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Introduction
Cancer in its myriad forms affects millions of people worldwide 

and is growing at an alarming rate to become the world’s deadliest 
disease of all times [1]. Till date, the most common methods of cancer 
treatment are the use of chemotherapy or invasive surgical procedures. 
Conventional chemotherapy however does not discriminate between 
the cancer cells and healthy cells thereby causing severe side-effects. 
Moreover, the systemic delivery of other novel biopharmaceutical 
anti-cancer agents such as antibodies, hormones, oligo-peptides, 
nucleic acids, growth factors etc. face significant obstacles from 
reticuloendothelial system (RES) and intracellular enzymatic 
degradation [2,3]. Recently, the use of nanoparticles as delivery 
vehicles for existing drugs aswell as novel cancer therapeutic agents 
has emerged to be highly effective and possible “game changers” in the 
field of targeted delivery. These developments are constantly striving 
to achieve enhanced care and quality of life for cancer patients [4,5]. 
Several strategies in the design such as nanometer sizes, (surface 
properties, and shape govern the biodistribution, uptake, drug loading 
capacities, and properties for sustained or controlled release making 
nanoparticle systems ideal and well suited for cancer therapy [6-
8]. Lipid based nano-carriers are amongst the earliest nanoparticles 
investigated and utilized in variety of therapeutics including cancer. In 
fact liposomal doxorubicin used in the treatment of Kaposi’s sarcoma, 
breast cancer, and ovarian cancer was the first nano-carrier to receive 
FDA approval [9]. Further a number of crucial design alterations are 
in progress to guarantee higher efficacy and effective tumor targeting 
using receptors such as folate or integrins which are highly expressed 
on variety of cancer cells [10-14]. Some other highly interesting reviews 
have very efficiently discussed these class of nanoparticles in great 
depth [8,12,15]. Polymer-mediated delivery systems along with lipid-
nanoparticles have provided the foundations for the field of advanced 
nanotechnology based drug delivery. Polymericnanometer sized 
particles such as micelles, nanospheres, nanocapsules, polymerosomes, 
polyplexes, and hydrogels etc have been particularly in the limelight 
as nano-carriers [16]. Polymer carriers offer a large versatility in 
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both structure and physiochemical properties due to awide variety 
of available monomers that may be used to form the polymer 
architectures. Drugs loading is accomplished by infusing the NPs with 
drugs in aqueous phase resulting in highly ordered cage like or capsule 
conformations along with more advanced methodologies include 
trapping drugs by chemical cross-linking, modifying surface properties 
of NPs etc [17,18]. A number of polymeric NPs are in the preclinical 
phase for the delivery of cancer therapeutics owing to the unlimited 
potential for targeted delivery. Recently, there has been significant 
interest in employing synthetic polymers like poly(ethyleneglycol) 
(PEG), [19] polylactide (PLA), [20] and poly(D,L-lactide–co-glycolide) 
(PLGA) [21]. Dhar et al. [22] have employed a platimum (pt(IV) based 
PLGA-PEG NP to deliver cisplatin in the form of a prodrug showing 
significantly improved efficacy in vivo. While these polyesters offer 
excellent biocompatibility and biodegradability, they have limitations 
with respect to drug release and stability owing to slow degradation of 
the polymers [23] (Figure 1).

Additionally, certain polymers contain chemical groups that 
interact with the surrounding environment and change their properties. 
These polymers are referred to as stimuli responsive or “smart 
polymers.” Some common environmental stimuli such as pH, ionic 
strength, temperature, chemical agents, and electromagnetic radiation 
etc result into changes including degradation, phase separation, surface 
chemistry, shape, permeability, and mechanical properties to release 
the therapeutics. Such class of stimuli responsive polymers has been 
of considerable interest for targeted delivery of cancer therapeutics. 
Temperature responsive polymeric Nps have been developed based on 
the lower critical solution temperature (LCST) behavior of polymers like 
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poly (N-isopropylacrylamide) (poly(NIPAAm)) and their copolymers 
[24-26]. Poly(NIPAAm) and its copolymers can be used to form core-
shell micellar structures consisting of an inner hydrophobic core 
surrounded by an outer hydrophilic shell below its LCST. Hydrophobic 
drugs can then be loaded inside the inner core safely protected from 
leakage from the exterior hydrophilic shell. The drugs can then be 
easily released by localized heating which causes the exterior shell to 
become increasingly hydrophilic. Taillefer et al. [27] have shown that 
by using poly(N-isopropylacryamide-co-methacrylic acid-co-octadecyl 
acrylate) (Poly(NIPAAm-co-MAA-co-ODA)) copolymer, aluminum 
chloride phthalocyanine (AlClPc), a photoactiveanticancer payload 
was delivered to inhibit the growth of EMT-6 mouse mammary cells. 
In another study, Cheng et al. [28] used biotin-PEG-b-P(NIPAAm-
co-HMAAm) diblock copolymer to bind HeLa cells pretreated with 
transferrin, indicating that drug loaded polymeric micelles can be 
manipulated to release their cargo by thermally induced structural 
changes to the micellar core. Temperature responsive polymeric NPs or 
micelles have been mainly employed as drug delivery vehicles in vitro 
experiments. The next big step will be to design systems to respond to 
subtle changes in temperatures targeted at the local tissue sites with 
greater control over drug release. On the other hand, pH responsive 
polymers have also emerged as novel stimuli-responsive nanocarriers. 
For example, Devalapally et al. demonstrated that pH-sensitive 
poly(ethylene oxide) (PEO)-modified poly(beta-amino ester) (PbAE) 
nanoparticles lack systemic toxicity and efficiently delivered paclitaxel 
[29], whereas Du et al. designed dual pH-sensitive polymer containing 
monomethoxyl poly(ethylene glycol)-b-poly(allyl ethylene phosphate) 
(mPEG-b-PAEP)-Hydrozone-Doxorubicin-Dimethymaleic anhydride 
for extracellular cationization and uptake to follow by endosomal/
lysosomal release of the drug [30]. While a number of thermal and 
pH responsive co-polymers with pNIPAAm have been discussed [31], 
many of them can also be categorized into a novel class of hydrogels for 
drug delivery [17,32].

All nanoparticles in general benefit from enhanced permeation 
and retention (EPR) effect and result into an increased extravasation 
into the tumour interstitium, however a thorough careful engineering 
of polymer nanoparticles including functionalization with targeting 
ligands is needed to promote receptor mediated uptake into the cancer 
cells. On the contrary, targeting to tumor vasculature endothelia occurs 
relatively quickly and does not require extravasation of the nanocarriers 
[33]. A variety of ligands including folate, transferrin, antibodies 
or their fragments, and peptides can be conjugated to polymeric 
nanoparticles to target plethora of receptors commonly overexpressed 

on a number of cancer types [23,34-36]. Targeted polyester based 
nanocarriers including Poly(lactic acid) and poly(lactic-co-glycolic 
acid), Poly(ε-caprolactone) functionalized with folate ligands [37]. 
RGD peptide [38,39] and several other ligands [40] are discussed. 
Several polysaccharides such as chitosan and cyclodextrins are used to 
prepare nanocarriers for drug delivery because they offer outstanding 
physical and biological properties and plenty of reactive groups for 
functionalizing ligands or reacting drugs [40]. Chitosan nanoparticles 
has been extensively studied for targeted drug delivery using folate 
[41], RGD [42] and several other ligands [40]. Additionally, a wide 
variety of poly amino acids, peptides, and proteins are often coupled 
with variety of ligands to design targeted biopolymer nanocarriers 
[40]. In a different approach, epidermal growth factor (EGF) receptor 
targeted cancer nano-carriers have gained considerable attention 
as these receptors are overexpressed on cancer cells [43]. Milane et 
al. have recently targeted clinically challenging multi-drug resistant 
tumors with polymer nanoparticle constructs made of poly(oxlactide-
co-glycohde)/poly(ethylene glycol)/epidermal growth factor receptor 
targeting peptide (PLGA/PEG/ EGFR-peptide) and poly(epsilon-
caprolactone) (PCL) [44]. In summary, combining active targeting with 
polymeric drug delivery carriers have resulted in huge improvements 
in delivery and efficacy of otherwise poorly effective drugs.

Conclusion
Cancer therapy has seen extraordinary growth in the past two 

decades due to the advent of variety of strategies to design and 
functionalize nanocarriers, and a huge selection of therapeutics 
including drugs, nucleic acids, antibodies etc. Compared to free drugs, 
nanocarrier-encapsulated drugs preferentially accumulate in the 
tumour sites through the EPR effects, thereby improving therapeutic 
outcomes and reducing side-effects. Targeting of nanocarrier can 
further improve the efficiency and specificity of drug delivery. A wide 
variety of targeted nanocarriers have been developed and demonstrated 
efficacy in vivo. Incorporation of active targeting agents will continue 
to play a crucial role in the delivery of therapeutic agents. Polymer 
systems offer immense flexibility in customization and optimization 
of nanocarriers to efficiently deliver new therapeutics and provide an 
integral step in aiding their progression to clinical practice. Although 
the current investigations on targeted, multifunctional and stimuli-
responsive polymeric nanoparticles are encouraging, there is a pressing 
need for careful evaluation in terms of physicochemical properties in 
vivo, pharmacokinetics, bio-distribution, and biodegradability. These 
challenges can be successfully addressed with increased cooperation 
between polymer scientists, pharmaceutical, chemical and biomedical 
engineers, and medical scientists.
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