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Introduction
Thrombocytopenia (TCP: < 150,000 per microliter a 2.5th lower 

percentile of the normal platelet count distribution) is a hematological 
disorder that affects 15% of the early HIV stage cases, and one-third of 
those with acquired immunodeficiency syndrome [1]. The mechanisms 
leading to TCP among people living with HIV are multiple, and 
include, but are not limited, to: HIV-associated bone marrow 
alterations, suppressed mega-karyocytopoiesis, immune-mediated 
platelet destruction, and oxidative stress [2,3]. Many of the drugs 
used in the clinical management of HIV have also been associated 
with thrombocytopenia, including antibiotics (i.e., trimethoprim-
sulfmethoxazole, clarithromycin), anti-fungals (i.e., pentamidine, 
fluconazole), antiviral treatments (i.e., ganciclovir, alpha-interferon), 
and some antiretroviral drugs [4]. However, despite of ART, TCP 
persists in a subset of subjects, and recur with treatment interruptions 
[5-7]. Hazardous use of alcohol, which is highly prevalent among 
people living with HIV, could be another contributor [8]. Overall in 
the general population, TCP may affect 3-43 % of non-acutely ill, and 
14-81 % of acutely ill, hospitalized alcoholics [9]. Furthermore, another 
plausible explanation of TCP is a shortened platelet lifespan, associated 
with platelet activation and subsequent clearance by the immune
system [10].

Although thrombocytopenia rates have been reduced with ART, 
this condition is still relevant given its consistently found association 
with HIV disease progression [8,11-13]. Platelet count has been 
correlated with HIV viral load in both human and animal models [11-
16]. More and more evidences still indicate that thrombocytopenia is 
a strong prognostic marker of death in PLWH. For example, in the 
Women Integrity Study, women having a platelet count of <50,000 
cells/mm3 are at more than five-fold increased risk of dying due to any 
cause, and at three-fold increased risk of death due to AIDS, compared 
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Abstract
The role of platelets in the neurological diseases that underlie cognitive impairment has attracted increasing 

attention in recent years. Multiple pathways in platelets contribute to host defenses, as well as to CNS function. In 
the current study, we hypothesize that the Blood Brain Barrier (BBB) is disrupted when exposed to platelets from 
patients with triple Co-morbidity (hazardous alcohol users+ HIV+ thrombocytopenia), compared to those with dual, 
single or no morbidity (HIV only, alcohol only or healthy controls). 

to those with normal platelet counts [17]. These multiple reports 
correlating platelet counts and CD4, viral load, disease progression and 
mortality, suggest that platelets play a critical role in the pathogenesis 
of HIV infection.

In addition, advances in platelet biology have uncovered new roles 
for platelets beyond hemostasis. In this regard, our group demonstrated 
that TCP is strongly associated with both, mood and cognitive 
impairments associated with HIV [8]. This finding was not unexpected, 
given that platelets are a source of two key neuro-immune factors: 
serotonin and Brain Derived Neurotropic Factor (BDNF). Similarly, 
Watchman et al. [18] identified a close relationship between platelet’s 
decline and increased risk of HIV Dementia. Individuals exhibiting a 
platelet decline of 100,000/µL or more were twice as likely to develop 
dementia. This risk was independent of virologic control, antiretroviral 
therapy, concurrent HIV-related illness, duration of infection, and 
levels of education [18]. Yet the exact mechanisms mediating these 
observations need to be identified if corrective measurements are going 
to be implemented.

At the early stage, HIV-1 enters the brain through an intact BBB, 
using Blood-Brain Barrier (BBB) efflux transporters [19]. At later 
stages, the Blood-Brain Barrier is disrupted, allowing the entrance of 
infected immune cells [20]. The relevance of the BBB in the HIV Neuro-
pathogenesis associated neurological disorders was demonstrated early 
in the epidemic, when HIV/SIV was directly inoculated into the brain 
[21,22]. Though scientists expected that CNS damage would happen 
with increased frequency, quite the opposite was found, highlighting 
the importance of BBB disruption in the neuropathology of HIV 
[22]. Furthermore, observations that brain zones, such as the area 
postrema, that are not near the BBB, rarely exhibited HIV related 
lesions provided further support for this postulate [23]. The precise 
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mechanism by which the integrity of the BBB is disrupted is still under 
investigation. In addition, since ART has failed to control BBB leakage 
[24,25], the need of additional studies has become even more apparent. 
Several hypotheses have been raised to explain the pathophysiology of 
BBB disruption in HIV; however, none of them by itself can explain 
the pathogenesis. The most accepted theory is immunological, and 
considers that BBB disruption can be explained by an excessive release 
of pro-inflammatory cytokines [19]. Noteworthy, investigations with 
other infectious diseases have demonstrated that platelet alterations 
can lead to aberrant Blood - Brain Barrier (BBB) permeability [26]. For 
example, thrombocytopenia has been observed during cerebral malaria 
[27]. During dengue infection, TCP has been recognized as a risk factor 
for the development of neurological symptoms [28]. 

Notably, platelets are the source of multiple pro-inflammatory 
substances, including TNF and IL-6, which have been associated with 
BBB disruptions [29,30]. They are also elevated in the circulation of 
PLWH that have HIV-associated neurological disorders [31,32]. In 
addition to pro-inflammatory cytokines, platelets are the source of the 
inflammatory mediator soluble CD40L (sCD40L), which recently was 
associated with BBB dysruptions [33]. Indeed, it has been estimated 
that platelets produce up to 95 % of all sCD40L found in circulation 
[33]. These findings led us hypothesize that TCP and the increase 
platelet activation promote an inflammatory response that may 
increase endothelial apoptosis leading to the BBB disruption.

Although the relationship between HAU and cognitive impairment 
has been studied, the role of alcohol in disrupting the BBB has rendered 
different results. For example, studies by two different teams of 
researchers have demonstrated that alcohol in conjunction with gp120 
or Tat, promotes neurotoxicity [34,35]. On the other hand, Collins 
and colleagues [36] found that moderate amounts of alcohol can offer 
protection against gp120-mediated neurotoxicity. Findings were later 
confirmed by Belmadani’s team [37]. Determining if hazardous alcohol 
use impairs the BBB is worth of investigation given the wide prevalence 
of alcohol among people living with HIV [38]. 

Given the lack of data regarding platelets effects on the BBB, and the 
lack of conclusive data on alcohol’s role, we decided to fill these gaps. 
Specifically, we posit that the Blood Brain Barrier (BBB) will be more 
likely to be disrupted when exposed to platelets from patients with triple 
co-morbidity (Hazardous Alcohol Users + HIV+ thrombocytopenia), 
compared to those with dual, single or no morbidity (HIV only, alcohol 
only or healthy controls).

Methods
We evaluated the effect of HIV, alcohol and thrombocytopenia 

on the BBB integrity using an in-vitro BBB model constructed with 
primary human brain micro vascular Endothelial Cells and astrocytes. 
The BBB membrane integrity was measured by Trans Endothelial 
Electrical Resistance (TEER). Para cellular permeability was established 
using Fluorescein Isothiocyanate (FITC)-dextran. 

Study population

Four hundred participants were enrolled in the parent study (The 
Platelets Mediating Alcohol and HIV Damage Study (PADS).  PADS 
is a large, single-site multi-ethnic cohort, consisting of 400 people 
living with HIV (PLWH), of which 200 are Hazardous Alcohol Users 
and 200 are non-hazardous alcohol users. Non-ambulatory patients, 
and those presenting with major medical co-morbidities, such as CNS 
opportunistic infection, head injury, tumors, major psychiatric disease, 
developmental disorders, severe malnutrition, chronic renal failure, 

intestinal pathology, thyroid problems, cardiovascular or immune-
based disease (i.e., malignancies, autoimmune diseases, or arthritis) 
were excluded. In addition, based on medical records, participants 
who had cirrhosis or active viral hepatitis were not eligible. Otherwise, 
the subject was enrolled. Five HIV negative subjects (3 alcohol 
users=HNAU, and two control subjects, HIV (-) / HAU (-), and 8 
HIV positive individuals were age and gender matched. HIV positive 
were selected for being ART treated, with no past or present history of 
major comorbidities and no drug. Subjects were selected if their CD4 
was between 200-350 cell counts, to assure that the participants were 
neither a fast nor a non- HIV-progressors. The HIV infected group 
included alcohol users (“HPAU”, n=5), HIV (+) non-alcohol users 
(“HPNA”, n=3), were recruited for this study. 

Ethics statement

Both, PADS and the pilot study, were approved by the central 
governing Institutional Review Boards at Florida International 
University and University of Miami. The study was conducted 
according to the principles expressed in the Declaration of Helsinki. 
Those participants who provided written informed consent and a 
signed medical release form were enrolled.

Platelets were isolated from plasma human samples

Blood was collected by venipuncture into plastic tubes containing 
EDTA as anticoagulant. Whole blood from the participants was 
centrifuged at 2503 g for 15 min, at 22°C, and gently re-suspended in 
PBS for further analysis. Platelets were counted using a hemacytometer. 
This method has shown to render a purity of isolated platelets of 99%.

Cell culture

Primary cultures of human brain micro vascular Endothelial Cells 
(HBMECs; catalog no. 1000) and human astrocytes (HAs; catalog no. 
1800) were purchased from Sciencell Laboratories (Carlsbad, CA) and 
cultured as per supplier’s instructions. Primary HBMECs and HAs 
were obtained from above discussion.

The Blood Brain Barrier in-vitro model 

The BBB model was established according to the procedure 
described earlier [39]. The model consisted of two-compartment 
wells in a culture plate, with the upper compartment separated from 
the lower by a cyclopore polyethylene terephthalate membrane 
(Collaborative Biochemical Products, Becton Dickinson, San Jose, CA) 
with a pore diameter of 3 μm. In a 24-well cell culture insert, 2 × 105 
primary HBMECs were grown to confluency on the upper side whereas 
a confluent layer of primary HAs (2 × 105 cells/insert) was grown on 
the underside. Intactness of the BBB was determined by measuring 
the Trans Endothelial Electrical Resistance (TEER) using Millicell ERS 
microelectrodes (Millipore, Billerica, MA). The electrical resistance of 
blank inserts with medium alone was subtracted from TEER readings 
obtained from inserts with confluent monolayers. The resulting TEER 
values represent the resistance of the endothelial cell monolayers. The 
BBB model was used for experiments at least 5 days after cell seeding. 
The BBB constructs were treated with 1 × 106 platelets obtained from 
human blood donors categorized as HIV(+) Hazardous Alcohol Users 
(HPAU) with thrombocytopenia and without thrombocytopenia, 
HIV (+) non-Hazardous Alcohol Users (HPNA), HIV (-) alcohol 
users (HNAU) and normal subjects (CT). TEER measurements were 
performed at 48 h after adding the platelets. The results are presented as 
percent of control. As shown in the Graphical Representation
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FITC-dextran transport

The effect of platelets on the integrity of the in vitro BBB model and 
paracellular transport of flourescein isothiocyanate–labeled dextran 
(FITC-dextran; molecular weight 40000) were measured according 
to the procedure described earlier [20]. After the integrity of BBB was 
established by TEER measurement, the BBB monolayers were treated 
with 1 × 106 platelets from Human samples and incubated for 48 h. After 
incubation, 100 mg/ml FITC-dextran (Sigma Aldrich, St. Louis, MO) 
was added to the upper chamber of the inserts and further incubated 
for 4 h. Samples were collected from the bottom chamber after 4 h 
and fluorescence intensity was measured at excitation wavelength 
485 nm and emission wavelength 520 nm using Biotech Synergy HT 
multimode microplate reader instrument. FITC-dextran transport was 
expressed as percentage of FITC-dextran transported across the BBB 
into the lower compartment compared to untreated control cultures.

Statistical analyses

All the data were analyzed using Graph Pad Prism software. 
Comparisons between groups were performed using one-way ANOVA 
and Dunn’s Multiple Comparison Post Test. Data is expressed as mean 
percent of controls. A Bonferroni value of p<0.05 was considered 
significant.

Results
Study population

All the HIV infected participants were receiving antiretroviral 
therapy at the time of blood draw. None of them had an active infection 
at the time of enrollment, and neither of them had other viral co-
infections (i.e. viral hepatitis).

The BBB is disrupted by platelets from HIV infected patient 
and/or alcohol users

It is well documented that HIV and substance abuse-associated 
neuro-pathogenesis is marked by a loss of BBB integrity, as previously 
described [40,41]. However, the role of platelets and thrombocytopenia 
in this process has not been elucidated yet. To examine the role of 
platelets as effector cells on the disruption of the Blood Brain Barrier 
induced by HIV and/or alcohol, the integrity of the BBB model was 
assessed by TEER measurement in control and treated cultures. Our 
results, presented in (Figure 1a), show significant BBB disruption when 
the BBB was treated with platelets from HIV negative alcohol users 
(HNAU), HIV positive patients (HPNA), and HIV positive alcohol 
users (HPAU), compared to the controls (CT). Although TEER values 
were significantly lower in these three groups (HNAU, HPNA, HPAU) 
compared to the Control Group (CT=100 vs. HNAU=75.19, p=0.0057; 
CT=100 vs. HPNA=85.6, p=0.016; CT=100 vs. HPAU=87.48, 
p=0.0106), the BBB treated with platelets from HIV positive alcohol 
users did not show any significant differences, compared to BBB 

treated with platelets from HNAU and HPNA groups (HPAU=87.48 
vs. HNAU= 75.19, p>0.05; HPAU= 87.48 vs. HPNA=85.6, p>0.05). 

In order to confirm TEER measurement results, para-cellular 
transport in an in vitro BBB model using FITC-dextran as a marker was 
performed (Figure 1b). The BBB permeability, as demonstrated by FITC-
dextran transport, was higher when the BBB was treated with platelets 
from alcohol users, HIV positive no alcohol users, and HIV positive 
alcohol users compared to the controls. However, only the BBB treated 
with platelets from HIV positive patients (HPNA and HIV positive 
alcohol users (HPAU showed a significant increase in permeability/
FITC dextran transport. (Controls= 100 vs. HNAU= 122.32, p>0.05; 
Controls=100 vs. HPNA=167.28, p=0.0036; Controls=100 vs. HPAU= 
169.17, p=0.0063). When further analysis were performed comparing 
the permeability/FITC dextran transport in the BBB treated with 
platelets from HPAU, there was a significant difference compared to 
the permeability/FITC dextran transport observed in the BBB treated 
with platelets from HNAU. (HPAU=169.17 vs. HNAU= 122.32, 
p=.014; HPAU= 169.17 vs. HPNA=167.28, p>0.05).

Platelets from patients with thrombocytopenia (TCP) 
decreased the TEER and increased the FITC-dextran 
transport, affecting BBB integrity

After confirming the involvement of platelets in the drop in TEER 
values and the increase in FITC dextran transport, we wanted to clarify 
whether thrombocytopenia was a major cause of the effects seen in the 
BBB. Since the most robust effects were observed in the BBB that was 
treated with platelets from HIV positive alcohol users, we proceeded 
to examine the role of platelets as effector cells on the permeability 
of the BBB induced by HIV and alcohol. Therefore, the para-cellular 
permeability using Fluorescein Isothiocyanate (FITC)-dextran under 
the context of HIV, alcohol and thrombocytopenia was assessed. 
Platelets from patients with triple co-morbidity (HIV positive, alcohol 
user and TCP) were studied. Our results indicate that platelets from 
patients with TCP decreased the TEER (no TCP=100 vs. TCP=92.0, 
p=0.0238) and increased the FITC- dextran transport (no TCP=100.0 
vs. TCP=127.0, p=0.0051) on the context of HIV and Alcohol (Figure 
2a, 2b) respectively.

Analyses indicated that platelets from patients with 
thrombocytopenia (TCP) decreased the TEER (no TCP=100 vs. 
TCP=92.0, p=0.0238) and increased the FITC- dextran transport (no 
TCP=100.0 vs. TCP= 127.0, p=0.0051), on the context of HIV and 
Alcohol. 

Furthermore, BBB disruption was higher in samples from HIV 
positive patients and HIV positive alcohol users compared to the 
controls (controls=85.64 vs. HNND=100, p=0.0055; HPAU=87.47 
vs. HNND=100, p=0.0010; HPND=167.26 vs. HNND=100, p=0.0036; 
HPAU =169.18 vs. HNND =100, p=0.0063). 

Discussion
Identifying any factors affecting the integrity of the BBB is at 

the forefront of research. In this regard, we discovered that platelets 
from patients with thrombocytopenia affect the intactness (Figure 
1a) and permeability (Figure 1b) of the BBB in vitro. Although this is 
the first paper of this nature in the HIV burgeoning literature, similar 
observations have been reported by others in the context of dengue 
infection and cerebral malaria [27,28]. Given that the BBB was only 
exposed to platelets, our findings show the protagonic role of this 
cell in the disruption of the BBB. These findings are highly relevant, 
first because it has been confirmed that BBB disruption is one of the 

Graphical Representation: The Blood Brain Barrier in-vitro Model 
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mechanisms that underlie HIV associated cognitive impairments 
[19,20]. Second, findings are highly relevant when considering that up 
to 4-6 million, out of the 35.3 million people living with HIV, could 
develop TCP [rate of TCP 15 %], and thus at risk of BBB disruptions 
[5,17,42]. Such excessive rates should receive more attention, given 
TCP’s confirmed role on clinical morbidity among PLWH [42-45].

Conceptually, platelets can alter Endothelial Cells (EC) and thereby 
BBB integrity, by: first, platelet activation can lead to the release of 
chemokine and inflammatory mediators, such as MIP-1alpha, CCL5, 
MCP-3, CCL17, CXCL1, and CXCL5 [46]. These substances, adjacent 
to BMECs, can yield clustering of integrin? receptors. Second, HIV that 
has been shown to directly stimulate the release of platelet sCD40L, 
leading to up-regulation of MCP-1 and IL-8 within Endothelial Cells 
[35]. MCP-1, in turn acts as a chemo-attractant, with the consequently 
release of TNFa, IL-1 and IL-6 [41]. Notably, we have previously 
demonstrated that thrombocytopenia is associated with an enhanced 
production of these cytokines in the periphery. Third, evidence has 
been provided that platelets can participate in immune-mediated 
cytotoxicity [47,48]. Moreover, platelet-associated GPIIb-IIIa bridging 
with fibrinogen, can trigger the oxidative burst [49] which, in turn, can 
induce apoptosis of Endothelial Cells. However, these postulates need 
to be confirmed in future studies.

Equally relevant, these experiments also show that in the presence of 
alcohol, platelets deleterious effects are more notorious. The monolayer 
TEER dramatically decreases, while its permeability increases, 
suggesting that tight junctions have been compromised (Figure 2a, 2b). 
This work serves as a breakthrough in the research fields of HIV and 
alcohol abuse neuro-pathogenesis. Therefore, therapies targeting the 

platelet system may be an innovative, non-traditional approach for the 
treatment of HIV and alcohol abused-associated neuro-inflammation. 

Nevertheless, our data indicate that alcohol by-itself is sufficient to 
break the BBB and provide further support to prior reports by Cornford 
et al. [50]; Elmas et al. [51]; and Haorah et al. [52]. However, our 
data add to those previous results by indicating that alcohol-induced 
changes in the platelet system can also contribute to the damages. 

When interpreting these findings, it is important to appreciate 
that this is based on a small sample, and therefore it only represents 
the first step in this research pathway. Thus additional studies are 
necessary to build upon these findings. Nonetheless, until further 
studies emerge, subjects with thrombocytopenia, particularly those 
with triple comorbidity (TCP+HAU+HIV), should be closely follow-
up. Discovering the detailed mechanisms of platelets effects on the BBB 
will enhance current understanding of HIV associated neurological 
disorders. More important, it will provide us with additional hints to 
develop ways to manage PLWH with cognitive disorders.

Conclusions
In summary, the results show a protagonist role of platelets in the 

disruption of the BBB and for consequence in mechanisms that underlie 
cognitive impairments associated with HIV and alcohol consumption. 
This information can assist in the development of successful treatment 
approaches for HIV and/or alcohol associated neurological disorders, 
which, so far, are inexistent. 
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