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Abstract

The yellow-spined bamboo locust Ceracris kiangsu Tsai, which is important migratory pest in forestry, is endemic
to China. However, its population genetic structure and demography are little known. Here, we used mitochondrial
ND2 gene to examine the population genetics and phylogeographical structure of C. kiangsu across its distribution
range. To test for hierarchical population genetic structure in C. kiangsu, we performed analyses of molecular
variance (AMOVA) in ARLEQUIN; the median-joining network was generated for all haplotypes by using software
Network; phylogeny of all haplotypes was reconstructed by using Neighbour-joining (NJ) in MEGA and maximum-
likelihood (ML) in PAUP. Our results showed none significant values of the population genetic structure for C.
kiangsu. Phylogenetic analyses exhibited some shallow genealogy, which were corresponding to networks of C.
kiangsu haplotypes. All the analysis results did not divide the bamboo locust haplotypes into independent groups.
High gene flow together with a recent and sudden population expansion characterized the population structure of
this species. Populations of this species are most likely originated in the FJ, HR and TY locations. The Wuyi and
Qingling mountains coupled with other mountains in southern China were not effective barriers limiting gene
exchange between neighbouring populations on both sides of these mountains.
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Phylogeography; Population structure

Introduction
People recognize that the impact of Pleistocene glaciation cycles on

floral and faunal distributions is a major force shaping population
diverging patterns in many organisms [1,2]. For phytophagous insects
feeding on a limited range of host trees, distribution data for hosts
define likely distributions for the insects [3]. Therefore, phytophagous
insects that are widespread in southern tropical and subtropical zones
are ideal models for the study of how past glaciations had affected
population differentiation and speciation. For the agricultural insects,
it is important to understand the geographical origin of cryptic species
and invasive species, to reveal the population distribution of the pest
and design the effective control measures and prevent the further
diffusion [4,5].

Locust is one of the most important agricultural pest insects.
Phylogeographic and population genetic studies of the migratory
locust Locusta migratoria of Asia have been reported [6-8]. Zhang and
Kang [7] chosen microsatellite loci to look into the genetic diversity
among geographical populations of the migratory locust. Zhang et al.
[8] chosen eight nuclear microsatellite loci as markers to study
relationships of substructured populations in Chinese L. migratoria,
suggesting the Locust populations in China should be divided into
three distinct population groups : Hainan population, Tibetan
population and the North China population. Ma et al. [9] explored the
worldwide genetic structure and phylogeography of the locust
populations based on the sequence information of complete

mitochondrial genomes of 65 individuals and three mitochondrial
genes of 263 individuals from 53 sampling sites; although the
migratory locust can migrate over long distances, their results revealed
high genetic differentiation among geographic populations. They
believed that historical climatic fluctuations played a primary role.
Additionally, Lovejoy and the rest have used mitochondrial DNA to
explain the biogeography of the desert locust Schistocerca gregaria
[10].

The yellow-spined bamboo locust, Ceracris kiangsu, is endemic to
China. C. kiangsu distributes in a broad range across southern China,
from Yunnan to Jiangsu [11,12]. This bamboo locust is one of the most
economically important pest insects affecting Chinese bamboo forest,
with outbreaks commonly causing near total mortality of bamboo
within the susceptible age classes [11-14]. They mainly feed in large
groups on the leaves of bamboo plants, often causing new culms to die
and decrease in producing new shoots. Also, when lack of food for this
species damages maize, rice corn, and so on [13,15]. However, there
are no available phylogeographical data on C. kiangsu. Such data
urgently need to unfold the evolutionary history and contemporary
population genetic structure of this locust, and to guide developing
proper management and control tactics for the bamboo locust [16-19].

In this study, we chosen mitochondrial DNA as a molecular marker
to build the phylogeographical structure and phylogenetic
relationships of C. kiangsu among the geographically separated
populations. The reason of selecting mitochondrial ND2 gene is the
third variable gene, after ATPase 8 and ND6 genes in the mitochondria
[20]. And recent studies demonstrate that ND2 gene is a powerful
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molecular marker for phylogenetic analysis and the population
structure research [21-24].

Here, we used ND2 sequence data to examine: 1) the population
genetic structure of C. kiangsu among its distribution regions; 2)
whether phylogeographical structure exists in the bamboo locust
populations in China; 3) the important factor to affect historical
population demography of this locust on native scale.

Materials and Methods

Specimen collection and DNA extraction
The specimens used in this study were collected by some

collaborators during July 2008 to August 2009, from 13 locations in
China, shown in Figure 1 and Table 1. The sampling scheme has almost
covered the species’ distribution ranges. To avoid bias in our inferences
about the phylogeography [25], each sample site was analyzed with a
sufficient number of individuals (1220), except Guizhou sample site
with only two individuals collected. The specimens were individually
sealed in 50 mL modified centrifuge tubes, and preserved in 100%
ethanol until DNA isolation.

Total genomic DNA was extracted from one hind leg using a
standard proteinase K/phenol extraction protocol [26], and stored at
-30 until ready for use.

Figure 1: Map showing the approximate locations of the sampling
sites. Sampling localities and code are listed in Table 1.

Amplification and Sequencing
Polymerase chain reactions were performed with primers ND2F118

(5′-CTCTCATTTATTCCC ATATTAG-3) and ND2R908 (5′-
GGTTTAAGTGTCATTGATAGTG-3), designed to amplify a
fragment of about 790 bp of the ND2 gene. Amplifications were
performed on a DNA Engine® Peltiter Thermol Cycler (BIO-RAD) in
50 μL reaction volume composed of: 29 μL of sterilized distilled water,
5 μL of LA PCR Buffer II (Takara), 5 μL of 25 mM MgCl2, 6 μL of
dNTPs mix (2.5 mM each), l.5 μL of each primer (10 μM), 1.5 μL of

DNA template and 0.5 μL (2.5 U) of TaKaRa rTaq polymerase (TaKaRa
Bio Inc, Dalian, China). The PCR program was: initial denaturation at
94 for 4 min followed by 35 cycles of 30 s at 94, 30 s annealing at 50, 1
min at 72 and a subsequent 10 min final extension at 72.

PCR products were tested by electrophoresis on an agarose gel.
After a single and bright target band was observed in the agarose gel,
the PCR product was purified by using the V-gene PCR Clean-up
purification Kit. If more than one band present, the appropriately sized
PCR product was cut from the gel and extracted using a Biospin Gel
Extraction Kit (Shanghai Sangon Biotech Co., Ltd.). Some specific
products were ligated to the pGEM-T Easy Vector (Promega, Madison,
WI, USA). Big Dye Terminator Cycle Sequencing Kits (Applied
Biosystems, USA) were used for circularly sequencing the all PCR
products, by using the same primers as for PCR amplification.

The ND2 sequences were checked, assembled and aligned by using
the software BioEdit version 7.0.9.0 [27] and SeqMan (DNASTAR Inc.,
Madison, Wisconsin, USA). The assembled sequences were blasted at
the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/guide/) to corroborate if they were target
fragments.

Data Analysis
All sequences were aligned using MEGA 6.0 [28] with the Clustal W

option and default parameters. Some basic sequence statistics were
also computed using MEGA. Haplotype identification, haplotype
diversity (Hd), nucleotide diversity (π) [29] and the number of
polymorphic sites (S) were estimated in DnaSP version 5.00.04 [30].

We performed analyses of molecular variance (AMOVA) in
ARLEQUIN 3.11 (Excoffier L. Zoological Institute, University of
Berne, Switzerland) with 1,000 permutations to examine partitioning
of genetic diversity within and among populations, to test for
hierarchical population genetic structure in C. kiangsu,. We calculated
FST using haplotype frequencies only to evaluate genetic partitioning
among populations.

Two tests of selective neutrality, Tajima’s [31] and Fu’s [32], and
mismatch distribution analyses were performed using ARLEQUIN
3.11 to detect recent demographic signatures of population expansions
[33]. To compare observed distributions with those expected under the
expansion model, we calculated the sum of square deviation (SSD) and
the Harpending’s raggedness index (HRI) [34].

To represent phylogeographical structure among the haplotypes, a
median-joining network was generated for all haplotypes by using
software Network version 4.5.1.6 (Fluxus Technology Ltd.), with the
median-joining method [35].

Phygenetic analyses of all haplotypes were reconstructed by using
neighbour-joining (NJ) in MEGA 6.0 [28] and maximum-likelihood
(ML) in PAUP* 4.0 b 10 [36]. The NJ tree was constructed with both
bootstrap and interior branch support tests. ML analysis was carried
out by a heuristic search of 10 random addition analyses with tree-
bisection-reconnection (TBR) branch swapping. The HKY substitution
model [37] were obtained by modeltest version 3.7 [38] based on the
akaike information criterion (AIC). The confidence levels of the nodes
in the NJ and ML trees were estimated using 1000 bootstrap pseudo
replicates. Two individuals from the known closely related species
Ceracris nigricornis [39] were chosen as outgroups.
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Results

Genetic diversity
We obtained 736 bp fragments of the ND2 gene from 211

individuals after doing alignments. We detected 43 polymorphic sites
and discovered that 17 were parsimony informative in the 736 bp
fragment, while 26 sites were singleton variable sites. The nucleotide
frequencies of this gene were 0.371, 0.143, 0.393 and 0.093 for T, C, A
and G, respectively. From all the 211 sequences analyzed, 53 different

haplotypes were detected, of which 40 were unique. The most common
haplotype was widespread and represented 48.3% of the sequenced
individuals. Haplotype and nucleotide diversity were 0.7508% and
0.198％, respectively, for the whole samples. The genetic diversity of all
samples examined varied from 0.100% (CH population) to 0.297%
(HR population) for nucleotide diversity and from 0.386 (CH
population) to 1.000 (HG population) for haplotype diversity.
Nucleotide and haplotype diversities at each sample site, as well as the
number of haplotype in each sample, were listed in Table 1.

Code Sample site Latitude/longitude N Nh π (%) Hd Fu’s Fs Tajima's D SSD HRI

AH Shucheng, Anhui
Province 31°20′08″ N/116°37′55″ E 17 5 0.170 0.684 -0.775 -1.369 0.018 0.113

CH Jinyun Mountain,
Chongqing City 29°52′04″ N/106°21′06″ E 19 5 0.100 0.386 -1.980 -2.110 0.008 0.207

FJ Jianou, Fujian
Province 27°01′21″ N/118°18′17″ E 12 9 0.257 0.939 -6.061 -1.138 0.016 0.112

GN
Guangning,
Guangdong
Province

23°38′04″ N/112°26′26″ E 19 10 0.199 0.737 -5.453 -2.231 0.008 0.038

GX Quanzhou, Guangxi
Province 25°55′43″ N/111°04′22″ E 15 5 0.179 0.676 -0.841 -1.007 0.165 0.138

HG Mayang River,
Guizhou Province 28°35′32″ N/108°23′45″ E 2 2 0.136 1.000 0.000 0.000 0.000 0.000

HR Huarong, Hunan
Province 29°31′51″ N/112°32′25″ E 18 10 0.297 0.902 -4.656 -1.159 0.010 0.083

JX Shicheng, Jiangxi
Province 26°19′35″ N/116°20′36″ E 19 10 0.269 0.860 -4.896 -1.338 0.005 0.055

QZ Quzhou, Zhejiang
Province 28°58′06″ N/118°52′16″ E 15 8 0.274 0.838 -3.045 -1.554 0.016 0.083

RA Rongan, Guangxi
Province 25°17′32″ N/109°32′21″ E 17 8 0.138 0.669 -5.495 -1.762 0.001 0.059

SC Changning, Sichuan
Province 28°34′56″ N/104°55′16″ E 20 7 0.117 0.584 -3.711 -1.570 0.003 0.063

TY Taoyuan, Hunan
Province 28°54′09″ N/111°29′20″ E 18 11 0.256 0.889 -7.098 -1.502 0.007 0.072

ZJ Nanjing, Jiangsu
Province 32°04′14″ N/118°50′57″ E 20 9 0.152 0.747 -6.118 -1.429 0.011 0.117

Total 211 53 0.198 0.751 -28.037 -2.349 0.001 0.038

Number of samples (N), number of haplotypes (Nh), haplotype diversity (Hd), nucleotide diversity (π), Fu’s Fs, sum of square deviation (SSD), and Harpending’s
raggedness index (HRI) of ND2 for Ceracris kiangsu

Table 1: Sampling sites, latitude/longitude.

Population Structure and Demographic Analysis
The results showed the lack of genetic structure among the C.

kiangsu populations (FST=0.02). When we regarded each sample site
as one population, the AMOVA based on haplotype frequencies
revealed that variation among populations accounted for 2.23% of the
total variations, while the variation within populations was 97.77% of
the total variations. We divided samples of one province into one
group, the analysis results also showed that almost all the differences in
ND2 sequences were between individuals within a population

(var=97.62%, FST=0.02), while none of the variation could be
attributed to differences between populations within a group
(var=-0.83%, FSC=-0.01) or between groups (var=3.21%, FCT=0.03).
All population pairwise FST for ND2 were small or zero with
significant P values except the 14 pairs (CH and QZ, CH and AH, CH
and HR, CH and FJ,CH and TY, CH and GX, CH and JX, CH and HG,
CH and ZJ, GN and HR, RA and HR, HR and SC, SC and FJ, and FJ
and GX) (marked with * in Table 2).
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Population code CH GN RA QZ AH HR SC FJ TY GX JX HG ZJ

CH — 0.162 0.252 0.009 0.009 0.000 0.369 0.000 0.009 0.108 0.009 0.288 0.063

GN 0.035 — 0.883 0.369 0.369 0.027 0.676 0.126 0.225 0.216 0.514 0.991 0.856

RA 0.011 0.000 — 0.243 0.730 0.054 0.901 0.063 0.252 0.396 0.414 0.991 0.892

QZ 0.114 * 0.000 0.010 — 0.261 0.072 0.135 0.550 0.459 0.117 0.378 0.901 0.378

AH 0.084 * 0.000 0.000 0.016 — 0.153 0.378 0.162 0.378 0.387 0.324 0.550 0.901

HR 0.219 * 0.060 * 0.068 * 0.033 0.025 — 0.009 0.505 0.568 0.207 0.568 0.739 0.126

SC 0.003 0.000 0.000 0.034 0.000 0.116 * — 0.063 0.072 0.144 0.072 0.486 0.541

FJ 0.195 * 0.024 0.046 0.000 0.025 0.000 0.084 * — 0.820 0.063 0.703 0.991 0.297

TY 0.137 * 0.007 0.019 0.000 0.005 0.000 0.048 0.000 — 0.171 0.945 0.766 0.505

GX 0.083 * 0.012 0.000 0.038 0.003 0.030 0.037 0.066 * 0.029 — 0.342 0.577 0.306

JX 0.115 * 0.000 0.004 0.000 0.000 0.000 0.038 0.000 0.000 0.012 — 0.991 0.622

HG 0.068 * 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 — 0.820

ZJ 0.058 * 0.000 0.000 0.000 0.000 0.027 0.000 0.007 0.000 0.006 0.000 0.000 —

Negative FST values were set to zero. Bonferroni-corrected significance level=0.05. Abbreviations are defined in Table 1 legend and in the main text.

Table 2: Pairwise ND2 FST (below diagonal) and corresponding P values (above diagonal).

Mismatch distributions for the all-individuals of ND2 consisted of a
distinct unimodal curve. The other indices were Sum of Squared
deviation (SSD), 0.001 (P=0.709), and Harpending's Raggedness index
(HRI), 0.038 (P=0.740). Tajima’s D analysis revealed negative values
(D= -2.349), and the Fu’s test of neutrality based on 1000 simulating
samplings was significantly negative (FST= -28.037). All these results

suggest that a recent colonization and population expansion in C.
kiangsu (Figure 2) has happened. When the mismatch analyses were
separately implemented for the 13 locations, expansions were found in
the 10 locations (FJ, GN, RA, HR, JX, QZ, SC, CH, TY and ZJ) (the
figure not presented here).

Figure 2: Distribution of the number of pairwise differences between haplotypes of ND2 of C. kiangsu. HRI-Harpending’s raggedness index.
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Phylogeography and Phylogenetic Analysis
The median-joining network displayed a star-like pattern, where the

one most common haplotype is located on the star's center and the
derivatives are connected to it by short branches. The most common
haplotype was found in all the sampling sites, and the second common

haplotype was found only in the ten sampling sites. Other haplotypes
were derived directly or indirectly from these shared common
haplotypes, so the haplotypes could not be clearly separated into the 13
geographical populations (Figure 3).

Figure 3: Network of ND2 haplotypes for C. kiangsu constructed in NETWORK. Each open circle represents one haplotype with size of circle
proportional to abundance of each haplotype. Small open circles with a label mv represent intermediate haplotypes. Haplotypes from the same
location had the same color(s).

The phylogenetic reconstruction based on ND2 data (Figure 4) also
supported this result. The phylogenetic trees resulting from ML and NJ
analyses exhibited some shallow genealogy (Figure 4). The
phylogenetic analysis results highly supported monophyly of C.
kiangsu (bootstrap value=100). Within this lineage, haplotype 3 (Hap
3) and haplotype 36 (Hap 36) from Chongqing City are sister to the

remaining haplotypes, but monophyly for the remainders of the
lineages was supported with lower bootstrap values. Specimens with
identical geographic origin did not necessarily group together. No
distinct phylogenetic groups were detected. These results were
corresponding to the median-joining network of haplotypes for C.
kiangsu.
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Figure 4: Phylogenetic tree of ND2 gene of C. kiangsu. Values above branches represent ML bootstrap values; values below branches represent
NJ bootstrap values. Bootstrap values of 50% or greater are shown.

Discussion

Polymorphism and population genetic structure
The average A-T content of the ND2 gene was 0.711, which is

consistent in general to be highly A+T biased in insects [40-43]. The
overall nucleotide and haplotype diversities of ND2 gene in C. kiangsu
were 0.198% and 0.7508, respectively, in which the haplotype diversity
was similar to many other insects, but the nucleotide diversity was
much lower than those reported for the many other insects [44-46]. In
the present study, high haplotype diversity and low nucleotide diversity
reveal that a rapid demographic expansion from a small effective
population size occurred in the bamboo locust [47]. High haplotype
diversity may also show multiple refuges and secondary contact of
populations from different refuges [48]. The FJ, HR and TY
populations had the higher nucleotide and haplotype diversities, so we
assumed that these locations may be the refuges in the quaternary
glaciations [48]. It is worth to pay attention to the highly genetic
diversity of HG population, and we speculate that a few samples may
be the most important cause.

AMOVA analyses revealed the majority of the total variation of
ND2 was found in individuals within a population, and that variation
among populations accounted for 2.23% of the total variation. With
other analysis results (mismatch distributions and neutrality tests) for
C. kiangsu, these results are the signature of no significant population
genetic structure. When the populations were treated separately,
AMOVA analyses of all location pairwise FST of ND2 showed small or
zero with significant P values except the 14 pairs (CH and QZ, CH and
AH, CH and HR,CH and FJ,CH and TY, CH and GX, CH and JX, CH
and HG, CH and ZJ, GN and HR, RA and HR, HR and SC, SC and FJ,
and FJ and GX). AMOVA results also showed a lack of genetic
structure among populations .The low-level of overall and pairwise
population differentiation values suggested that these populations have

not been geographically and genetically isolated to some extent. The
reason may be the total samples experienced rapid dynamic and the
secondary contact of haplotypes following the expansion [48].

Phylogeography and Demography
Although the sampling locations in this study separate at least 200

km apart, no obvious phylogeographical pattern was revealed for the
bamboo locust in the all-sample-ing sites. Both phylogeny and median
joint network analyses did not divide the bamboo locust haplotypes
into distinct groups coinciding with any of the other populations in the
all-sampling locations. Shared haplotypes were found from all
sampling locations, with a lack of interpopulation genetic variation in
this locust, suggesting there are no effective barriers to gene flow
among the populations. The median joint networks also supported the
hypothesis of a recent expansion in size from a smaller number of
founders, since the common ancestral haplotype located on the centre
of the star-like network, and other haplotypes derived directly or
indirectly from these shared common haplotypes. Coalescence theory
[49] predicts the probability that a haplotype is the oldest is equal to its
frequency in the sample, and the expected rank of haplotypes by age is
equal to their rank by frequency,. In the present study, the most
common haplotype is identified as base by the derived haplotypes from
median joint networks. The phylogenetic trees exhibited some shallow
genealogy, suggesting coalescence to the most common recent
ancestor. This suggestion can be interpreted because of a low long-term
effective population size, which most likely result from changes in
population size through time, or extinction and decolonization of
subpopulations [50].

The most common haplotype of ND2 sequences were
geographically widespread. Other rare haplotypes were similar to the
common haplotypes. Occurring of low frequency haplotypes in the
widely separated locations implies high gene flow [51]. Usually, highly
migratory species are expected to have slight phylogeographical
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structure among their distributional ranges [52], because strong gene
flow has the effect of homogenizing genetic variation over geographical
populations, counteracting random drift, selection and mutation
[52-55]. Although the bamboo locust is widespread in the southern
China, our results also revealed that populations separated over 1,000
km in East China did not show genetic differentiation and there is no
isolation by distance within this region. According to classical
population genetic theory, these results indicate there are strong gene
flows [7]. These results reflect that Wuyi and Nanling mountains
coupled with some other mountains in southern China were not
effective barriers limiting gene exchange between neighbouring
populations on both sides of these mountain ranges. As a forestry and
agricultural pest, the utility of pesticide will play a significant affection
on the phylogeographical structure of C. kiangsu.

Mismatch distribution analyses found the observed distributions of
mutation differences among haplotypes for the whole ND2 sequences
as a whole fitted the expected distribution under a model of sudden
population expansion (Figure 2). Tajima’s D analysis and Fu’s test of
total samples of molecular marker revealed negative values (Table 1).
Results showed that selective neutrality was rejected for the DNA
marker. These negative values are not necessarily signatures of non-
neutral molecular evolution since many authors have noted that
Tajima’s test is also sensitive to other, such as recent population
bottlenecks or population growth, which will drive the value of
Tajima’s D towards more negative values [57,58]. Indeed, significatively
negative values for Tajima’s D statistic and Fu’s test in the present study
most likely resulted from recent population growth. All these results
suggest there is a recent colonization and population expansion in C.
kiangsu. We speculate the great fluctuations in climatic and ecological
or environmental conditions during the Quaternary glaciations played
an important role in the population demography.

Conclusions
Moderate to relative high haplotype diversities and low nucleotide

diversity, the wide geographic distribution of common haplotypes and
not strait geographic distribution of rare haplotypes, and the absence
of phylogeographical structure based on the ND2 data, suggest that
high gene flow is the most important factor infecting the genetic
structure of the C. kiangsu populations. A recent and sudden
population expansion of this locust is also supported by the median-
joining network. Populations of this species are most likely originated
in FJ, HR and TY populations, because the populations in these
regions harbor greater genetic diversities and a higher number of
haplotypes. Shallow phylogenetic trees are evidences of high
movement rate between neighbouring habitats, colonization and long-
distance migration. Therefore, we think that changes on the climatic
and ecological or environmental conditions during the Quaternary
glaciations play an important role in the genetic diversity and
population demography for C. kiangsu. This finding is important to
expand the perspective of control measures for this bamboo locust,
because it suggests that controls might be effective only if did
simultaneously for the whole distribution range. In the future, we
prone to sampling more specimens and selecting more rapidly evolving
markers such as mitochondrial DNA control region or microsatellites,
which may be useful to confirm these hypotheses.
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