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Opinion 
Abiotic stresses, primarily drought, salinity, heat, cold, flooding and 

ultra-violet rays are causing widespread crop losses worldwide. Because 
of the complexity of the stress-tolerance traits, conventional breeding 
techniques have met with little success in fulfilling the world food-
demands [1-3]. Therefore, to face the abiotic stresses, novel and potent 
approaches should be devised and engineering of phytohormones could 
be a method of choice to increase the crop productivity. Recent research 
has shown that phytohormones including the classical well-known 
auxins, cytokinins, ethylene, gibberellins and newer members including 
brassinosteroids, jasmonates and strigolactones may prove to be potent 
targets for their engineering for producing abiotic stress tolerance crop 
plants. Considering phytohormones being key-regulators of plant 
growth and development as well as mediators of the environmental 
stress-responses [4], hormone metabolism and signaling process are 
the potential targets for manipulation to obtain enhanced abiotic stress 
tolerance. Amongst various phytohormones, Abscisic Acid (ABA) is 
perhaps the most sought-after hormone for engineering abiotic stress 
tolerance in crop plants owing to its identity as stress-hormone and vast 
array of functions it carry out under environmental stress conditions, 
particularly drought. It is credited as an essential messenger involved in 
stress adaptive response of plants and regulates the expression of stress-
responsive genes involved in accumulation of compatible osmolytes, 
synthesis of Late Embryogenesis Abundant (LEA) proteins, dehydrins 
and other protective proteins beside antioxidant enzymes [5,6]. 

As a result, many of the key ABA biosynthetic pathway enzymes 
have been manipulated for conferring improved abiotic stress tolerance 
in resultant transgenics [7]. Transgenic Arabidopsis constitutively 
overexpressing the zeaxanthin epoxidase gene involved in ABA 
synthesis from isopentenyl pyrophosphate (IPP) and β-carotene 
exhibited enhanced drought and salinity tolerance [8]. Similarly, Park 
et al. [9] reported enhanced osmotic stress tolerance by overexpressing 
an ABA-responsive stress-related gene in Arabidopsis. C-Repeat 
Binding Factor (CBF) and/or dehydration-responsive element-binding 
(DREB) genes have been manipulated to confer improved drought 
tolerance. For example, overexpression of CBF1/DREB1B from 
Arabidopsis was able to improve tolerance to water-deficit stress in 
tomato [10]. Furthermore, when driven by three copies of an ABA-
responsive complex (ABRC1) from barley HAV22 gene, the resultant 
transgenic tomato expressing CBF1 showed enhanced tolerance to 
chilling, water deficit, and salt stress, while maintaining the normal 
growth and yield under non-stressed conditions as compared to 
their control counterparts [10]. However, on some occasions, though 
over-expression of gene(s) involved in ABA biosynthesis/catabolism 
pathways resulted in increased drought tolerance, but with undesired 
growth penalties due to pleiotropic effects even with the use of 
inducible promoters [11]. To offset this, Zhang et al. [12] overexpressed 
CRK45, a stress-inducible kinase involved in ABA signaling, and the 
resultant transgenics showed enhanced drought tolerance but with a 
more tight control of ABA levels and signaling, indicating the role of 
CRK45 in fine-tuning of ABA levels. Recently, transgenic poplars were 
produced via overexpressing Arabidopsis YUCCA6 gene (a member 
of the YUCCA family of flavin monooxygenase-like proteins), which 
is involved in tryptophan-dependent IAA biosynthesis pathway and 
known to respond to environmental cues, under the control of stress-
inducible SWPA2 promoter [13]. The transgenic lines displayed auxin 
overproducing phenotypes and exhibited tolerance to drought stress, 
associated with reduced levels of reactive oxygen species. However, as 

biosynthetic pathways and convergence points for cross-talk are still 
not clear with great understandings, there is a further scope to increase 
our understandings in this regard and identify novel genes encoding 
phytohormone metabolisms to be targeted for engineering abiotic 
stress tolerance in crop plants. Nevertheless, the recent findings have 
opened various avenues in transgenic breeding via targeting ABA for 
conferring abiotic stress tolerance in important crop species.
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