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Introduction
Nickel is used in large number of every-day applications including 

coins, jewelry, household and cooking utensils, orthodontic and 
orthopedic implants, and batteries [1]. Exposure to Ni as a result 
of daily dermal contact or through occupational or environmental 
sources is known to produce a variety of pathologies including allergic 
contact dermatitis [2] and cardiovascular diseases [3]. Long-term 
occupational exposure is associated with lung and nasal cancers [4], 
and an increased risk for acute respiratory syndromes such as mild 
irritation and inflammation, bronchitis, pulmonary fibrosis, asthma, 
and pulmonary edema [5]. The general population is also exposed to 
Nickel via ingestion, since Nickel is a contaminant in drinking water 
and is present as a component or contaminant of foods [6,7]. Nickel 
can also be secreted in human breast milk leading to early dietary 
exposure of infants [8]. 

Due to the growing evidence about their toxic effects, in 1990, 

certain Ni compounds have been classified by the International Agency 
for Research on Cancer (IARC) as being carcinogenic to humans [9]. 
Excellent reviews of carcinogenic activities of Nickel are given [10-13].

Understanding the mechanisms of Nickel carcinogenicity and 
identification of biomarkers of susceptibility to Nickel toxicity is 
needed to allow development of tests for earlier identification and 
protection of individuals with high risk for the development of Nickel-
related diseases. 

Abstract
Nickel (Ni) compounds are widely used in industrial and commercial products including household and cooking 

utensils, jewelry, dental appliances and implants. Occupational exposure to nickel is associated with an increased 
risk for lung and nasal cancers, is the most common cause of contact dermatitis and has an extensive effect on 
the immune system. The purpose of this study was two-fold: (i) to evaluate immune response to the occupational 
exposure to nickel measured by the presence of anti-glycan antibodies (AGA) using a new biomarker-discovery 
platform based on printed glycan arrays (PGA), and (ii) to evaluate and compile a sequence of bioinformatics 
and statistical methods which are specifically relevant to PGA-derived information and to identification of putative 
“Ni toxicity signature”. The PGAs are similar to DNA microarrays, but contain deposits of various carbohydrates 
(glycans) instead of spotted DNAs. 

The study uses data derived from a set of 89 plasma specimens and their corresponding demographic 
information. The study population includes three subgroups: subjects directly exposed to Nickel that work in a 
refinery, subjects environmentally exposed to Nickel that live in a city where the refinery is located and subjects that 
live in a remote location. The paper describes the following sequence of nine data processing and analysis steps: 
(1) Analysis of inter-array reproducibility based on benchmark sera; (2) Analysis of intra-array reproducibility; (3)
Screening of data - rejecting glycans which result in low intra-class correlation coefficient (ICC), high coefficient of
variation and low fluorescent intensity; (4) Analysis of inter-slide bias and choice of data normalization technique;
(5) Determination of discriminatory subsamples based on multiple bootstrap tests; (6) Determination of the optimal
signature size (cardinality of selected feature set) based on multiple cross-validation tests; (7) Identification of the
top discriminatory glycans and their individual performance based on nonparametric univariate feature selection;
(8) Determination of multivariate performance of combined glycans; (9) Establishing the statistical significance of
multivariate performance of combined glycan signature.

The above analysis steps have delivered the following results: inter-array reproducibility ρ=0.920 ± 0.030; intra-
array reproducibility ρ=0.929 ± 0.025; 249 out of 380 glycans passed the screening at ICC>80%, glycans in selected 
signature have ICC ≥ 88.7%; optimal signature size (after quantile normalization)=3; individual significance for the 
signature glycans p=0.00015 to 0.00164, individual AUC values 0.870 to 0.815; observed combined performance 
for three glycans AUC=0.966, p=0.005, CI=[0.757, 0947]; specifity=94.4%, sensitivity=88.9%; predictive (cross-
validated) AUC value 0.836.
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This paper presents early results of linking Nickel exposure and 
presence of Nickel in human body to immune response measured by 
expressions of anti-glycan antibodies (AGA) using a new platform 
which is based on printed glycan arrays (PGA). 

PGA is a new biomarker-discovery platform, which has been 
developed and utilized for biomarker discovery in the last several years 
[14]. PGA has useful advantages over nucleic acid-based testing and 
other platforms including: minimal invasiveness of blood sampling, 
stability of antibodies, low cost and short turnaround time. The 
printed glycan arrays (PGA) are similar to DNA microarrays, but 
contain depositions of various carbohydrate structures (glycans) 
instead of spotted DNAs. Most of these glycans can be found on the 
surfaces of human normal and cancer cells, as well as on the surfaces 
of human infectious agents such as bacteria and other pathogenic 
microorganisms. Pathologies including infection, inflammation 
and malignant transformation are associated with the appearance of 
abnormal glycosylation of proteins and lipids present on surfaces of 
altered cells in tissues and in circulation. 

The malignancy-related abnormal glycans are called tumor-
associated carbohydrate antigens (TACA) [15]. There is evidence 
that numerous TACAs are immunogenic [16], and that the human 
immune system can generate antibodies against them. We have also 
demonstrated that the dynamics of anti-glycan antibodies detected 
by PGA can indicate the status of immune response to malignancies 
[17-19]. A prototype of PGA with a library of 200 glycan structures 
was built at Scripps Research Institute, La Jolla, California, under the 
auspices of the Consortium for Functional Glycomics (CFG), [20]. 
Further development and standardization of a PGA with 211 glycans 
was conducted at Cellexicon, Inc., La Jolla. The latest PGA version 
with a total of 392 probes, containing 380 glycans of pharmacological 
purity grade and 12 control probes was developed in the Tumor 
Glycome Laboratory at NYU SoM. The 211 and 380 PGA versions were 
developed in collaboration with Shemyakin-Ovchinnikov Institute of 
Bioorganic Chemistry, of the Russian Academy of Sciences, Moscow, 
Russia. 

This paper describes a sequence of data processing and analysis 
steps, starting with quality analysis of raw PGA data and ending with 
a putative glycan signature which provides a basis for identification of 
individuals with high concentration of Nickel in urine. To the best of 
our knowledge, this is the first study in which the systematic immune-
profiling of AGAs using PGA in plasma of individuals with different 
levels of occupational exposure to Nickel identifies the putative immune 
signature of Ni toxicity. The presented results demonstrate a potential 
of PGA-based analyses of serum/plasma anti-glycan antibodies 
coupled with the described bioinformatics approach in search of the 
disease biomarkers.

Methods and Materials
Demographic and clinical data

The study population included 3 groups of subjects: (1) Nickel 
refinery workers in Jinchang (30 cases), (2) Residents of Jinchang (30 
cases) and (3) residents of adjacent city of Zhangye (29 cases). The latter 
two groups of subjects had only environmental exposures to nickel. The 
human subject protocol for this study was approved by the Institutional 
Review Boards of both the New York University School of Medicine 
and the Lanzhou University School of Public Health (IRB # 09-0726). 
Written informed consent was obtained from all participating subjects.

The demographic information included: age, smoking status, 
urinary creatinine [µg/g] and Urinary Ni [µg/L]. A characteristic of the 
study subjects is presented in Table 1 (Additional information about 
the study population can also be found in [21].) 

Urinary Ni, used to index the individual’s personal exposure to Ni, 
was analyzed for all study subjects by inductively coupled plasma mass 
spectroscopy (Elan DRCII; PerkinElmer, Norwalk, CT USA, [22]). 
Urinary cotinine, a major metabolite of nicotine and a valid bio-marker 
of environmental tobacco smoke, was measured in each subject to 
confirm smoking status and control its potential confounding effects. 
Urinary cotinine measurements were measured using a Cotinine 
Direct ELISA kit (Immunalysis, Pomona, CA, USA [23]).

A simple preliminary analysis of demographic data shows that 
there is a significant difference in the level of Nickel in urine among 
directly exposed subjects in refinery and the subjects who are not 
working at refinery. For example Figure 1 shows the distributions of 
urinary Nickel concentrations among three subgroups of subjects; the 
Kolmogorov-Smirnov test of unequal distributions gives the following 
p-values: 0.0017 between refinery workers and Jinchang residents, and 
0.0073 between refinery workers and Zhanghye residents. However, the 
distributions for subjects at Jingchang and Zhanghye are significantly 
equal. In addition, Figure 2 illustrates the fact that there are a greater 
number of subjects within the refinery workers with high content of 
Nickel in urine [>9.98 µg/L] as compared with the number of subjects 
in the two other study groups. It is important to notice that some 
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Figure 1: Probability density functions of Urinary Ni in subjects from three 
locations. The distributions show that a significantly larger number of workers 
of the refinery have a significantly higher content of Nickel in urine as 
compared with the subjects at the two other locations, with no occupational 
exposure to Nickel. 

*: all participating subjects were male
**: comparison between Ni refinery workers and control subjects (residents in 
Zhangye and Jinchang)

Table 1: Demographic Characteristics of Participating Subjects*.

Zhangye 
Residents

Jinchang 
Residents

Ni Refinery 
Workers P value**

N
Age (years)
Smokers [n (%)]
Urinary Ni
µg/L
µg/g creatinine

29
43.4 ± 4.9
25 (86.2)

6.83 ± 3.53
4.15 ± 1.52

30
41.6 ± 6.3
25 (83.3)

6.55 ± 3.51
4.13 ± 2.05

30
43.3 ± 4.9
25 (83.3)

8.43 ± 3.22
5.79 ± 2.08

> 0.05
> 0.05

0.0246
0.0002
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individuals not exposed occupationally to Nickel may also have high 
[>9.98 µg/L] content of Nickel in urine.

Printed glycan arrays

A printed glycan array (PGA) is used as a biomarker-discovery 
platform in a form of a “glycochip”. This glycochip is generated using 
standard robotic nano-printing technology that allows printing of a 
large range of amine-functionalized glycans/probes on amine-reactive 
N-hydroxysuccinimide (NHS)-activated glass slides (Schott GmbH, 
Germany) with surface modified for rapid covalent coupling. Glycans 
are printed in concentration of 50 µM generating spot sizes of ~ 70 
microns. In addition to 380 glycans, 12 control probes including print 
buffer samples as reagents for background quality control and a spot-
reference location are included in each print set of 392 probes. All these 
392 probes are distributed within two sub-arrays, each containing 
replicate subarrays of 14×14=196 probes/spots. Each glycochip divided 
into two subarrays, accommodates 24 sub-grids, with 12 replicates for 
each printed glycan/probe. 

The measurement of binding of human anti-glycan antibodies 
(AGA) to arrayed glycans, also called “immunoprofiling”, is achieved 
as described in [24]. Briefly, the glycochip is first incubated at 37°C 
with the subject’s plasma diluted 1:15 in a Carrier Buffer, allowing the 
binding of plasma antibodies to arrayed glycans. Plasma IgG, IgM and 
IgA immunoglobulins bound to glycans are visualized simultaneously 
with the “combo” biotinylated secondary goat anti human IgG, IgM 
and IgA antibodies (Pierce Biotechnology, Inc., Rockford, IL), and 
streptavidin-Alexa555 (Invitrogen/Molecular Probes, Carlsbad, CA). 
Fluorescence signal intensities that correspond to the binding of 
antibodies to glycans are scanned using Perkin Elmer ScanArrayG at 
90% laser power, and quantified with ImaGene software (BioDiscovery, 
Inc., El Segundo, CA). The total relative fluorescence signal intensity 
values (appx. range: 1,000 – 12,000,000 Relative Fluorescence Units) 
are used for further data processing and analyses. 

The quantified images are automatically analyzed for missing, or 
for overflowed spots (rare events) which are excluded from the final 
summarization of replicates performed by median. This process has 
enabled robust and accurate measurements. 

Figure 3 shows an excerpt from a scanned image of a glycochip 
developed with plasma of one of the study subjects. The four subgrids 
represent two replicates (columns) and two complementary subarrays 
(rows) which contain all 380 glycans in our current library and 12 
control probes. 

Quality analysis and data pre-processing

In order to begin statistical analysis of PGA data with the goal of 
discovering potential putative signatures associated with the immune-
responses to Nickel exposure, it is vital to first address the accuracy and 
the reproducibility of measurements, specifically the intra- and inter-
array reproducibility of PGA signals. The former relates to precision of 
measurement of AGA bindings within a single array, while the latter 
relates to between-array biases induced by the platform, or even by the 
quality of plasma. 

The first step in this quality analysis is to test the platform with the 
benchmark sera. The process of printing, development and scanning 
of glycochips at NYU Tumor Glycome Laboratory is interleaved with 
immunoprofling of the test sera called here “pooled arrays”. The test 
sera is prepared by pooling sera from several healthy subjects, which 
are then stored in larger quantities for usage in all similar experiments. 
The interleaving is performed for each new glycochip print batch, 
and in each of the immunoprofiling experiments/days. In this project 
8 pooled arrays have been used. The scatter plots in Figure 4 show 
concordance between four typical pairs of pooled arrays out of total of 
28 combinations (others were omitted to fit the page). The labels at the 
diagram axes indicate the instances of pooled sera arrays. The numbers 
above diagrams are Lin’s concordance correlation coefficient [25] CCC 
(left) and the Pearson correlation coefficient PCC (right). The fact 
that PCC is consistently higher than CCC, suggests a linear inter-slide 
bias in location and scale. This bias can be mostly removed by various 
normalization techniques. The results for all 28 combinations of pooled 
arrays are summarized in Figure 5.

The four diagrams in Figure 5 show Lin’s Concordance Correlation 
Coefficient (CCC), Pearson Correlation Coefficient, Overall Lin’s 
Concordance Correlation Coefficient [26,27] (OCCC), and Coefficient 
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Figure 2:  Number of subjects with low and high content of Urinary Ni within 
three groups: workers of the refinery located in Jinchang, residents of Jinchang 
who are not working in refinery and residents of a remote city of Zhanghye. 
The subjects of the former group are directly exposed to Nickel, while the 
subjects of the latter two groups are only environmentally exposed to Nickel. 

Figure 3: Excerpt from a scanned image of a glycochip developed with 
plasma of one of the study subjects.  The microarray contains 392 probes 
replicated 12 times and arranged into 24 subarrays. The 392 probes contain a 
library of 380 glycans printed in concentration of 50 mM, and 12 control probes. 
The glycans are distributed into two subarrays, each containing 196 probes. 
Each sub array contains 14 by 14 spots. The figure shows two replicated sub 
grid pairs.
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of Variation (CV). The first diagram (CCC) suggests relatively large 
bias between arrays, while the Pearson CC shows that the inter-array 
concordance is satisfyingly good. The OCCC and CV are computed 
independently for each array: the former is obtained by applying CCC 
to 66 combination pairs of 12 replicated subgrids on the same glycochip. 
These two diagrams show excellent intra-array concordance, i.e. small 
measurement error. All diagrams are obtained after screening out the 
glycans with small intensities, small Inter Class Correlation coefficient 
(ICC, discussed later) and the highly correlated glycans (ρ>0.95). The 
number of glycans that have survived the screening is 249 out of total 
380 glycans in our current PGA library.

To demonstrate the effect of inter-array bias among pooled 
sera, distributions of signal intensities are shown in Figure 6. The 
distributions are presented as sorted signal intensities for each array, 
across all glycans which have survived the screening. For the purpose 
of this diagram the highly correlated glycans were not screened out. 
In order to emphasize the differences, the diagram shows only 35 
glycans associated with highest signal intensities of bound AGAs, 
however similar differences can be observed with all other glycans. 
The first diagram confirms the finding in Figures 4 and 5 about the 
inter-array bias. The second diagram shows the distributions after 
intra-array normalization (A-normalization). The dotted line in both 
diagrams shows mean distribution taken across all arrays, which 
is equivalent to distributions after quantile normalization [28,29] 
(Q-normalization). As shown, the A-normalization is not entirely 
effective as the Q-normalization. Other normalization techniques, 
such as between-array normalization, which is essentially equivalent 
to IQR-normalization, and sequential A-Q normalization were also 
considered, but they performed unfavorably. 

Figure 7 shows similar intensity distributions for the study data 
used in discriminatory analyses.
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Figure 4: Concordance log-log scatter plots for Nickel Exposure Study. 
The plots are part of inter-slide quality control which uses slides developed 
on different dates and on different PGA print batches with benchmark sera 
obtained from a pool of four healthy subjects. In this study there were 8 
such slides whose development was interleaved with that of study subjects, 
resulting in 28 combination pairs. The scatter plots show logarithms of raw 
intensity signals. Numbers above plots are Lin’s concordance correlation 
coefficient (CCC, left) and Pearson correlation coefficient (right). The latter 
coefficient ignores linear bias in scale and location, while the former shows 
the true differences. The figure presents only 4 combinations out of 28, with 
patterns typical for this study; correlation coefficients for all 28 combinations 
are shown in Figure 5.
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Figure 5: Platform reproducibility for the Nickel Exposure Study. The 
diagrams show Lin’s concordance correlation coefficient (CCC), Pearson’s 
correlation coefficient (PCC), overall Lin’s concordance correlation coefficient 
(OCCC), and coefficient of variation of replicates averaged across all glycans 
in array (CV). The CCC and PCC are computed for 28 combination pairs of 
8 slides developed with benchmark sera. The OCCC and CV are computed 
independently for each array: the former is obtained by applying CCC to 66 
combination pairs of 12 replicated subarrays from the same PGA. The first 
diagram (CCC) suggests marginally large bias between slides (20% trimmed 
mean across all combinations is 0.8), while the PCC shows that the inter-
array concordance is satisfyingly good if we ignore the inter-array bias, which 
can be achieved with proper normalization. The last two slides show excellent 
intra-array concordance, i.e. small measurement error. 
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Figure 6: Distribution of intensities for 8 arrays of benchmark sera before 
and after normalization. The distributions are presented as sorted medium 
summarized intensities across all glycans which have survived the screening 
of low intensity and low ICC glycans. In order to emphasize the differences, 
the diagram shows only 35 glycans which correspond to highest intensities, 
however similar differences can be observed with all other glycans. The upper 
diagram confirms the finding in figures 4 and 5 about the inter-array bias. 
The lower diagram shows the distributions after intra-array normalization. The 
quantile normalization as much stronger than inter-array normalization (not 
shown here) would make distributions of all subjects the same and equal to 
the mean value (represented by the black dotted line in both diagrams).
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The next step addresses the ICC of the measurements, i.e. the 
ratio between the biological variability across all subjects and the total 
variability which includes the controlled measurement error. The results 
are shown in Figure 8. The common x-axis of all diagrams in the figure 
represents glycans sorted according to decreasing values of ICC (black 
line). The ICC is estimated as in [30]. The upper diagram in blue color 
shows the robust version of ICC obtained by appropriate replacements 
of means and standard deviations by medians and median absolute 
deviations (MAD) respectively. The lower two diagrams (green and 
magenta) represent coefficient of variation and its robust version. The 
relatively high ICC values for most of the glycans, as well as the low CV 
values assure that the data in Nickel Exposure Study qualify for further 
discriminatory analyses.

Discriminatory samples and signature length

After having established that the data obtained from AGA 
immunoprofiling qualify for further investigation it is necessary to 
define the subsamples which can be used in discriminatory analysis. 
Our original goal was to identify glycan-based immuno-signature 
that would allow identification of individuals exposed to potentially 
dangerous Nickel sources, such as occupational exposure to Nickel 
in Nickel refinery. We have therefore first compared three study 
subpopulations where one subpopulation included 30 workers of 
Nickel refinery, and two other subpopulations with subjects exposed to 
only environmental Nickel sources. Interestingly, this analysis did not 
deliver plausible “signature of hazardous Nickel exposure”, most likely 
due to yet unknown factors, such as luck of adequate glycan probes. 

We have then started a search for differences in immunoprofiles 
of individuals based on their Urinary Nickel content regardless of 
their location and assignment to a study sub-group. A straightforward 
approach would be to define a simple cutoff value which separates 
individuals with low from high concentration of Nickel in urine. 
However, this approach did not yield satisfactory results, seemingly due 
to the adverse impact of cases with medium concentrations of urinary 
Nickel, which produced undesired clutter. The approach that has offered 
better results was to exclude the cases with medium concentrations. 

For example, the cutoff value can be the number of cases in balanced 
subsamples with low and high concentrations. Determination of 
this cutoff value is a matter of compromise: large value increases the 
clutter, while the small value causes loss of discriminatory power, both 
resulting in diminished statistical significance. 

For the purpose of finding the optimal solution we have run a series 
of bootstrap tests for various subsample sizes and for various signature 
lengths. The replicate statistic has been chosen to be area under the 
ROC curve (AUC), which has a number of desirable properties over 
discrimination accuracy, including independence from discriminant 
bias, good resolution and ranking ability [31]. The AUC is computed 
for a combination of normalized signals associated with a chosen glycan 
signature, i.e. set of features. The combination is performed through 
projection determined with multivariate logistic regression (MLR). 
Each bootstrap run contained 500 replications based on permutations 
instead of usual resampling with replacement, the former being more 
conservative. The results for quantile-normalized data are presented 
in Figure 9, which shows the achieved significance level (ASL) [32]. 
The figure suggests the optimal subsample sizes of 18 subjects. It 
should be noted that the same repeated bootstrap tests were run for 
other normalization approaches and for sample sizes smaller than 16 
and larger than 20, all giving inferior results. This cutoff value implies 
low concentrations less than or equal to 4.44 µg/L of Urinary Nickel 
and high concentrations greater than or equal to 9.98 µg/L of Urinary 
Nickel. 

So determined subsamples can be now used to perform a simple 
univariate feature selection, for example the non-parametric Wilcoxon-
Mann-Whitney rank-sum test, the results are presented in the next 
section.

Once the samples of two discriminatory groups are determined, it 
remains to decide the signature length, i.e. the number of top selected 
glycans, which minimize the likelihood of over fitting. This can be done 
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Figure 7: Distribution of intensities for subjects in the Nickel Exposure Study 
before and after normalization. The diagram is similar to the diagram in Figure 
6, only it contains 89 arrays and the range of glycans is doubled. As seen, the 
intra-array normalization might not be entirely effective; therefore the quantile 
normalization is used in further discriminatory analysis.
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Figure 8: Intra-class Correlation Coefficient (ICC, black line) estimated for the 
entire PGA library. There are two ICC curves: the traditional (black curve) and 
the robust ICC (blue curve), the latter is based on the medians and median 
absolute deviations as opposed to means and standard deviations. The 
traditional ICC values are sorted by descending values of ICC, while all other 
curves in figure are rearranged to reflect the same glycan ordering. As shown, 
198 glycans have an ICC value greater than 90%.  The diagram also shows 
the rearranged coefficient of variations: the traditional CV (CD-std, green) and 
the robust version of CV (CV-mad, magenta). The relatively high ICC values 
for most of the glycans, as well as the low CV values assure that data in the 
Nickel Exposure Study qualify for further discriminatory analysis as far as the 
technical noise is concerned.
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by multiple cross-validations performed for various sizes of signatures, 
then by choosing the signature size which yields the optimal cross-
validated performance. This is shown in Figure 10, which presents 
the 100 times repeated 10-fold cross-validation. For the performance 
measure is again used the combined AUC value. The diagram shows 
that the optimal cross-validated AUC value can be achieved with three-
glycan signatures, which yields the predictive AUC value 0.836, while 
the training (observed) AUC value is 0.966. In addition, the diagram in 
Figure 10 presents the Kuncheva stability index (SI) [33], which reaches 
the maximum at two glycans. The reason SI drops after two glycans is 
that the third and fourth glycan (GID=133 and 136, Figure 11) alternate 
in various cross-validation folds. 

The stability of feature selection can also be illustrated by the 
frequency of occurrences of each feature in total of 100×10=1000 cross-
validation folds, presented in Figure 11. As seen the glycan GID=191 
has been selected 100% of times, while the glycans 264 and 133 were 
selected 97% and 93% of times respectively. After the third glycan, the 
frequencies drop significantly. 

Results and Discussion
In the previous section we have determined the subsamples 

associated with low and high level of Nickel in urine which can be now 
used in discriminatory analysis and in identification of putative glycan 
signature. In addition, we have determined the optimal signature size, 
which will least likely cause over fitting.

Discriminatory analysis

A first step in discriminatory analysis is to perform some 
univariate test for all glycans of interest. Since the PGA signals depart 
significantly from normal distribution (they even for the most glycans 
have multinomial distributions) we prefer to use some non-parametric 

test, such as the Wilcoxon-Mann-Whitney two-sample rank sum test. 
An additional benefit of this test is that the AUC values are directly 
linked with the p-values of the test. The same test was employed in 
the previous section, where the statistic used for sample selection and 
cross-validation was the AUC value.

The test was applied to quantile-normalized PGA signals obtained 
by median summarized replicates. The result for 10 glycans with lowest 
p-value, or highest AUC value is shown in Table 2. 

The first column of the table represents the glycan identification 
numbers (GID). The corresponding glycan structures are shown in 
Table 3. The signs of the z-statistic indicate whether the PGA signals 
decrease (negative Z), or increase (positive Z) with the increase of 
urinary Nickel levels. The relatively high AUC values suggest high 
discriminatory power of the samples. Low values of the false discovery 
rate (FDR) imply a good confidence in the results, especially for the 
first three glycans, which is in compliance with the finding in cross-
validation test. 

The sixth column of the table, AUCc, shows the cumulative AUC 
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Figure 9: Unbiased bootstrap tests performed on various sizes of low and 
high Urinary Ni samples ranging from 16 to 20, and various signature sizes 
ranging from 1 to 6. The statistic used for bootstrapping is combined AUC. 
The combined AUC is based on projection of features by multivariate logistic 
regression. The resampling was based on 500 permutations, as opposed 
to resampling with replacement, the former being more conservative. The 
criterion for selection of the best normalization method and the best sample 
cutoff value was the Achieved Significance Level of the test (ASL). The 
experiments were performed for several normalization methods but the 
diagram shows only the quantile normalization, which has delivered the best 
performance. As shown, the best result was obtained for cutoff value of 18, 
which yielded ASL < 0.01, thus giving very strong evidence against the null 
hypothesis. This cutoff value is used throughout this report.

Figure 10: Cross-validation of low and high urinary Nickel samples each 
having 18 observations. The diagram shows cross-validated and combined 
training AUC values for various signature set sizes ranging from 1 to 7. The 
combined AUC values were obtained by multivariate logistic regression. The 
algorithm is an unbiased, 100 times repeated, 10-fold cross-validation test. 
As shown, the optimal result is obtained for three glycans in the signature, 
resulting in cross-validated AUC = 0.836, while the training (observed) AUC 
value is 0.966. The diagram also shows the Kuncheva stability index (SI), 
which reaches the maximum at two glycans. The reason SI drops after two 
glycans is the fact that the third and fourth glycans (GID = 133 and 136, see 
figure 11) alternate in various cross-validation folds. 
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Figure 11: Feature count in 1000 feature selections (100 repetitions, 10 folds 
each repetition). The diagram shows that the glycan GID = 191 has been 
selected 100% of times, while the glycans 264 and 133 were selected 97% 
and 93% times, respectively. This diagram is another manifestation of feature 
selection stability.
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values obtained for combination of all glycans above each respective 
glycan. For example the cumulative value for combination of three 
top glycans, GID=191, 264, 133, is AUCc=0.966. The combination of 
glycans is performed by multivariate logistic regression. 

A convenient way to visualize the performance of the training set 
for the selected glycan signature can be achieved with the Immunoruler 
[34]. The immunoruler is a bar graph which presents the subjects with 
low (left bars in blue) and the subjects with high (right bars in magenta) 
urinary Nickel. The bars indicate the risk scores, which are quantified 
as probability of membership to the group of high urinary Nickel. 
The bars are sorted according to these probabilities for each group 
separately. The two shades of each color indicate the quartile regions. 
The risk scores are computed by combining the quintile-normalized 
signals for the signature determined above. The combination of the 
intensities associated with glycans from the signature is based on MLR. 
This kind of visualization makes apparent the number of false positives 
FP=1, false negatives FN=2, true positives TP=16 and true negatives 
TN=17, as well as specificity Sp=94.4% and sensitivity Sn=88.9%. The 

training precision is 91.7% and the observed AUC value is 0.966 
(Figure 12). 

The individual statistical significance of each glycan from the 
selected signature is evident from p-values and FDR shown in Table 2. 

Now we need to establish the statistical significance of the observed 
AUC=0.966 obtained for the combined three-glycan signature. This 
can be achieved with a bootstrap test. In order to keep a conservative 
approach we have performed the unbiased permutation bootstrap with 
1000 replications, rather than the bootstrap based on resampling with 
replacement. The empirical probability density function under null 
hypothesis is presented in Figure 13.

As shown, the two-sample confidence interval is CI=[0.757, 0.947], 
or one-sided upper bound CU=0.935. Consequently the achieved 
significant level is ASL=0.005, which gives a very strong evidence 
against the null hypothesis. 

Finally, the comparison of normalized, but not transformed 
intensities of low (diagrams at left) and high (diagrams at the right) 
urinary Nickel for selected signature glycans is presented in Figure 14. 
As shown, the intensities are decreasing in subjects with high level of 
Urinary Ni for glycan GID=191, while the effect is opposite for glycans 
GID=264 and 133, which complies with the Z-values in Table 2. The 
bottom diagrams show the combined intensities.

Association with other demographic factors

The focus of this study was to find association of Urinary Ni with 
the immune response measured by anti-glycan antibodies (AGA). A 
natural question after the analysis presented above is whether there is a 
possibility of association of AGA with other demographic factors, such 
as age, smoking and creatinine, listed in Table 1.

Since the age of subjects is of interest we are showing the result of 

GID Z p FDR AUC AUCc ICC
191  3.797 0.00015 0.0181  0.8704 0.8704 93.3
264 -3.497 0.00047 0.0353  0.8457 0.9167 89.1
133 -3.149 0.00164 0.0584  0.8148 0.9660 88.7
136 -3.058 0.00223 0.0602  0.8117 0.9722 82.2
135 -2.959 0.00309 0.0756  0.7932 0.9784 93.3
384 -2.927 0.00342 0.1490  0.7901 0.9815 94.5
134 -2.897 0.00377 0.0668  0.7901 1.0000 81.7
 93 -2.864 0.00418 0.0629  0.7840 1.0000 91.5
379 -2.864 0.00419 0.1186  0.7840 1.0000 94.5
137 -2.792 0.00524 0.0807  0.7932 1.0000 88.9

Table 2: Wilcoxon-Mann-Whitney two-sample rank sum test applied to screened, 
quantile-normalized median summarized data from the Nickel Exposure Study. The 
samples contain 18 subjects with high (≥ 9.98 mg/L) and 18 subjects with low (≤4.44 
mg/L) level of urinary Nickel. The meaning of columns are as follows: GID – glycan 
identification number, Z – z-statistic, p – p-value of the test, FDR – false discovery 
rate, AUC – area under the ROC curve, AUCC – cumulative AUC value obtained 
by combining the above glycans through multivariate logistic regression, ICC – 
corresponding Intra-class Correlation Coefficient computed for raw data. The sign 
of the z-statistic indicates downregulation (negative sign) or upregulation (positive 
sign) of normalized signals. The low values of FDR, at least for top three glycans, 
imply a good confidence in the results. The glycans in the table are sorted by 
ascending order of the p-value. The sixth column suggests that combining several 
glycans can considerably increase the AUC value. For example, combining three 
top glycans: GID = 191, 264, 133, gives AUCC = 0.966. Figure 13 shows a solid 
statistical significance for this AUC value.
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Figure 12: Immunoruler diagram showing the training risk scores for 18 
subjects with low (≤ 4.44 mg/L) and 18 subjects with high (≥9.98 mg/L) urinary 
Nickel. The risk scores are obtained by projecting the quantile normalized, 
median-summarized intensities which correspond to glycan signature GID = 
191, 264, 133, using multivariate logistic regression. The projection bias is 
determined under the assumption of equal cost of false positive and false 
negative rates. In order to facilitate the interpretation of data, the scores 
are sorted in ascending order for each sample and colored accordingly: low 
Urinary Ni in blue (left bars), the high Urinary Ni in magenta (right bars). Bars 
with different color shades represent quartile regions. The bar intensities 
correspond to the probability of belonging to the high urinary Nickel group, 
given the training data. This kind of visualization explicitly shows the number 
of false positives FP = 1, false negatives FN = 2, true positives TP = 16, and 
true negatives TN = 17, all obtained using the cutoff value 0.5. Consequently, 
specificity is Sp = 94.4% and sensitivity Sn = 88.9%. The training precision is 
91.7% and the observed AUC value is 0.966.

6’P-LacNAc: 6-phospate N-acetyllactosamine
Galβ4LacNAc: Galactoseβ1-4N-acetyllactosamine
sp4: glycine
aa: aminoacid
LacNAcβ3LacNAc: N-acetyllactosamineβ1-3N-acetyllactosamine 
LewisCβ3LacNAc:LewisCβ1−3N-acetyllactosamine

Table 3: Structures of glycans from Table 2.

GID Glycan Structure Generic Name
191 6-O-P-Galβ1-4GlcNAcβ 6'P-LacNAc
264 Galβ1-4Galβ1-4GlcNAcβ Galβ4LacNAc
133 Galβ1-4Glcβ-NHGlyAla Lactose-Gly-Ala
136 Galβ1-4Glcβ-NHGlyIle Lactose-Gly-Ile
135 Galβ1-4Glcβ-NHGlyAsn Lactose-Gly-Asn
384 Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ LacNAcβ3LacNAc
134 Galβ1-4Glcβ-NHGlyArg Lactose-Gly-Arg
93 Galβ1-4Glcβ-NHGly Lactose-Gly
379 Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ LewisCβ3LacNAc
137 Galβ1-4Glcβ-NHGlyNle Lactose-Gly-Nle
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linear regression of the Urinary Ni and the AGA for the most expressed 
glycan in signature, GID=191, with the age (Figure 15).

In order to decrease the influence of outliers we have used in the 
second diagram the log-transformed quantile normalized intensities. 
As shown the age does not correlate with the Urinary Nickel and 
with the AGA, at least for the data at hand (ρ=0.076 and ρ=-0.093, 
respectively).

Another variable of interest would be the smoking status of 
subjects. Unfortunately, the number of non-smoking subjects is only 
15 versus 74 smokers, which makes a proportion of smokers 5:1. The 
small nonsmoking group and high sample imbalance makes it difficult 
to draw any plausible conclusion.

Yet another variable from the list is creatinine. The bottom diagram 
of Figure 15 indicates that the Urinary Ni and creatinine are relatively 
highly correlated considering the variation in measured data (ρ=0.761), 
suggesting that these factors are potentially  interchangeable in our 
analysis. Therefore we have used Urinary Ni instead of creatinine 
which has offered slightly better performance in terms of stability of 
feature selection and statistical significance of combined AUC value. 
This however needs to be further investigated in a future study with 
larger samples.

Figure 13: The bootstrap test for low and high urinary Nickel samples (each 
of size 18). The test claims a strong statistical significance of the observed 
combined AUC value of 0.966. The bootstrap statistic used is combined AUC 
value obtained by multivariate logistic regression applied to three top selected 
glycans. Selection of glycans in each bootstrap iteration is performed by 
Wilcoxon ranking. The test is performed with 1000 resampling by permutation 
and the resulting test p-value is ASL = 0.005. The diagram shows the empirical 
distribution under the null hypothesis that the observed AUC value is no larger 
than any other replicated value. The null distribution has two-sided confidence 
interval CI = [0.757, 0.947], or one-sided upper bound CU = 0.935. As shown, 
the observed value is beyond both confidence limits. The empirical data is 
fitted with a Generalized Extreme Value distribution, which has offered the 
same p-value as the count of replications above the observed value.

Figure 14:  Sorted intensities for 18 subjects with low Urinary Ni (diagrams at 
left, blue bars) and for 18 subjects with high Urinary Ni (diagrams at right, pink 
bars) for three selected discriminatory glycans. The intensities are obtained 
by quantile normalization of median summarized intensities. As shown, the 
intensities are decreased in subjects with high level of urinary Nickel for glycan 
GID = 191, while the effect is opposite for glycans GID = 264 and 133. The bar 
graphs at the bottom show intensities combined with logistic regression. The 
relative intensity scale factor for each diagram is 106. 
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Figure 15: Linear regression of Urinary Ni with age (top diagram), quantile-
normalized and log transformed AGA for GID = 191 with the age (middle 
diagram), and Urinary Ni with creatinine (bottom diagram). The diagrams show 
R-squared values, regression coefficients with their p-values and the Pearson 
correlation coefficient. The low Pearson correlation coefficients in the first two 
diagrams indicate that there is no association of Urinary Ni or AGA with the 
age of subjects in this study. The relatively high correlation between Urinary 
Ni and creatinine suggests that these factors are potentially interchangeable 
in our analysis.
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Nickel exposure, glycosylation and AGA

The direct link between the nickel exposure, aberrant glycosylation 
and anti-glycan antibodies has not yet been established. Cellular 
glycosylation is a highly dynamic process carried out by a concerted 
action of hundreds of glycosyltransferases, glycosidases and other 
proteins, and it is most likely that any nickel-related molecular damage 
on the nucleic acid level that results in cellular malignant transformation 
will also result in aberrant glycosylation. Salnikow and Kasprzak [35] 
discuss the direct effects of the chronic exposure to nickel on altering 
glycosylation and assembly of the extracellular matrix components 
as well as assembly and function of surfactants and complement by 
depleting intracellular ascorbate. One of the mechanisms of nickel on 
the human innate immunity has recently been elucidated by the elegant 
demonstration that nickel directly triggers human Toll-like receptor 
4 (TLR4) and Pattern Recognition Receptor (PRR) signaling which 
results in the expression of multiple proinflammatory genes [36]. It is 
therefore likely that the expected modifications of glycosylation on the 
cell surface and in the extracellular matrix participate in the immune 
response that then targets molecules with the aberrant glycosylation 
pattern. 

The putative Ni-toxicity AGA-based signature identified here 
brings novel, and potentially very important, findings which reveal a 
significance of glycans some of which are yet known to the field of the 
disease biomarkers. For example, phosphorylated LacNAc, 6-P-Galβ1-
4GlcNAcβ (GID 191), a main discriminatory glycan in the putative Ni-
toxicity signature, has not been reported as a component of the glycome. 
This glycan has been synthesized in the laboratory of Prof. Nicolai 
Bovin as an analog of 6-O-Su-Galβ1-4GlcNAc(6’-O-Sulfate-LacNAc) 
to study the specificity and effect of charge versus moiety structure 
in antibody recognition of Galβ1-4GlcNAcβ and Galβ1-4GlcNAcβ-
containing negatively charged carbohydrates. To our surprise, while 
6-P-Galβ1-4GlcNAcβ has shown major decrease in antibody bindings 
in subjects with high versus low urinary Ni, its sulfated analog 6-O-Su-
Galβ1-4GlcNAc did not show any significant differences in antibody 
binding intensities between these two groups. We have also not 
found any significant correlation of antibody signal binding between 
6-P-Galβ1-4GlcNAcβ and other glycans present on our PGA. Because 
of the well-known toxic metal-chelating properties of phosphate, it is 
tempting to hypothesize that the antibodies binding on the PGA to 
this phosphorylated glycan, are in fact involved in the clearance of Ni-
chelating phosphorylated and glycosylated macromolecules. 

While N-acetyllactosamies, in particular poly-N-acetyllactosamies 
consisting of repeated units of Galβ1-4GlcNAc (GID 384), have been 
well-recognized as Tumor Associated Carbohydrate Antigens [37-39], 
association of Galβ1-3GlcNAc or LewisC (a disaccharide in GID 379) 
with malignant transformation is much less known. We have recently 
found antibodies differentially binding several glycans containing 
LewisC disaccharide in sera of patients presenting with Non-Small Cell 
Lung Carcinoma and Malignant Pleural Mesothelioma as compared 
with sera of control subjects. The LewisC glycans appeared in the 
putative signatures of these tumors, and we are currently investigating 
the significance of this glycan in malignant transformation. 

Highly correlated, differential antibody binding to several lactose 
(Galβ1-4Glc) glycans containing glycine or two amino acids as a spacer 
is a novel finding, and the true antibody target remains unknown. These 
molecules probably mimic aberrant molecular patterns on malignant 
cell surface where glycosphingolipids (inner Lac) play a significant role 
[39,40].

Based on the presented results, we hypothesize that the elevated 
level of nickel in urine signals a certain type of cellular and possibly 
systemic damage which is reflected by the differential expression of 
specific anti-glycan antibodies. The biological targets that include the 
glycans identified here by the antibody recognition remain unknown. 
Altogether, the findings reported here could lead to the further 
investigations of the mechanisms and biomarkers of an individual’s 
susceptibility to the nickel toxicity. 

Conclusion
The goal of this study was to investigate the evidence of immune-

response in workers of a Nickel refinery to hazardous levels of Nickel 
in their work place and the immune-responses reflecting elevated levels 
of Urinary Ni, as measured by anti-glycan antibodies (AGA). For this 
purpose we have evaluated immunoprofiles of plasma specimens from 
89 subjects, some directly exposed to high levels of airborne Nickel 
in a flash-smelting workshop of nickel refinery, and some exposed to 
only environmental sources of Nickel. The plasma specimens were 
processed using the new high-throughput platform based on printed 
glycan arrays (PGA) in the form of a glycochip developed in the 
Tumor Glycome Laboratory of NYU School of Medicine. The extensive 
quality analysis has shown that data obtained from PGAs qualify for 
subsequent discriminatory analysis: the mean Pearson inter-array 
concordance coefficient for test sera vas ρ=0.921 ± 0.03, proving a 
good platform inter-array concordance, and the mean coefficient of 
variation across PGA replicates CV=19.8 ± 2%, proving good intra-
array reproducibility. Similar analysis performed on actual Nickel data 
(89 arrays) has resulted in CV=21.6 ± 4.9%, and inter class correlation 
coefficient (ICC) larger than 85% for 260 glycans on the chip (≥ 88.7% 
for glycans found in the signature). The successful feature selection 
has been achieved after the entire collection of Nickel specimens 
were divided into two groups, one containing subjects with low (≤ 
4.44 µg/L) and the other containing subjects with high (≥9.98 µg/L) 
level of urinary Nickel. The screened and the quantile-normalized 
PGA signals were then used in univariate feature selection based on 
non-parametric Wilcoxon-Mann-Whitney rank-sum test, which has 
suggested the signature GID=191, 264 and 133. The number of glycans 
in the signature is limited to three glycans to avoid over-fitting, as 
determined by an unbiased 100 times 10-fold cross-validation test 
applied to various sizes of signatures. The signals associated with the 
signature can be combined using projection based on multivariate 
logistic regression, thus forming a single discriminative marker. The 
observed AUC value for this marker is 0.966. The statistical significance 
of this result has been confirmed with the permutation bootstrap test 
with 1000 repetitions which has provided a strong evidence against the 
null hypothesis at achieved significance level ASL=0.005.

The work presented in this paper entails additional investigation, 
such as: 

•	 Correlation (regression) of Urinary Ni concentration with 
the combined discriminatory marker and other confounding 
factors; for example, length of exposure and subjects’ other 
demographic and clinical information such as age, smoking, 
inflammation, presence of other diseases, etc. 

•	 Investigation of the impact of direct exposure to airborne 
Nickel on the level of antibodies against glycans as opposed to 
the environmental exposure.

•	 Linking the urinary Nickel levels with the potential clinical 
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presentation of disease symptoms. A wide range of urinary 
Nickel levels in refinery workers with a long-term, direct 
occupational exposure to Nickel suggests significant differences 
in individual biological responses to this occupational 
carcinogen.

All these investigations require stratification of the already 
small cohort, which would significantly reduce the operative sample 
sizes, thus lowering the statistical significance and the plausibility 
of inference. Therefore much larger study cohorts are required. In 
addition, more extensive clinical and demographic information is also 
needed, including the follow-up health status information of the study 
subjects. 
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