (p<0.05) in the leaves of both the sorghum genotypes 
studied (V9 and V7 genotypes). The minimum and maximum nitrate 
concentration was associated with the application of K60 and K0, 
respectively. In V9 genotype, there was recorded 2118.89 mg of nitrate 
kg-1 fresh wt. at K60; whereas at K0, it was 3272.04 mg of nitrate kg-1 
fresh wt. In V7 genotype, there was 7104.06 mg of nitrate kg-1 fresh wt. 
at K60, while it was 9600.97 mg of nitrate kg-1 fresh wt. at K0 in 30 days 
old plants (Figure 5). However, this decrease in nitrate concentration 
with potassium application increased maximally only at K60, after 
which the decrease was substantial. The result showed that application 
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Figure 3: Genotypic variation in nitrate reductase activity in leaves of sorghum 
genotypes in 30-days-old plants.

y = -0.0008x + 7.2304
R² = 0.8333

R= 0.913

0
1
2
3
4
5
6
7

0 2000 4000 6000 8000N
R

A
 (

µ
 m

ol
 n

it
ri

te
/h

/g
 f

re
sh

 
w

t o
f 

le
av

es
) 

Nitrate  Content
(mg/g fresh wt of leaves)

Figure 4: Relationship between nitrate concentration and nitrate reductase 
activity in leaves of sixteen sorghum genotypes in 30-days-old plants.
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of K60 brought the nitrate concentration under safe limit only in V9 
genotype at 30 DAS. 

The nitrate concentrations in the leaves were lower at 60 DAS than 
at 30 DAS (varying from 1.68- 3 folds). The lowest nitrate concentration, 
occurring at K60 in V9 genotype (816.6 mg of nitrate kg-1 fresh wt.) 
was safe for animal consumption. V7 genotype was however, not safe 
for consumption under natural conditions in spite of the considerable 
reduction in nitrate concentration with K application (Figure 6). 

Leaf NRA under potassium application: There was a positive 
and linear relationship between NR activity and K-fertilization rate 
up to K60 in both the genotypes at both the stages, after which the 
increase was not distinct. The increase in NR activity was significant 
at (p<0.05) with K application. In 30-day old plants, the maximum NR 
activity appeared with K60 in V9 genotype (5.978 µmol NO2

-1 h-1 g-1 

fresh wt of leaves), the genotype that carried the minimum leaf nitrate 
content. Similar result was obtained in 60-day old plants as well, with 
the maximum NR activity being attained in V9 genotype (9.916 µmol 
NO2

-1 h-1 g-1 fresh wt of leaves) in comparison to V7 genotype (5.018 
µmol NO2

-1 h-1 g-1 fresh wt of leaves). Minimum level of NR activity was 
obtained in the control (K0) in 30 as well as 60 days old plants of both 
the genotypes (Figures 7 and 8). 

Plant biomass

Genotypic variation was also evident in plant biomass (fresh and 
dry weight) of the sorghum plants at 60 DAS and was significant at 
(p<0.05) (Figure 9). The fresh weight was the highest with K60 (689.12 
g plant-1) in V9 as compared to V7 genotype at K0 (356.85 g plant-1). 
A profound difference in dry weight between the two genotypes was 
also noted with the application of potassium. The dry weight was 
significantly lower in V7 genotype at all the K levels (Figure 10).
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Figure 9: Fresh weight (gm/plant) as affected by potassium levels in two 
sorghum genotypes at 60-days-after sowing.
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Figure 10: Dry weight (gm/plant) as affected by potassium levels in two 
sorghum genotypes at 60-days-after sowing.
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Figure 11: Biomass nitrogen utilization efficiency in two genotypes of sorghum 
as affected by potassium levels after 60 days.
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Figure 12: Nitrate concentrations (mg/l) of leachate in two genotypes of 
sorghum as affected by potassium levels at 30 cm depth.
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Figure 13: Nitrate concentrations (mg/l) of leachate in two genotypes of 
sorghum as affected by potassium levels at 60 cm depth.
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Figure 14: Nitrate concentrations (mg/l) of leachate in two genotypes of 
sorghum as affected by potassium levels at 100 cm depth.

Biomass nitrogen utilization efficiency in leaves at 60 DAS

The effect of potassium was apparent on the biomass nitrogen 
utilization efficiency in leaves after 60 days of growth (Figure 11). V9 
had better biomass nitrogen utilization efficiency in comparison with 
V7 genotype at all the levels of potassium. There was a significant 
(p<0.05) increasing trend from K0 to K60 in both the genotypes; 
however, the increase was not evident at K120. The maximum biomass 
nitrogen utilization efficiency was recorded at K60 in V9 (45.93) and 
V7 genotypes (39.09), while the minimum biomass nitrogen utilization 
efficiency was recorded at K0 both in V9 (37.1) and V7 (31.05).

Nitrate content in the leachate

As evident from Figures 12-14, nitrate content in leachate decreased 
significantly (p<0.05) with increase in K levels (from K0 to K60) at all 
the soil depths. The minimum nitrate content was recorded with K60 

in both the genotypes at all the soil depths. However, V9 exhibited 
comparatively a higher reduction in nitrate content in the leachate, 
suggesting that nitrate had been used by the plants.

Discussion
Nitrogen is an essential element in biological materials and nitrate 

is the most common form of N taken up by the plants [34]. Changes 
in the availability and metabolism of N are of particular importance 
for maintaining high productivity of crops [35]. However, excessive use 
of nitrogenous fertilizers in order to attain maximum yield is leading 
to accumulation of nitrates above the safe limits causing toxicity to 
ruminants [36]. Nitrate is easily leached because it shows negligible 
interaction with negatively charged matrix of most topsoil and is 
therefore very mobile in the soil [37]. Further, loss of nutrients due to 
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intensive agricultural practice is of great concern as it may contribute 
to a variety of secondary effects in the soil, plant and environment 
[38]. The sandy soils, with minimal nutrient retention capacity, needs 
attention in this regard. The nutrients not absorbed by the plant roots 
in these soils tend to move freely with soil-water resulting in their 
leaching to deeper soil strata. In the present study it was observed that 
nitrate content in sorghum exceeded the safe limit in 13 out of the 16 
genotypes studied as shown in the Figure 2. The leachates also showed 
the presence of nitrate.

Mondal and Nad [39] reported that nitrate assimilation in forage 
crops is an acute problem, causing toxicity to animals that feed on them; 
it may accumulate in plant parts to toxic levels due to generous nitrogen 
application. The inter- and intra- species variations in leaf nitrate 
content have been reported in many crop plants [40]. These variations 
may occur due to difference in the efficiency of nutrient uptake system 
and nitrate reduction system of plants or a combination of both, or due 
to genetic differences among genotypes in the N assimilation pathway. 
The N assimilation pathway might differ due to differences in the rate 
of NO3 uptake and the uptake of other elements needed for enzyme 
activities, or to the differences in the generation of electron donors 
needed by the nitrate assimilation pathway [36].

To reduce nitrate accumulation in plants its efficient utilization is 
required. Strategies for improving nitrogen assimilation require the 
knowledge of N-assimilation pathway. NR activity is assumed to be the 
rate-limiting step for nitrate assimilation in plants [41,42]; hence, there 
exists a close relationship between NR activity and nitrate concentration 
in plants [43]. Nitrate is reduced to nitrite by NR activity in plant 
system. Consequently, there is a reverse relationship between nitrate 
content and NR activity [44]. The findings of our study also showed a 
negative relationship between NR activity and nitrate concentration in 
leaves (Figure 4).

On comparison of the nitrate content and NR activity in the two 
genotypes, it was observed that the increased NR activity decreased the 
nitrate accumulation in the leaves of sorghum at both the growth stages 
(Figures 7 and 8). Further, NR activity increased and nitrate content in 
the leaves decreased with plant age. It has been reported that the NR 
activity varies with the plant species, age and growth conditions [45,46]. 
Kapoor and Paul [47] studied that in potato tuber the NR activity began 
to decline at about 50 days after emergence, and this may be a useful 
indicator of when to apply nitrogen fertilizer so as to increase tuber 
protein content. 

This study as indicated in Figures 5 and 6 also suggests that 
potassium application reduced the nitrate accumulation in leaves, 
which is in accordance with the findings of Ahmed et al. [48] and Ruiz 
and Romero [22]. They reported that increase in the rate of potassium 
application facilitated the uptake and transport of nitrate towards the 
aerial parts of the plant, promoted the metabolism and utilization of 
nitrate and ultimately, reduced the nitrate accumulation in plants. 
Phosphorus, potassium and sulfur have major roles in the production 
of proteins and, hence, their consumption in plants results in the 
decrease in nitrate content in the plants [49]. Therefore, deficiency of 
plant nutrients seems to favor accumulation of nitrate in plants, whereas 
integrated use of the fertilizers of potassium, phosphorus and N may 
improve nitrogen uptake as well as the N- assimilation efficiency. Studies 
have demonstrated that interaction between N and other nutrients, in 
particular, potassium and phosphorus impacts N efficiency and crop 
yield. Adequate and balanced use of fertilizer nutrients is the most 
effective way to improve the efficiency of N fertilizers [50]. Potassium 
effectively reduced nitrate content and enhanced maximally the activity 

of NR and the corresponding lowest nitrate content at K60 in both 
the genotypes. The difference in nitrate and NR activity in different 
treatments was apparent at both the growth stages.

The biomass nitrogen utilization efficiency in the studied samples 
also increased considerably with potassium application indicating that 
K played an important role in improving nitrogen use efficiency of 
plants by enhancing the NR activity as NR activity has been reported to 
be augmented by potassium application [51]. 

Singh et al. [52] reported that the rate and the total amount of the 
leached ions have been shown to be affected by a number of factors. 
One of them is the use of unbalanced N fertilization that leads to 
accumulation of nitrate in the soil beyond the safe limit. Various 
strategies are suggested in order to decrease leaching or increase the use 
efficiency of nutrients. These include application of different fertilizers in 
different modes, avoiding runoff, mitigating losses from soil and plants, 
using slow release fertilizers and nitrification inhibitors, use of organic 
or green manures, use of legumes in cropping systems, correction in 
their imbalanced use and integrated nutrient management. Among 
these measures, use of judicial K fertilization might be an efficient 
strategy to increase N assimilation and prevent the nitrate leaching. 
Brar et al. [53] reported that application of K effectively increased the 
NUE of maize. Brar and Imas [54] studied the effect of K fertilization on 
N uptake and efficiency in various crops and suggested that balanced 
fertilization with K increases crop yield while enhancing NUE for the 
protection of the environment. A higher NUE implies better utilization 
of N and therefore lesser wastage. Improving NUE with K implies that 
lesser N can be applied without affecting yield and thereby preventing 
land and water contamination. In the present study, nitrate content in 
the leachate decreased considerably with the increase in the level of 
potassium. The minimum nitrate content was recorded with K60 level 
in both the genotypes. This trend was consistent at all the soil depths, 
viz. at 30, 60 and 100 cm below the soil surface as depicted in Figures 
12-14. The decrease in nitrate content in the leachate would have been 
due to better utilization of the available nitrate with K application. The 
potassium-nitrogen partnership is important for getting maximum N 
returns [55]. Increased K fertilization reduces nitrate accumulation in 
plants [56-58]. Silva et al. [59] suggested that the interaction of rates of N 
and K significantly affects the activity of NR. The application of double 
rate of K and phosphorus contributed to a reduction in nitrate content 
of rocket plants even at high rates of N [60]. Increasing amount of K 
caused reduction in N-nitrate in rocket leaves [61]. The present study 
focusses on the importance of K in increasing NUE and decreasing the 
nitrate content in plants to prevent nitrate toxicity in human and nitrate 
pollution of environment.

Conclusion
The samples from the local fields as well as those from experimental 

sorghum genotypes showed a significant accumulation of nitrate, 
exceeding the safe limit (2500 mg kg-1 fresh wt.). Nitrate concentration 
in the leaves was the highest at the younger stage (30 DAS). However, 
with K application, especially with K60, leaf nitrate concentration 
decreased considerably, while the NR activity appeared at the highest 
level in both the genotypes (V9 and V7). Genotype V9 exhibited better 
growth seemingly through increased NR activity and decreased nitrate 
concentration in leaves and leachate compared to V7 at both the growth 
stages. The maximum K application effect appeared after 60 days of 
growth. Thus, a balanced nutrient management with the K application 
at 60 mg K2O kg-1 soil (K60) could help in reducing nitrate accumulation 
and sustaining growth and productivity of sorghum. This would help in 
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minimizing the nitrate toxicity in animals and its load on ground water. 
Further, this would help the farmer to attain a cost effective strategy 
of fertilizer management without wastage of fertilizers. This should 
be validated, however, with further studies at large scale employing 
different crops at various locations with different climatic conditions.
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