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Abstract
The present study aimed to characterize the follicular pattern and ovarian resumption during the postpartum 

period in lactating dairy cows in Upper Egypt and study the impact of different components of the antioxidant system 
on follicular dynamics. Sixteen native dairy cows in their second lactation period were assigned for the current study. 
Cows were kept indoor and subjected to ultrasonographic examination and bled daily. Data regarding the change 
in the follicular dynamics and incidence of short cycles were collected and tabulated then statistically analyzed. 
Blood samples were used to determine nitric oxide (NO), Vitamin A, B-Carotene, Vitamin C and Vitamin E. results 
of the present study revealed that The first postpartum behavioral estrus observed 35-47 days (41.5 ± 1.86 days 
postpartum). The average postpartum days required for the animal to come in estrus in cows with transient CL was 44 
± 1.76 days and in cows without transient CL was 37 ± 1.18 days. In cows with transient corpus luteum, first ovulation 
was not accompanied by behavioral estrus (Quiet ovulation) at 23 ±1.02 days. Vit A, B-carotene, Vit E, NO, but not 
Vit C, increased significantly during the first observable postpartum heat in the studied cows and their level in the 
plasma correlated differently with the different classes of ovarian follicles. It is concluded that most antioxidants in the 
present study, except ascorbic acid, increases at the time of estrus and they are not affected by the day of postpartum 
period or the number and size of the dominant follicles. Short cycles are frequent in the postpartum cows (50% of 
cows had a short cycles in the present work). Follicular growth starts immediately – may be before the studied time- in 
postpartum dairy cows.
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Introduction
The reproductive efficiency in dairy cattle is influenced by the 

postpartum ovarian activity. Therefore, it is desirable that such activity 
must be resumed as early as possible after parturition. Energy balance 
is the primary factor determining the length of acyclic period and can 
be reduced by increasing dietary energy [1]. The corpora lutea resulted 
from the first ovulation postpartum fail to develop to the normal size 
and had shorter lifespan than corpora lutea of normal estrus cycles [2]. 
The first corpus luteum formed in postpartum dairy cows following 
hormone-induced or spontaneous ovulation was frequently short-lived 
resulting in a luteal phase shorter than normal duration [3]. Cows had 
short luteal phases after first ovulation with an average interval of 8.5 
± 0.2 days between first and second ovulation [4]. Antioxidants are 
enzymes or compounds that scavenge and reduce the presence of free 
radicals. Normally, a balance exists between concentrations of reactive 
oxygen species and antioxidant scavenging systems [5]. The transition 
period is critical for the health of dairy cattle [6]. It has been observed 
that during the transition period cows can experience oxidative stress 
[7-9], which may contribute to periparturient disorders [10,11], and 
may be associated with metabolic diseases [9]. Oxidative stress can be 
monitored with several biomarkers (antioxidants and pro-oxidants) 
which can be assessed in plasma and/or erythrocytes [12]. Nitric oxide 
(NO) is an inorganic, short-lived (a few seconds) free radical gas that, 
due to its high solubility, freely diffuses through biological membranes. 
Parenteral vitamin E also helps prevent reproductive disorders in 
periparturient cows [13]. Therefore, adequate Se nutrition is critical 
for managing oxidative stress in infected mammary glands of dairy 
cows. Vitamin C is normally produced by the liver of adult cows and is 
active both in blood plasma and in the cytoplasm of cells. Its function 
is to scavenge free radicals and regenerate plasma membrane-bound 
vitamin E and cytosolic glutathione peroxidase [14]. The physiological 
events, during the postpartum period in dairy cows, regarding the role 
of these antioxidants and their levels relative to the ovarian changes are 
lacking. Hence, the present study aimed to outline the ovarian changes 

during the postpartum period in cows and correlate them with the 
oxidant/antioxidant status. 

Materials and Methods
Animals

The present study was carried out on 16 native pluriparous cows 
(average age, 2-6 years, weight, 250-400 Kg) belonging to the veterinary 
hospital of the faculty of veterinary medicine, Assiut university. Cows 
kept indoor with daily exercise outdoor. Animals fed on Barseem 
(Trifolium alexandrenum) in addition to concentrate mixture 1-2 Kg / 
head /day during the time with free access to water.

Experimental design

Animals in this study were assigned for daily clinical examination 
and blood sampling during the postpartum period in regular basis 
starting on d 5 postpartum till the first postpartum behavioral estrus. 
Cows were categorized according to the number of follicular waves, 
presence of short cycles or presence of transient CL.

Sampling

Blood samples were obtained by jugular venipuncture from all 
animals at day 5 postpartum then day after day till the first postpartum 
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heat. Samples were collected into heparinized vacutainer tube and were 
centrifuged at 3000 rpm for 15 min, plasma separated and stored at 
-20°C till the time of biochemical assay.

Ultrasonographic examination

Cows were examined ultrasonographically using a real-time 
B-mode 100 LC-scanner (Pie Medical, Maastricht, Netherlands) 
connected to a 6/8 MHz changeable transrectal linear array transducer. 
At each examination, the number, diameter and relative position of 
all follicles > 5 mm in diameter and corpora lutea (CL) were recorded 
and sketched on ovarian charts to analyze the pattern of growth or/and 
atresia. When a follicle or CL was not spherical a mean diameter was 
taken. Follicles were classified into three size classes: small follicle < 5 
mm, medium sized follicle 5-10 mm and large follicles >10 mm. 

Follicular data analysis

The growth and atretic rates (mm /day) of ovarian follicles and 
CL with their day of maximum diameter were regarded. In addition, 
number of follicular waves for each cow was determined. 

Determination of blood plasma oxidant/ antioxidant levels

Nitric oxide, vitamin A and β- Carotenes, Ascorbic acid and vitamin 
E levels in the plasma of these animals were measured according to the 
procedures of previous studies [15-18].

Statistical analysis

Th e packaged SPSS program for windows version 10.0.1 was used 
for statistical analysis [19]. Data were expressed as mean ± standard 
error (SE). Pearson’s correlation (r) and linear regression analysis 
(R2) and the linear regression equation (Y= X+K; where K is the soap 
of regression) were performed on the paired data obtained by the 
individual infected cases. Significance level was set at P≤0.05.

Results 

Ultrasonographic findings

Data regarding the number of different classes of the ovarian 
follicles and corpora lutea during the postpartum period is presented in 
Figure 1. Day of the studied period had no effect on the number of large 
follicles and CLs (P< 0.05). Four waves (Figure 2-4) were recorded in 
5 animals during the studied period (31.25%) while three waves were 
recorded in 11 out of 16 studied cows (68.75 %) with or without short 
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Figure 2: Follicular pattern in 4-waves animals during the post-partum period 
(Y axis is the size of the dominant follicle in mm).
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Figure 3: Follicular changes during the post partum period 
No CL group (Y axis refers to size of the dominant follicle in 
mm).

cycles and transient CL. Dominant follicle of the first follicular wave 
reached its maximum diameter (10.42 ± 0.34 mm /day) at 9.3±0.06 days 
postpartum. The first postpartum behavioral estrus observed 35-47 days 

 

 

 

 

 

 

Fig 1 changes in the No. (Y axis) 
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Figure 1: change in the No. (Y axis) of ovarian follicles and CLs during the 
post partum period.
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Figure 4: Follicular changes during the post partum period in CL group (Y axis 
refers to size of the dominant follicle in mm).
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(41.5 ± 1.86 days postpartum). The first, second, third and fourth waves 
averaged 9.7, 18.7, 15 and 8 days respectively. The average diameters 
of the dominant follicle in cow having three waves were 10.95 ± 0.51, 
13.6 ± 0.95 and 15.9 ± 0.11 mm /day for the 1st, 2nd and 3rd follicular 
waves respectively. For cows having four waves were 10.95 ± 1.07, 13.7 
± 0.66, 10.25 ± 0.25 and 15.1 ± 0.1 mm /day for the 1st, 2nd 3rd and 4th 
follicular waves respectively. The growth rate of the dominant follicle 
in cow having three waves were 0.61 ±0.14, 0.63 ± 0.14 and 0.59 ± 0.64 
mm /day for the 1st, 2nd and 3rd follicular waves, respectively and 
for cows having four waves were 0.48 ± 0.05, 0.41 ± 0.04, 0.42 ± 0.09 
and 0.55 ± 0.03 mm /day for the 1st, 2nd, 3rd and 4th follicular waves, 
respectively. The atretic rate of dominant follicle in cow having three 
waves were 0.39± 0.06, 0.32 ± 0.1 for the 1st, 2nd follicular waves while 
for cows having four waves were 0.48 ± 0.03, 0.66 and 0.47 ±0.21 for 
the 1st, 2nd and 3rd follicular waves, respectively. Transient corpus 
luteum average diameter was (13.1± 0.32 mm/day, mean life span was 
7.3 ± 0.58 days and the atretic rate was (0.48 mm /day). Atretic rate 
of CL graviditatis (CL of pregnancy) was 0.61 mm /days. The average 
postpartum days required for the animal to come in estrus in cows 
with transient CL was 44 ± 1.76 days and in cows without transient 
CL was 37 ± 1.18 days. In cows with transient corpus luteum, first 
ovulation was not accompanied by behavioral estrus (Quiet ovulation) 
but observed ultrasonically at 23 ±1.02 days. Maximum diameter of 
the ovulatory follicle resulting in transient CL was (14.03 ± 0.03mm) 
during the second wave. The growth rate of the dominant ovulatory 
follicle of this group was (0.54±0.07 mm /days) and the atretic rate was 
0.47 ± 0.053 mm / days. The diameter of ovulatory follicle resulting in 
cyclic CL of the first postpartum behavioral estrus was 15.65 ± 0.18 
mm/day. Ovulation took place at the right ovary in 10 cows and the 
left ovary in 6 cows. All cows showed ovulation from the ovary contra 
lateral to CL graviditatis.

Oxidant /antioxidant status 

Similar to vitamin A and B- carotene, there was a constant and 
gradual increase in vitamin E during the postpartum period. Peak 
levels for these antioxidants were found at the day of first postpartum 
observable estrous (Table 1). No relation was found between number 
of follicle and level of vitamin E in plasma. Vitamin C and NO 
production decreased gradually throughout the postpartum period till 
first ovulation and their plasma concentration was not affected by the 
number of different classes of ovarian follicles (Table 2). Diameter of 
the ovarian follicles significantly (P < 0.05) affected the level of Vitamin 
E, C and NO (Table 3).

Discussion
Follicular growth was detected as early as D5 postpartum. The 

interval to detection of the first postpartum DF was reported to be 
9.6 ± 0.6 days in beef cows and the number of DF before the first 
ovulation was reported to be 2.1 ± 0.6 [20]. The emergence of a wave is 
associated with a surge in FSH concentrations in cycling cows [20,21]. 
There is follicular development in both ovaries of postpartum cows; 

however, postpartum follicular activity in the ovary ipsilateral to the 
previously gravid uterine horn was reported to be lower than that in the 
contralateral ovary [22]. As the follicular growth is a continuous process 
we think that the ovarian resumption may be active before that day 
but the ovaries were unreachable. In the present study, interval from 
parturition till first heat averaged 35 + 0.56. The postpartum anestrus 
in the study is significantly shorter than reported previously [23], 80.8 
± 8.6 days for Holsteins and 104.8 ± 7.6 days for crosses. Short cycles 
(transient CLs resulting from silent ovulations) were recorded in 8 
cows (50%) in the present study. The occurrence of a short luteal phase 
following first ovulation in the postpartum period of cattle reported 
previously [24]. The first ovulation postpartum generally occurs with 
silent estrus and is followed by a short estrous cycle of 8 to 12 days of 
duration in the majority of cows [25-28] Occurrences of short estrous 
cycles frequently appear during the first 30 to 40 days postpartum. The 
oocyte released during this short estrous cycle in cattle can be fertilized 
[29]. However, pregnancy is not maintained, apparently because the 
corpus luteum is regressing before the ovary receives the uterine signal 
that a pregnancy exists [30,31]. Short cycles are also common after 
induced ovulation in the postpartum period by weaning, weaning plus 
GnRH injection, a single injection of GnRH, intermittent injection 
of GnRH and continuous infusion of GnRH as well as after the first 
ovulation at puberty [32-37]. Premature release of prostaglandin F2α 
(PGF2α) from the uterus on day 5 of a short estrous cycle is probably 
the mechanism involved in subnormal luteal function in sheep and 
cattle [38]. Similar conclusions were obtained when premature release 
of PGF2α (from the uterine endometrium) resulted in premature 
luteolysis when suckling induced an oxytocin release [37,38]. The 
CL that is formed during a short cycle is smaller and secretes less P4 
than a CL during a normal cycle [39,40]. Short estrous cycles prevent 
fertility during the first 20 days after parturition by causing the cow 
to return to estrus before pregnancy recognition occurs [29]. The 
duration of the postpartum anestrus is affected by four major factors: 
season, nursing, nutrition and cow age [41,42]. Day of the studied 
period had no effect on the number of large follicles and CLs (P< 0.05). 
The duration of postpartum anestrus is not determined by emergence 
of follicular waves, but rather by follicular deviation and/or the fate 
of the dominant follicle [43]. The emergence of the first follicle wave 
occurred within 10–14 days [44] of parturition and is associated with 
the early resumption of recurrent FSH increases [20], presumably due 
to the abrupt withdrawal of the negative feedback effect of estrogen 
and progesterone before parturition. Prolonged postpartum anoestrus 
is due to failure of early dominant follicles to ovulate [44,45]. Dairy 
cows that are not under nutritional stress generally ovulates the first 
dominant follicle [26], earlier than beef suckler cows with a good body 
condition score [44]. However, beef cows in poor body condition can 
have 8–14 follicle waves before the first ovulation [27]. Failure of the 
early dominant follicle to ovulate is thought to be due to inadequate LH 
pulse frequency [41,45,46], which results in low androgen production 
in the follicle [47] and inadequate estradiol positive feedback to induce 
a preovulatory gonadotrophins surge [48]. On the contrary to our 

Days around parturition 0 (Parturition) 10 days post partum 20 days post partum Estrus
β- Carotene.(ug/dl) 84.19 ± 13.96a 110.52 ± 17.22 ab 146.00 ± 13.83 b 167.65 ± 11.88 c

Vit. A. (ug/dl) 42.59 ± 6.03a 54.49 ± 5.45ab 56.30 ± 5.87ab 58.18 ± 3.83b

Vit. E.(ug/dl) 138.40 ± 17.61a 170.4 ± 15.61b 193.87 ± 19.07c 205.60 ± 23.24c

Vit. C.(mg/dl) 3.29 ± 0.48 a 2.59 ± 0.28 a 2.15 ± 0.16 a 2.51 ± 0.17 a

NO.(nmol/ml) 64.33 ± 9.88 a 40.28 ± 7.61b 36.80 ± 4.58b 45.44 ± 0.88b

Letters with different superscripts are significantly different (P<0.05).
Differences are set between values in the same row.

Table 1: Mean values of measured antioxidants and the corresponding free radicals (NO) during peripartum period in subgroup B (n=10).
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findings, in a previous study [49], the average number of small follicles 
(3 to 5 mm diameter) decreased before Day 25 postpartum whereas 
the number of large follicles (10 to 15 mm or more) increased with 
increasing postpartum days. Moreover, energy balance and dietary 
treatments influenced the number of follicles at different times after 
calving. In the present study, cows have 3-4 waves till first heat in 
accordance with previous studies [50,51]. Cows had relatively short 
postpartum anoestrous intervals with a maximum number of five waves 
were recorded [44]). On the scope of the present results, we noticed that 
the average diameters of the dominant follicle were increased gradually 
from the 1st to the 3rd follicular wave while in cows having four waves 
we found that the diameter decreased in 3rd wave then increased in the 
4th wave. Because most dairy cows ovulate for the first time between 
the second and fourth weeks, any delay beyond the fourth week was 
defined as a delayed ovulation or anovulation [52]. The management 
practices that limit suckling must also avoid close cow-calf association 
to reduce long postpartum intervals to first ovulation [53]. 

Under the normal physiological conditions, there is a critical 
balance in the generation of oxygen free radicals and antioxidant defense 
system used by organisms to deactivate and protect them against free 
radical toxicity [54]. The studied antioxidants, but Vit C, increased 
significantly at the time of first postpartum ovulation associated with 
observable heat in the current study. In the contrary, Vit C and No had 
a peak level at calving and decreased significantly at the time of estrus. 
It was found that antioxidants were not cytotoxic except at high levels, 
and the cells appeared less damaged when incubated with antioxidants 
than without, particularly over long time periods of incubation. 
Antioxidans (Vit E and C) assisted oocyte survival in calcium-free 
media and extended inhibition of oocyte maturation by cAMP but did 
not inhibit oocyte maturation in the absence of cAMP [55]. Low levels 
of ascorbic acid have an antioxidant effect but higher levels were able 
to exert pro-oxidative effects upon the cell. This may explain their low 
levels during the estrus period in the studied animals. Administration 
of vitamin E or the combination of vitamin E and selenium has been 
reported to reduce the incidence of postpartum reproductive disorders 
such as retained fetal membranes, metritis, and cystic ovaries [56] The 
balanced presence of reactive oxygen species and antioxidants has a 
positive impact on sperm functions, oocyte maturation, fertilization 
and embryo development in vitro [57]. The alteration of oxidative 
status after calving might be related to the reduction of plasma and 
erythrocyte sulfhydryl concentration. Plasma protein sulfhydryl 
groups represent an extracellular antioxidant defense, which effectively 
decrease the rate of lipid peroxidation [58]. This reaction leads to a 
decrease of plasma thiol groups, because the major portion of peroxyl 
radicals is trapped by plasma sulfhydryl groups [59]. When the follicle 
starts growth, oxidative stress may hamper the synthesis of proteins 
and RNA required for further development as well as the assembly 
of an efficient system of antioxidant enzymatic defense. This, in turn, 

may jeopardize the crucial final events of follicle maturation when 
oocyte and granulosa cells may be required to cope with the effects of 
an altered follicular vascularization, such as the condition of oxidative 
stress induced by a reduced oxygen supply. Interference with the 
stress system might have a positive effect on ovarian cyclicity [60]. E2 
may play a role in the ovarian antioxidant-oxidant balance [61]. Vit 
C Chain breaking antioxidant competitively protects the lipoproteins 
from peroxyl radicals and recycles Vit E Diverse antioxidant function. 
Deficiency of Vit C produces ovarian atrophy, extensive follicular 
atresia. On the other hand, Supplementation of this antioxidant inhibits 
follicular apoptosis. B-Carotene Blocks DNA damage and supports 
cytoplasmic maturation in porcine oocytes [14]. Because vitamin E is 
located close to oxidase-generating enzymes in plasma membranes of 
cells, it is in a good position to quench free radicals before they leak into 
the cell. This is particularly important in neutrophils, which constantly 
internalize the plasma membrane during phagocytosis. There is 
evidence to suggest that free radicals inhibit progesterone synthesis. 
With regard to this, the ovary contains high levels of antioxidants and 
during the luteal phase these levels are seen to fluctuate indicating 
that these play a role in cell function [62]. Optimal concentrations of 
NO are necessary for the implantation of fertilized eggs into mice. In 
the preovulatory follicles, ascorbic acid is depleted by the presence of 
luteinizing hormone [14] which explains the low level of this agent 
during the estrus period in the studied cows (during the prevalence 
of preovulatory LH surge). NO has been proven to act directly at the 
ovarian level, where it is produced by the vasculature and neurons, as 
well as by various cell types, including granulosa, theca, and luteal cells. 
Nitric oxide production is modulated by several hormones like estradiol 
17β, luteinizing hormone, follicle-stimulating hormone, and human 
chorionic gonadotropin [63]. Results from recent studies suggest an 
involvement of the NOS/NO system in ovulatory mechanism(s), 
mainly via its effects on vasculature and prostaglandin production [64-
68]. Contradictory result were reported about a luteolytic effect of NO 
through its stimulation [69,70] to synthesize PGF2α in human [71] and 
bovine [72]. At the same time, NO decreases progesterone production 
in rat [73], rabbit [74,75] and bovine [76]. Alternative mechanisms by 
which NO participates in luteal regression involve lowering estradiol 
production, resulting in the subsequent demise of the CL [77], and 
increasing apoptosis [78]. More extensive, short intervaled, serial and 
regular studies should be taken to focus on this issue in the future. It is 
concluded that most antioxidants in the present study, except ascorbic 
acid, increases at the time of estrus and they are not affected by the day 
of postpartum period or the number and size of the dominant follicles. 
Short cycles are frequent in the postpartum cows (50% of cows had a 
short cycles in the present work). Follicular growth starts immediately 
–may be before the studied time- in postpartum dairy cows.
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