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Abstract

Physiological controls on cell adhesion mediated by E-cadherin have been frequently focused in the proliferation
restraining. This can be given both by contact inhibition via the regulation of homotypic cadherin expression, by the
control of adhesive strength, or even for the activation of proliferation mediated by growing factors. However, few
studies have been conducted to evaluate the possible effects of hormones on the cell-cell adhesion mechanisms,
during animal development and the maintenance of adult tissues and organs. Thus, the analysis of thyroid hormone
influence on E-cadherin adhesive potential result highly challenging and promising field of research in cell biology.
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Introduction
Growth factors are responsible for the crosstalk between cell

proliferation, migration, and adhesion. As was early determined, the
binding of the hepatocyte growth factor (HGF) to its receptor c-Met,
causes cell-cell dissociation coupled to endocytosis of both E-cadherin
and c-Met [1-3]. Fibroblastic growth factor (FGF) also induces E-
cadherin endocytosis along with Fibroblastic growth factor receptor-1
(FGFR1), via a classical clathrin-mediated pathway [4]. In contrast,
stimulation by Epidermal growth factor (EGF) causes Rac-1-
dependent E-cadherin internalization by macropinocytosis,
internalized-E-cadherin association with the sorting nexin 1 (SNX-1)
preventing its degradation and facilitating the recycling back to the cell
surface for AJs maintenance (Figure 1) [5].

Therefore, different growth factors-signaling pathways within the
same cell can lead to very different fates for the E-cadherin
internalization and surface-stabilization, possibly to achieve
differentiated cell effects. Moreover, the co-regulation of E-cadherin
and growth factor signaling is particularly prominent in various
examples of Mesenchymal-Epithelial Transition (EMT) and
tumorigenesis. Tumoral growth factor (TGFβ) signaling seems to be a
key regulator for E-cadherin expression loss in response to Ras-Raf
signaling during EMT [6-31]. E-cadherin mutants, in turn, reduce
interactions between E-cadherin and EGFR, inducing EGFR
dimerization, resulting in increased cell surface motility, enhanced
activation of tumoral cells, and also E-cadherin internalization [3].

In contrast to growth factors-signaling on cell junctions, the
hormonal physiological regulation of junctional communication has
been scarcely analyzed. The most studies have evaluated hormonal
regulation of gap junction-proteins expression, formation and/or
maturation [13,15,32-50]. A long time ago we have focused on
unraveling the functioning of E-cadherin mediated epithelial adhesion
junctions during vertebrate development, and under hormonal
influence [18,19,26-29]. Interesting, recently it was detected that the
distribution/expression of N-, E- and VE-cadherin’s as well as α-
catenin and F-actin were significantly altered in pancreatic islet cells of

obese and diabetic mice [14]. In addition, it was found that the
glucocorticoids promote respiratory epithelial barrier integrity by
inducing protocadherin-1 expression [35].

Figure 1: Interaction of Cis dimers.

Genomic and Non-Genomic Actions of Thyroid
Hormones

It is widely recognized that thyroid hormones (TH) modulate
energy metabolism, having a great influence on growth and
development by independent mechanisms [51-61]. While thyroid
calorigenesis is influenced predominantly via nuclear receptors that
mediate synthesis of mitochondrial respiratory complexes and cell
membrane sodium-potassium ATPase, it has been suggested that many
of the TH effects over development are mediated via growth factors
[16]. TH binding to thyroid hormone-nuclear receptors (TR), which
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belong to the nuclear hormone receptor superfamily of transcription
factors [39], stimulates growth hormone (GH) synthesis, and probably
potentiates GH stimulation on somatomedin (SM) production as well
as, the erythropoietin (EP) production, being nerve growth factor
(NGF) and epidermal growth factor (EGF), key players for erythrocyte
production, autonomic and central nervous system maturation, and
epidermal development, respectively [16].

Figure 2: Gene transcription.

The cellular action of THs through TRs involves, the conversion of
L-T4 to T3 and this binds to heterodimers of retinoic acid X-receptors
(RXRs)-TRs, which together, in turn, bind to T3 response elements
located within the genomic regions of target genes, mediating TH-
regulated gene expression [41,45,62]. The general model for TH action
in the nucleus propose that in the absence of T3, the TR-RXR
heterodimeric complexes interact with co-repressor proteins inhibiting
the target gene transcription (Figure 2). When nuclear T3
concentration increases, it binds to receptor complexes displacing the
co-repressors and recruiting the co-activators to activate the T3-
dependent target genes transcription. In addition to TR-mediated
genomic actions, it has been revealed that THs also exert rapid non-
genomic actions mediated by cell membrane receptors. Thus, integrin 
αvb3 is a cell membrane specific receptor for T4 and T3, which activate
the mitogen-activated protein kinase (MAPK) intracellular cascade
(Figure 2) [11,12]. TH-dependent MAPK activation modulate the
membrane potential by regulation of ion transporters channels, Na+/K
+ exchanger, Ca2+-ATPase, regulating the sub-membrane actin
cytoskeleton and the intracellular protein trafficking [12,33]. TH-
activated MAPK, in turn, can rapidly translocate to the nucleus
inducing serine phosphorylation of TRs, thereby promoting
angiogenesis and tumor cell proliferation [10,11]. THs also promote
the protein serine phosphorylation via MAPK, regulating
transcriptional activity of p53, STAT1a and STAT3 (Figure 2)
[42,43,56].

The thyroid hormone receptor domain of integrin αvβ3 is at, or near
the Arg-Gly-Asp (RGD) recognition site [2,9]. Another aspect to be
considered is that T3 exerts its actions depending on the isoform of the
receptor involved. Thus, TRα regulate the mitochondrial gene
expression and metabolic function [61]. In addition, TRα or TRβ
forms could act through the formation of a cytoplasmic complex with
the PI3K-p85 subunit inducing the protein kinase B/Akt nuclear
translocation (Figure 2) [23]. THRA and THRB genes encode the TRα
and TRβ isoforms respectively, which are ubiquitously expressed [62].
Moreover, depending on species, tissue or experimental systems, there
are predominant TR cell isoforms, and each gene can generate
different proteins using different promoters and/or alternative splicing
[55,62].

Xenopus have two TRα genes and two TRβ genes due to tetraploid
condition although when Xenopus laevis is a functional diploid
organism, its genome shows several features reminiscent of its
allotetraploid origin. Alternative splicing of the TRβ transcripts gives
rise to two different isoforms for each TRβ gene [55]. In mammals, two
genes encode for the T3 nuclear receptors TRα and TRβ [63]. Each
gene generates different proteins using different promoters and/or
alternative splicing [43,55,63]. The TRα locus codes for four isoforms,
but only TRα1 can bind both T3 and DNA [1-63]. TRα1 and TRα2
result from the alternative splicing of a primary transcript [34]. TRΔα1
and TRΔα2 result from the alternative splicing of a secondary
transcript, starting from an internal promoter that is located in the
intron 7 [8]. TRα2, TRΔα1, and TRΔα2 behave as antagonists of TRα1
on its target genes through a mechanism that has not been
characterized yet [8,34,48]. TRα1 and TRα2 have a widespread,
ubiquitous expression, whereas the short TRΔα1 and TRΔα2 isoforms
display restricted expression patterns [17]. The TRβ locus codes for
four isoforms, including three receptors, TRβ1, TRβ2, and TRβ3, that
result from three different transcription start sites [17,22]. The TRΔβ3
lacks the DNA-binding domain and behaves like a competitive
inhibitor of the three TRβ and TRα1 receptors. Moreover, TRβ3 and
TRΔβ3 were only described in the rat genome [60]. TRβ1 displays a
ubiquitous expression and is the main TR isoform expressed in the
liver. TRβ2 expression is restricted to the pituitary gland, the
hypothalamus-TRH neurons, the developing retina, and the inner ear.
TRβ3 is expressed in liver, kidney and lung, whereas TRΔβ3 is present
in skeletal muscles, heart, spleen, and brain [17,60]. Interesting, almost
all the TR isoforms are expressed in intestinal epithelial cells [47,48].

Usually, the T3-concentrations that lead to TRE-dependent
responses occur in the picomolar range, whereas the minimum T3-
concentrations, which activate Akt and eNOS are somewhat higher,
within the TR-dissociation constant value (i.e., 0.1-1 nM) [62]. It is
unknown why higher concentrations of T3 are required for Akt and
eNOS activation compared with that of TRE-dependent responses
[23]. Through the tissular differential TR-expression, TRα1 or TRβ1
mediate the activation of PI3-kinase/Akt/eNOS or PKB-mTOR-
p70(S6K) pathways [7,23]. Additionally, due most of T3 is bound to
carrier proteins such as thyroxine-binding globulin (TBG), albumin,
and thyroid-binding pre-albumin in vivo, only 0.3% of T3, and 0.03%
of T4 are unbound and free to interact with TR, and to produce
biological activity [60]. In murine thyrocytes, TRβ1 is able to inhibit
the Wnt/β-catenin pathway, through its interaction and consequent
sequestration of β-catenin, resulting in cell proliferation down-
modulation (Figure 3) [20].
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Figure 3: Cell proliferation down-modulation.

Nowadays, numerous evidences shown the TH parallel action on
membrane receptors, cytoplasmic partners and HT-target genes, such
as genes involved on adhesive contacts, and cell proliferation/
differentiation functions [21,23,27,28,36-38,44 ,49,57,58].

Thyroid Hormones as Specific Regulators of Cell
Adhesion Mediated by E-Cadherin

Analogous to the positive T3-responsive RTHB gene (RTβ), we
found that E-cadherin, β- and α-catenin genes are upregulated at 24 h
T3-postreatment [6,19,51,54]. A similar performance is exhibited by
the Rac1 small GTPase. On the contrary, occludin and Rap1
expression become more significant at day 5 of T3-treatment. Similar
to IFABP behavior, a negative T3-responsive gene [53], the Rho small
GTPase decreased at day 5 of T3-treatment. The p120-catenin, Arp2
actin-nucleation protein, Cdc42 and ZO-1 mRNA levels remain
practically unchanged both at 24 h and day 5 of T3-treatment, as well
as during spontaneous metamorphosis [18,19]. Supporting these
results, putative TRE were found in X. laevis E-cadherin, β-catenin, α-
catenin and Rac1 genes, but not in the p120-ctn gene, using
bioinformatics tools [18]. While one TRE was found in 5’UTR and
intron-1 of E-cadherin, and β-catenin and Rac1 genes respectively,
three TRE were found in α-catenin gene (TRE1 in 5’UTR and TRE2
and TRE3 in intron-1) [18].

The duo-expression analysis of guanine nucleotide exchange factors
(GEFs) and GTPase-activating protein (GAP) for each small GTPase
pairs: Rac1-TIAM/GAP12; Rap1-C3G/SPA1; Cdc42FRG/Rich and
RhoA-GEF18/p190-GAP was less conclusive, but its genes do not
respond directly to T3. Only Rac1-GAP12 showed a significant
physiological increase at 5 days of T3- induction correlated with
decrease of Rac1 and increase of Rap1. These results mainly suggest
non-genomic control mechanisms on their GEFs/GAPs and/or others
involved [19]. Moreover, the morphometric ultrastructural analysis of
X. laevis digestive tract provided very relevant data. While the
numbers of tight junctions (TJ) are not modified during T3-treatment,
supporting their role in the maintenance function of the epithelial
barrier from larval stages to juvenile stages, adherens junctions (AJ)
and desmosomes (Dm) led the major changes in epithelial remodeling.
At 24 h of T3 treatment while AJ number remain constant, Dm
significantly decreased. However, the cell-cell distance of AJ and Dms

significantly increased, suggesting the increase of epithelial adhesive
plasticity, promoting cell proliferation and migration during
gastrointestinal remodeling. At 5 days of T3-induction in agreement
with a differentiated epithelium, the cell-cell distances of AJ and Dm
return to those of mature epithelia, now of juvenile anurans. In
contrast, a significant decrease of AJ and a significant increase of Dm
were produced correlated with an impressive increase of apical
complex junctions (ACJ), features of epithelial barrier strengthening
(Figure 1). In addition, the morphometric IHC analysis has
demonstrated that T3 exerts a positive regulatory effect on E-cadherin
and β- and α-catenin expression and de novo synthesis in stomach
epithelium during metamorphosis (Figure 2) [28].

From these results we can conclude that T3 mediates genomic
response on E-cadherin, β-, α-catenin and Rac1 gastrointestinal genes,
rapidly responding to adhesive plasticity and promoting lamellipodia
formation, necessary during epithelial remodeling. In contrast, the
master regulator of junctional E-cadherin stability, p120-catenin does
not respond to T3, whereas Rap1 indirectly reacts to T3 during the
reestablishment of mature epithelium. Rap1 is involved in the
regulation of epithelial cell adhesion and migration. Rap1 is required
for homotypic E-cadherin interactions [24]. Ligation of the
extracellular domain of E-cadherin enhances Rap1activity, which in
turn is necessary for the proper targeting of E-cadherin molecules to
maturing cell-cell contacts [24]. In the presence of Rap1, afadin/
nectin-partner and p120-catenin reduce endocytosis of E-cadherin
that is not engaged in homophilic interactions and thereby further
accumulates non-trans-interacting E-cadherin to the nectin-based cell-
cell adhesion sites for the formation of AJ [25]. Rap1 contributes, in
turn, to intestinal epithelial barrier stabilization in vivo [59]. Afadin is
important for proper Rap1 activation and control of epithelial barrier
function under basal and inflammatory conditions in vivo and in vitro.
However, the exact mechanism by which Rap1 regulates these
processes remains to be elucidated in future studies. Some studies
suggest that active Rap1 stabilizes the barrier by dampening acto-
myosin contractility through the regulation of RhoA/ROCK-mediated
actin dynamics [52].

Conclusion
Recently, we have proven that T3 is a key mediator of genomic

response on E-cadherin, β-, α-catenin and Rac1 X. laevis
gastrointestinal genes, which rapidly responding to adhesive plasticity,
promoting lamellipodia formation, necessary during epithelial
remodelling. Conversely, the master regulator of junctional E-cadherin
stability, p120-catenin does not respond to T3, whereas Rap1 indirectly
reacts to T3 during the re-establishment of mature epithelium. These
behaviours open the possibility for alternative treatments to control
proliferative disorders as colon cancer and other epithelial dysfunction
diseases.
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