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Abstract

In recent years pigments have been identified in human nutrition to have a positive effect on human health and
reduction to oxidative stress exposure. In the media it has become common wisdom that colourful food is naturally
better to consume for humans and animals. Now recently it has been shown that pigments aid microbial species as
well, and conversely these microbial pigments may result in more morbidity and mortality for the human host
infected by these colourful microbes. Similar pigments that are available for consumption in food are also present in
many bacterial species. Presumably these pigments aid the bacteria in their survival in the environment and within a
human or animal host. Importantly, interference with the production of certain microbial pigments results in some
bacterial strains that are more susceptible to environmental stressors and the host immune system. These studies
seem to indicate a role of pigments for in vivo survival by microbial species.
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Pigments have evolved in nature to serve a variety of purposes. In
higher animals colour can signal sexual fitness as brightly coloured
birds attest to [1]. But pigments can serve a more fundamental
purpose that includes protection from oxidative stress, absorption of
light in plants and the retina in animals, and protection from harmful
UV light [1]. The appearance to have colour may be incidental to the
chemistry of these pigments which contain varying amounts of
conjugated double bonds [1]. These double bonds serve to absorb light
which leads to the phenomenon of colour. In addition, conjugated
double bonds are efficient antioxidants, reducing oxidative stress
inside cells that can result from UV light exposure or other stresses [2].
For bacteria where there are no visualization systems, pigments
functioning in other capacities is only logical [1].

Carotenoids may have evolved to reinforce bacterial membranes.
Conjugated double bonds provide rigidity, that when inserted into a
membrane serve to stabilize it. Carotenoids seem to have evolved
within archaebacteria serving mechanical functions [1]. In addition
carotenoids present within the ecto-skeleton of crustaceans and
similar animals serve to protect and reinforce the various proteins
present within these structures. Carotenoids complexed with proteins
in certain ova can also prevent protein digestion from native proteases
[1].

In pathogenic bacteria pigments have been implicated in bacterial
survival and virulence. The gram positive pathogen Staphylococcus
aureus is named such because it constitutively produces a golden
yellow pigment [3]. When genes encoding synthetic enzymes
responsible for the production of staphyloxanthin are deleted, the
bacterium appears colourless. More significantly these mutant bacteria
are more susceptible to killing via host immune cells, presumably due
to less resistance to reactive oxygen species produced within the
phagosomes of these cells [4]. In addition these mutant strains are

much less virulent in a mouse model of skin abscess or during
disseminated infections. In a study where the genes responsible for
carotenoid production were transferred to a group A streptococcus,
this new recombinant streptococcal strain was both pigmented and
produced enlarged skin lesions in a mouse model of infection [5]. A
cholesterol synthesis inhibitor was revealed to inhibit carotenoid
synthesis in S. aureus when placed in the growth media of the
microorganism [6]. The bacteria grown in the presence of the
cholesterol synthesis inhibitor also had increased sensitivity to
immune cell killing and reactive oxygen species [6].

While some species of bacteria produce pigment constitutively,
others produce pigment in response to environmental stresses.
Synechococcus species accumulate carotenoids in response to low iron
stress [7]. Methanol exposure can induce pigment production in
Acinetobacter wofii [8]. Oxidative stress may possibly be increased due
to methanol exposure and carotenoids may decrease the effects of this
stress. Vibrio cholera makes melanin under hyperosmotic stress as
well as acidity [9,10]. This response of increased melanin may aid
survival in aquatic environments as well as within the upper
gastrointestinal tracts of infected humans. In addition, pigments have
been shown to combat mutagenesis and act as scavengers of reactive
oxygen species thus protecting DNA [11]. Norbixin is a carotenoid
from seeds of a tropical shrub from Brazil. This pigment supplied to
Escherichia coli protects these microbes from damage due to UV light
exposure as well as reactive oxygen species [2].

The genus Mycobacterium includes many bacteria that produce
pigments [12-14]. The Runyon classification system groups
mycobacteria based on growth rate and pigment production [15].
Carotenoid pigment production in mycobacteria was previously
thought to only be produced constitutively or in response to UV light
exposure [16]. Interestingly, recently it has been shown that
mycobacteria also produce pigment in response to acidic stress at pHs
5.0-6.0 [17]. The pigment has a similar absorption profile to other
carotenoids and Mycobacterium smegmatis carotenoid production
genes were upregulated by acidic stress at pH 5.5 and 6.0 [17]. This
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pigment production may protect mycobacteria from acidic stress or
concurrent oxidative stress found in the environment or in the host.

Some species of mycobacteria produce pigment constitutively and
are designated as scotochromogens [18]. Other mycobacteria such as
M. smegmatis and Mycobacterium goodii produce pigment only after
extended growth on agar plates of 7-10 days [15,19]. These species are
considered to be late pigment producers. Recently both these species
have been shown to produce pigment at 3 days growth on agar plates
at pH 5.5 and 6.0 but not 7.0 (Figure 1). Perhaps the late formation of
the pigment is actually in response to an increase in acidity in the agar
media due to extended incubation and metabolism by the
mycobacterial cells [17]. As the mycobacteria metabolize sugars
present within the media, they also produce excess protons which
cause the media to acidify. Other rapid growing mycobacteria were
also shown to produce pigment in response to acidic pH at 5.5-6.0,
including Mycobacterium abscessus, Mycobacterium fortuitum and
Mycobacterium chelonae [17]. M. chelonae and M. abscessus were
also exposed to pH 5.0, however only M. abscessus continued to
produce the pigment and M. chelonae ceased production of the
pigment possibly due to the toxic effects of the more extreme pH on
pigment production [17]. Several slow growing species such as
Mycobacterium avium intracellulare and Mycobacterium avium also
produce pigment in response to acidic stress at pH 5.5-6.0 [17,20, 21].
As these environmental mycobacterial species may encounter acidity
in stagnant water in bogs and swamps, rivers, streams, brooks, and
certain soils, pigment production may protect mycobacteria against
environmental stress. Pigment production may aid in the resistance to
acidity and help these mycobacteria survive.

Figure 1: M. smegmatis were patched onto 7H10 agar media
containing ADC (albumen dextrose, and sodium chloride) at pH
5.5 (left) or pH 7.0 (right) and were incubated for 72 hours at 37°C.
The bacteria on the left plate appear to be contain a bold o yellow
colour

The promoter driving expression of carotenoid synthesis genes has
regions that respond transcriptionally to exposure to light in
Mycobacterium marinum [22,23]. In M. smegmatis, exposure to
acidity transcriptionally upregulates the homologue of this promoter
region [17]. In addition, at least for M. smegmatis, pigment
production is thought to be controlled by the sigma factor SigF
[24,25]. In M. smegmatis a deletion in the sigF gene resulted in a
bacterium which not only cannot produce pigments, but a mutant

mycobacterium sensitive to oxidative stress as well [24,26]. Likely the
presence or absence of carotenoid compounds dictates resistance to
oxidative stress. In addition, lack of sigF increases transformation
efficiency indicating the cell envelope has become potentially more
porous [24]. Possibly carotenoid compounds lead to stabilization of
the cell envelope, as well as making this structure less traversable. With
the lack of stabilizing carotenoids, DNA may be able to travel through
the cell wall/membrane more easily. SigF may also regulate other cell
wall/membrane components that are altered within the mutant
mycobacterium, and it remains to be determined what contribution
carotenoid compounds make to cell wall/membrane stability. In
Mycobacterium tuberculosis sigF is thought to control genes that aid
in persistence and survival in late stage disease and a deletion in the
sigF gene results in decreased mycobacterial burden in vivo [27].

Many mycobacteria including M. tuberculosis inhabit the
phagosomes of macrophages [28-30]. When rapid and slow growing
environmental mycobacteria enter the human body they are
phagocytosed by macrophages where the mycobacteria often reside
within the phagosomes. Resistant individuals may quickly eliminate
these mycobacteria via many antibacterial mechanisms which include
an increase in acidity to pH 5.0 and possibly rebounding to pH 6.0-6.5
[30]. In addition reactive oxygen intermediates are produced that also
can damage these mycobacteria. In susceptible individuals these
antibacterial mechanisms may be weakened and resistance
mechanisms possessed by the environmental mycobacteria may allow
for the successful replication of the pathogens in vivo. Pre-priming via
environmental acidity to induce carotenoid compound induction may
increase resistance to acidity in vivo, as well as resistance to oxidative
stress. In fact, recently when carotenoid production was inhibited in
M. smegmatis by a sigF disruption, it did increase sensitivity of these
mycobacteria to oxidative stress [24,26]. Carotenoids are well known
to detoxify oxidative stress due to their double bonds [1]. In addition
carotenoids may stabilize the cellular membrane/cell wall of
mycobacteria to decrease penetration of all types of environmental
stresses including acidity and reactive oxygen intermediates [1].

Previously Mycobacterium tuberculosis was found to produce a
pigment in response to para-aminobenzoic acid (PABA), however this
was thought to be a metabolite of PABA [31]. Another pigment was
also observed in response to para-aminosalicylic acid exposure [32]. In
addition, M. tuberculosis seems to produce a non-carotenoid pigment
that is cell wall associated, and this is produced due to long term
growth in anaerobic culture [33]. These pigments may increase
survivability under stressful conditions of low oxygen by serving to
stabilize the outer membrane and the cell wall. It remains to be seen if
M. tuberculosis also produces carotenoid pigments in response to
acidic stress.

Pigment production in bacterial pathogens may increase their
virulence. These pigments have been shown to increase resistance to
oxidative stress, killing by immune cells, and mutagenesis. Pigments
seem to increase virulence of pathogens by increasing invasiveness,
survival in immune cells, and size of local abscesses. In fact in M.
marinum pigmentation is linked to a locus important in intracellular
survival [22]. Thus the finding that pigments in environmental
mycobacteria are produced under conditions of acidity which can be
found in the phagosomes of macrophages or the centers of caseating
granulomas indicate that pigments may be important for pathogenesis
[17]. However it is well known that mycobacteria are inherently
resistant to a variety of environmental insults and stressors due a thick
and waxy cell wall and possibly other genetic factors. Pigments may
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augment this resistance in certain circumstances possibly to increase
survivability in the face of microbe-external insults. In the future we
may be able to inhibit environmental mycobacterial growth in vivo by
inhibiting pigment production such as has been shown for S. aureus
[6].
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