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Abstract

One of the major challenges in the genomic era is annotating structure/function to the vast quantities of se-

quence information now available. Indeed, most of the protein sequence database lacks comprehensive annota-

tion, even when experimental evidence exists. Further, within structurally resolved and functionally annotated

protein domains, additional functionalities contained in these domains are not apparent. To add further complica-

tion, small changes in the amino-acid sequence can lead to profound changes in both structure and function,

underscoring the need for rapid and reliable methods to analyze these types of data. Phylogenetic profiles pro-

vide a quantitative method that can relate the structural and functional properties of proteins, as well as their

evolutionary relationships. Using all of the structurally resolved Src-Homology-2 (SH2) domains, we demon-

strate that knowledge-bases can be used to create single-amino acid phylogenetic profiles which reliably anno-

tate lipid-binding. Indeed, these measures isolate the known phosphotyrosine and hydrophobic pockets as inte-

gral to lipid-binding function. In addition, we determined that the SH2 domain of Tec family kinases bind to lipids

with varying affinity and specificity.  Simulating mutations in Bruton’s tyrosine kinase (BTK) that cause X-Linked

Agammaglobulinemia (XLA) predict that these mutations alter lipid-binding, which we confirm experimentally.

In light of these results, we propose that XLA-causing mutations in the SH3-SH2 domain of BTK alter lipid-

binding, which could play a causative role in the XLA-phenotype. Overall, our study suggests that the number of

lipid-binding proteins is drastically underestimated and, with further development, phylogenetic profiles can

provide a method for rapidly increasing the functional annotation of protein sequences.

Introduction

The three fundamental components of cells include pro-

teins, lipids, and nucleotides.  Proteins provide the machin-

ery for lipid organization, storage, synthesis, and catalysis;

thus, they have developed a vast array of functional do-

mains capable of orchestrating these tasks. Further, lipids

regulate a multitude of protein functions (protein-binding,

enzymatic activity, trafficking, etc) and can even be integral

to protein folding (e.g. proteins which contain lipids within

their globular core).  Therefore it is reasonable to consider

that protein/lipid interactions are extremely common, and

likely exist in most proteins.  However, the number of pro-

teins, either known or predicted to interact with lipids, is

relatively small; only ~5% of proteins in the human proteome

are annotated for the key word “lipid-binding” in the NCBI

protein database.

The study of Zhu et al., (2001) provides a clear demon-
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stration that current computational methods for annotating

lipid-binding function are insensitive (Zhu et al., 2001). In

this study, these authors identified 124 lipid-binding proteins

from the yeast proteome using a high-throughput lipid-bind-

ing assay. Formal searches of these sequences using Gen-

eral Profile (GP) , Hidden Markov Model (HMM) (Letunic

et al., 2004; Sonnhammer et al., 1997;  Mulder and Apweiler,

2007), Support Vector Machine (SVM) (Cai et al., 2003),

and Gene Ontology (GO) algorithms (Harris et al., 2004)

predict lipid-binding for 3.23%, 3.23%, 12.9%, and 4.8% of

this dataset, respectively.  These results underscore the need

for improved functional measures.

We recently proposed that phylogenetic profiles provide

a unified framework for the study of structure, function,

and evolution (Ko et al., 2008). A phylogenetic profile of a

protein is a vector, where each entry quantifies the exist-

ence of the protein in a different genome (Kim and

Subramaniam, 2006; Ranea et al., 2007; Pellegrini et al.,

1999), or the existence of an alignment within a profile knowl-

edge-base (Ko et al., 2008). We and others have demon-

strated that these approaches are applicable to whole mol-

ecule (Single Profile Method), to an isolated domain (Mul-

tiple Profile Method), and to single amino acids. Indeed,

these methods have been used to infer protein function (Ko

et al., 2008; Ranea et al., 2007; Pellegrini et al., 1999; Cokus

et al., 2007), protein structure (Ko et al., 2008), protein evo-

lution (Ko et al., 2008; Chang et al., 2008), and even inter-

action partners (Kim and Subramaniam, 2006). Despite

these successes, phylogenetic profiles are a relatively un-

tapped resource, and the accuracy and resolution which can

be obtained with these measures has yet to be determined.

Towards this end, we present here a study which exam-

ines the ability of Single Amino Acid Phylogenetic Profiles

(SAPPs) to identify the structural and functional determi-

nants of lipid-binding within a structurally resolved set of

SH2 domains. Our results demonstrate that, even at this

nascent state, the Gestalt Domain Detection Algorithm Ba-

sic Local Alignment Tool (GDDA-BLAST) has the capac-

ity to accurately predict lipid-binding domains (Ko et al.,

2008; Mustafa  et al., 2009; van Rossum  et al., 2005;

Caraveo et al., 2006; van Rossum  et al., 2008). We demon-

strate here that SAPPs provide more refined functional

measurements for lipid binding. In support of this supposi-

tion, we examined a benchmark dataset of structurally re-

solved SH2 domains, some of which have been determined

to bind lipids. Our results suggest that most, if not all, SH2

domains have lipid-binding capacity. Further, our analyses

reveal that the SH2 domain of Tec family tyrosine kinases

bind to lipid, and that simulation of XLA-causing mutations

drastically alter the lipid-binding specificity and affinity of

BTK. These simulations also isolate amino acids which are

integral to, and surround the known phosphotyrosine and

hydrophobic binding pockets.  These data correlate well with

the NMR study of Tokonzaba et al., (2006), which demon-

strated that these pockets were involved in binding

phosphatidylinositol (Sonnhammer et al., 1997; Mulder and

Apweiler, 2007) bisphosphate (PIP(4,5)
2
) by the SH2 do-

main contained in Abelson murine leukemia viral oncogene

homolog 1 (c-abl), a distant relative of  Tec kinases

(Tokonzaba et al., 2006).  Moreover, phylogenetic analysis

of Tec kinase SH2 domains indicate that this region is evolv-

ing more rapidly than the other homologous domains con-

tained in this family, suggesting this is a site of functional

innovation. We envision that the methods presented here

can be (i) extended to any functional class (e.g. nucleotide-

binding, ATP-ase, phosphatase, etc), (ii) be harnessed to

decode the most challenging protein datasets, and (iii) scaled

up to screen proteomes and the vast quantities of sequences

being obtained from metagenomic studies and other large

scale sequencing projects.

Results

Generating Single Amino Acid Phylogenetic Profiles

Generating phylogenetic profiles using GDDA-BLAST

begins by compiling a set of position specific scoring matri-

ces (PSSM, i.e. domain profiles) that the query sequence is

compared to (Fig 1a) (Ko et al., 2008). These profiles can

be obtained from any protein-sequence knowledge-base

source (e.g. Protein Data Bank (PDB), Pfam, SMART,

NCBI Conserved Domain Database (CDD)) (Marchler-

Bauer et al., 2005; Letunic et al., 2004; Sonnhammer et al.,

1997). In this study, we curated 131 profiles from CDD

which are functionally related to peripheral lipid-binding

(PLB) (Ko et al., 2008; van Rossum et al., 2008). These

profiles contain multiple structural domains over a wide-

range of lipid-binding specificity/affinity.

Following this step, query sequences are embedded with

a standard length of consensus sequence obtained from PLB

PSSMs and then aligned to the parent PSSM using rps-

BLAST(see (Ko et al., 2008; Chang et al., 2008) for a com-

plete description).  This embedding and alignment strategy

is the reverse of the COBBLER algorithms developed by

(Henikoff and Henikoff, 1997; Grundy and Bailey, 1999).

These authors demonstrated that embedding query se-

quences within PSSMs or consensus sequences rapidly and

significantly improves the performance of multiple algorithms

that employ PSSMs (e.g. PSI-BLAST, Smith-Waterman

etc). GDDA-BLAST (i.e reverse-COBBLER) embeds

PSSM consensus sequences within the query, thereby im-

proving the performance of rps-BLAST (i.e. reverse PSI-

BLAST).

From these results, each profile alignment above thresh-

old is defined within the query sequence to create bound-

aries for our subsequent pairwise alignments. Next, to opti-

mize our positional information, we re-align each profile
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Figure 1: Single amino-acid phylogenetic profile generation and hierarchical clustering of structurally resolved

SH2 domains.

(a)Workflow of using GDDA-BLAST to generate SAPPs using 131 profiles associated with peripheral lipid-binding activity.

(i) For a query, embedded alignments are generated with each of 131 PLB profiles using GDDA-BLAST (i.e. reverse-

COBBLER). These alignments are filtered using the thresholds of %identity and %coverage. (see Methods) A profile

boundary in the query sequence is defined as overlapping the positive seeded alignments excluding seed over the query. (ii)

By Smith-Waterman algorithm, the optimal local alignment is generated between a profile boundary region of query and a

consensus sequence of PLB positive profile (i.e. a profile with at least one positive seeded alignment to the query). Based on

the local alignment, each amino acid is scored as +2 for identities and +1 for positive substitution.  For a query, the previous

steps are repeated for every PLB profiles. Then, raw score at each amino acid is normalized by subtracting the average raw

score of all amino acids. Finally, a SAPP (Single Amino-acid Phylogenetic Profile) of a query, which is a vector of normalized

positional scores at each amino acid, is generated. (iii) The distribution of each amino acid and the number of amino acids with

chemical properties (hydrophobic, positive charge and negative charge) from SAPP are incorporated into N (query) by M

(compositional profile) matrix(Nikolaidis et al., 2007)). Then, using the matrix, the query sequences are hierarchically clus-

tered using Pearson’ correlation metrics.

(b) Dendrogram of SH2 domains hierarchically clustered using peripheral lipid-binding SAPPs.  We observe 3 major clades

in this dendrogram, all of which receive robust statistical support.  We also observe that each clade contains SH2 domains

which have been demonstrated to bind lipid experimentally.  These results suggest that all of the SH2 domains tested contain

lipid-binding activity.

above threshold with the query sequence using the Smith-

Waterman algorithm (Smith and Waterman, 1981). Raw

scores for each residue are calculated by scoring a value=2

for identities and value=1 for positive substitutions from each

alignment. The raw scores can be analyzed in multiple ways.

For example, they can be plotted as a histogram to identify

residues which are prominent in our measurements. Addi-

tionally, these results can be used to create an N (query) by

M (compositional profile) matrix. The compositional profile

is comprised of the 20 amino acids, plus three chemical clas-

sifications (hydrophobic, positive charge, and negative

charge). These matrices can be used together to hierarchi-

cally cluster sequences that infer structural/functional re-

latedness. (see Methods for complete description).

SH2 Domains as a Model System for Lipid-binding

We chose to base our study on SH2 domains as (i) there

are numerous structures for these domains in the PDB li-

brary, (ii) they are a prominent class of well-studied adaptor

domains (Smith and Waterman, 1981), and (iii) a select few
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have been determined to bind lipids experimentally

(Tokonzaba et al., 2006; Machida and Mayer, 2005); al-

though, none are annotated for this function computationally

(e.g. SMART, Pfam, InterProScan, CDD, SVM).  The posi-

tive controls in this dataset include the lipid-binding SH2

domains from c-abl, the p85 subunit of phosphoinositol-3-

kinase (PI3K), and phospholipase C-γ2 (PLCγ2). We ana-

lyzed the 45 structurally resolved SH2 domains with GDDA-

BLAST and plotted the results (see Methods and Supple-

mental Table 1). We observe many PLB peaks in regions

of these proteins which are known to bind lipid (e.g. the

catalytic core of PLCγ, the pleckstrin homology domain in

SH2B adaptor protein 2 etc), the SH2 domains contained in

these proteins, as well as other areas which have no anno-

tation.

Following, we generated PLB SAPPs and created an N

(SH2-domain) by M (compositional profile) matrix and per-

formed hierarchical clustering with Pearson’s correlation.

From these results, we observe three robust clades, all of

which contain positive controls for lipid-binding.  The corre-

lation scores in this analysis are robust, and demonstrate

that all of the SH2 domains in our analysis can be related

using PLB SAPPs. Upon closer examination, we observe

that three members of the tyrosine kinase expressed in hepa-

tocellular carcinoma (Tec) Kinase family (BTK, bone mar-

row kinase gene on the X chromosome (BMX), and T and

X cell expressed kinase (TXK)) cluster together, and are

near both c-abl and PLC-γ2 in the dendrogram. Interest-

ingly another family member, IL2-inducible T-cell kinase

(ITK), lays in another clade, with its nearest neighbor spleen

tyrosine kinase (Syk), a distant relative of ITK. These SH2

domains lie in close proximity to the N-terminal low-affinity

lipid-binding SH2 domain of PI3K. Interestingly, in all cases

of proteins containing two SH2 domains, the N-terminal SH2

domains are always separated from the C-terminal SH2

domains, suggesting that these domains are evolving dis-

tinct functionalities.  Indeed, the C-terminal high-affinity lipid-

binding SH2 domains of PI3K are clearly separated from

the N-terminal SH2 domains, which might be expected based

on the difference in their activity (Machida and Mayer,

2005).

Modeling the Structural and Functional Determinants

of the SH2 Domain of BTK

Based on the clustering of the Tec kinase family, we con-

tinued our computational analysis on these proteins. The

Tec family of tyrosine kinases is composed of numerous

members that are important to metazoan growth and devel-

opment (Rameh et al., 1995). Typically, these proteins are

comprised of an N-terminal pleckstrin homology (PH) do-

main, followed by a Tec, SH3, SH2, and kinase domain

(Rameh et al., 1995). The PH domain in BTK is known to

bind phosphatidylinositol (Letunic et al., 2004; Sonnhammer

et al., 1997; Mulder and Apweiler, 2007) trisphosphate dur-

ing B-cell receptor stimulation.  Further BTK’s SH2 do-

main can bind phosphorylated tyrosines such as the B-cell

linker protein (BLNK). As both SH2 and SH3 domains have

been demonstrated to also provide protein-protein interac-

tion domains, it is speculated that these domains enable BTK

to form multiple interactions within the B-cell receptor com-

plex.   Importantly, mutations in BTK that cause XLA have

been identified in all of these domains (Schwartzberg et al.,

2005).

Determining how these small mutations disrupt protein

function is a daunting task. In general, unless a function has

already been assigned to the protein domain containing the

mutation, isolating a functional outcome is not feasible.

Further, even if a function has been determined for the do-

main of interest, unknown secondary and tertiary functions

can exist, making data analysis and interpretation quite dif-

ficult. For example, many of the XLA-mutations which have

been tested experimentally do not alter the kinase activity

of BTK significantly (Schwartzberg et al., 2005). In sup-

port of this observation, a study in a -/-BTK chicken B-cell

line of 7 different XLA-mutations revealed only wild-type

BTK could restore Ca2+ signaling in response to B-cell re-

ceptor stimulation (Valiaho et al., 2006). These data sug-

gest that BTK contains multiple non-kinase activities that

are required for proper function.

We previously demonstrated that GDDA-BLAST SAPPs

can model the presence or absence of ATP-binding between

closely related ankyrin repeats as well as amino acids that

are chemically and structurally important to ATP binding

(Ko et al., 2008). The same protocol also identifies lipid-

binding in the catalytic pocket of serine racemase, and amino

acids important for PIP
2
 binding (Mustafa et al., 2009). We

wondered what effect XLA-mutations in the SH2 domain

of BTK would have on our computational models. Initially,

we simulated the 13 known XLA-causing mutations in the

BTK SH2 domain and generated their SAPPs using the

PLB. We were surprised to see that nearly all of the muta-

tions tested (see Supplemental Table 1) altered our lipid-

binding signals, with R288W (a mutation that inhibits

phosphotyrosine binding), having the largest change in sig-

nal (Fig 2a right).

Next, we compared the simulated SAPPs with the WT

BTK sequence all-against-all to determine which amino acids

signals changed the most in each simulation (absolute val-

ues, see Methods). The results plotted in Figure 2a reveal

residues within the phosphotyrosine binding pocket and the

hydrophobic pocket. These data are in excellent accord with

the results of the study of Tokonzaba et al which demon-

strate that both of these pockets are involved in

phosphotyrosine-binding and lipid-binding by the SH2 do-

main of c-abl (Supplemental Figure 1a) (Tokonzaba et al.,



Journal of Proteomics & Bioinformatics  - Open Access                
Research  Article       JPB/Vol.2/March 2009

J Proteomics Bioinform       Volume 2(3) : 139-149 (2009) - 143

 ISSN:0974-276X   JPB, an open access journal

2006). Further, many of the XLA-causing mutations them-

selves scored high in this analysis, in particular G302 and

N365.

To ensure these results are not random, we performed

Monte Carlo randomization of the SH3-SH2 domain se-

quence in BTK 105 times and repeated our GDDA-BLAST

analyses (see Methods). We observe that, on average, the

normalized PLB signal generated by this analysis has a con-

stant rate of appearing at random (3.62 +/- 0.1 s.d.), which

is well below what we observe using the WT-BTK sequence

(Supplemental Table 1). We performed the same analysis

using other regions of the protein (PH-domain, kinase do-

main) and obtained the same frequency. Thus, it appears

that the alignments generated with the PLB have a rela-

tively constant random frequency in any protein sequence.

Next, we mapped the residues isolated in this analysis to

the BTK SH2 domain structure (Fig 2b, Supplemental Fig-

ure 1b). The left panel displays a charge map of the do-

main, mapping the residues chemically involved in binding

of tyrosine phosphorylated peptides from both pockets. The

center and left panel display the residues isolated from our

analysis. We observe that the strongest scoring residues

from our analysis are close to the phosphotyrosine binding

pocket in the amino-acid sequence, but spatially, most of

these residues actually surround the hydrophobic pocket

(left), not the phosphotyrosine binding pocket (right). These

results suggest that the hydrophobic pocket is important to

BTK SH2 domain lipid-binding.

SH2 Domains of Tec Kinases Bind Lipid

Armed with these results, we examined the lipid-binding

capacity of Tec kinases with a series of in vitro functional

assays. First, we performed PIP-strip© lipid binding assays

(see Methods) using bacterially purified GST-tagged pep-

tides of the SH2 domain from mouse BTK. We observe

that WT-BKT-SH2 displays strong binding in these assays,

while GST alone does not. We also prepared an E348A/

K349A mutant, as these residues were prominent in our

SAPP analysis (Fig 2a), and are charged residues that may

participate in binding the negatively charged headgroup of

phospholipids.  We observe that these mutations completely

abolish lipid-binding.  Interestingly K349 lies in close prox-

imity to H362 in the hydrophobic binding pocket (Fig 2b

left). To assess whether the hydrophobic pocket was im-

portant to lipid-binding, we created a 6X-His-tagged pep-

tide with the hydrophobic pocket deleted. To improve the

folding of this construct, we included ~120 amino acids N-

terminal to the BTK’s SH2 domains which contain an SH3

domain and the BTK motif (BTKα). In PIP-strip assays,

this construct displays more robust and less-specific lipid-

binding than the SH2 domain only (Fig 3a right).  As the

SH3 domain of BTK is also prominent in our PLB SAPPs

(see Supplemental Table 1), we also made a construct which

comprises the SH3 and SH2 domain (BTKβ). We also pu-

rified a region of the kinase domain in BTK, which is not

predicted to bind lipids, to serve as a negative control

(BTKγ). We observe that BTKβ binding is similar to BTKα
binding, although not as robust while control preparations

do not display lipid-binding.  Peptides were also cloned from

mouse ITK and mouse TXK for the region homologous to

BTKβ. We observe that both ITK and TXK are specific

for phosphatidic acid (PA) in this assay (Fig 3a right).

To extend these findings, we next performed the more

physiologically relevant liposomal lipid-binding assay (see

Methods) (Fig 3b). Indeed, we observe that all peptides

positive in the PIP-strip assays© also bound to liposomes.

Interestingly, in addition to PA binding, BTK displayed some

specificity for PIP(4,5)
2
 over PIP(3,5)

2
. Further, ITK and

TXK were quite specific for PA and diacylglycerol (DAG)

containing vesicles.  These data demonstrate that the SH3-

SH2 domain in Tec kinases is a lipid-binding module.

We then tested a number of lipid-mixtures to determine if

lipid-binding capacity and/or specificity were altered (Fig

3c). When compared to WT control, all of the mutants tested

(R288Q, H362Q, N365Y, R372G, and R288W [not shown])

had altered lipid-binding profiles. The R288Q (and R288W)

displayed the largest increases in affinity and changes of

specificity, in particular to liposomes containing phospholip-

ids at similar ratios to the plasma-membrane and membranes

containing PIP(3,4,5)
3
. Indeed, when the homologous mu-

tation is made in c-abl, Tokonzaba and colleagues observed

an increased affinity for PIP(4,5)
2
, consistent with this re-

sult (Tokonzaba et al., 2006). These mutants also have re-

duced affinity for PA and DAG, whose binding is conserved

in all Tec kinases tested.   Further, all of the mutations near

the hydrophobic pocket severely inhibited PA and DAG bind-

ing, with the N365Y mutation being essentially devoid of all

lipid-binding. Taken together, these results support the im-

portance of the hydrophobic pocket in BTK lipid-binding as

was suggested by our computational analysis (Fig 2). More-

over, it appears that the BTK has also evolved lipid-speci-

ficities which are distinct from its family members.

Phylogenetic Analysis of Tec Kinases

To place these results within an evolutionary context, we

performed a phylogenetic study of the Tec kinases, using

human and mouse sequences for each family member, with

the Tec kinases from sponge and fruitfly serving as our

outgroups (Fig 4a). We observe that Tec, ITK, TXK form

the most ancient clade, followed by the BTK and BMX

clade, all of which obtain robust statistical support. These

clades also recapitulate the lipid-binding specificity we ob-

serve experimentally (Fig 3). To specifically investigate the

SH3-SH2 domains of this family, we performed additional

phylogenetic analysis using only this region of the family

(151 sites). This tree’s topology is severely distorted and
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Figure 2: Phylogenetic profiles reveal putative lipid-binding residues in BTK.

(a) Top: Depiction of the secondary structural elements in the SH2 domain of human Bruton’s Tyrosine Kinase (PDB: 2GE9).

Bottom: Positional analysis of human BTK for residues implicated in peripheral lipid-binding (PLB) from our phylogenetic

profiles.  The graph depicts the total change between sequences mutated to resemble 13 naturally occurring polymorphisms

linked with XLA and wild-type sequence at each amino acid position (mutants in red were experimentally tested).  Each

sequence was compared with WT BTK and the absolute change recorded and finally summed for all mutations.  The results

indicate that the region proximal to the second phosphotyrosine-binding site (R307) is the site with the most change; however,

positions throughout the p-Tyr and hydrophobic pocket can be identified.  These predictions resemble those findings by

Tokonzaba et al. in which they measured positions in the SH2 domain of c-Abl that display NMR structural perturbations in

the presence of lipids (Tokonzaba et al., 2006)(see Supplemental Figure 1).  (b) 3-D views of the SH2 domain of human

Bruton’s Tyrosine Kinase (PDB: 2GE9).  Left panel is colored for charged residues and labeled for those residues which

make up the P-Tyrosine and Hydrophobic binding pockets.  The middle and right panels are two views colored with those

positions identified by GDDA-BLAST analysis.  Residues colored in blue(-) and red(+) are charged.

lacks statistical support at all deep branches (Fig 4b). Inter-

estingly, the ITK sequences split into two clades and segre-

gate to opposite ends of the tree in this analysis.  This, coupled

to the results from our hierarchical clustering (Fig 1b), sug-

gest that the SH2 domain of ITK is distinct from the other

Tec kinases, although this was not revealed by any func-

tional assay in this study. The SH3-SH2 domain results are

in stark contrast to trees generated using only the PH do-

main (92 sites) or kinase domain (227 sites) (Supplemental

Figure 1c) which retain the same topology as the full length

sequences (Fig 1a), as well as statistical support. Taken

together, these results indicate that the SH3-SH2 domains

in Tec kinases are diverging, and are likely an evolutionary

site for functional innovation.

Discussion

The results from this study demonstrate that single amino-

acid phylogenetic profiles built from lipid-binding profiles can

be used to accurately identify lipid-binding and residues of

structural/functional importance within SH2 domains, which

are not random. To our knowledge, no other computational

algorithm can annotate lipid-binding function to SH2 domains

or isolate key residues important for this function. This dem-

onstrates the improved functional detection afforded by
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phylogenetic profiles. Further, the results from these analy-

ses provided a rationale for our laboratory experimentation

which led us to discover that: (i) Tec family kinase SH2

domains have lipid-binding capacity, which varies in affinity

and specificity between family members, (ii) fatty-acid bind-

ing is common to all Tec family members, (iii) XLA-causing

mutations in the SH2 domain of BTK all alter lipid-binding,

and (iv) that the hydrophobic pocket of the BTK SH2 do-

main is critical for lipid-binding activity. These data imply

that XLA-causing mutations in the SH3-SH2 domain of BTK

may alter cellular functions related to lipid-binding such as

trafficking, localization, protein-protein interactions, and/or

activity.  Thus, lipid-binding may play a causative role in the

XLA-phenotype, which is important to consider when de-

veloping therapeutic strategies. It is also intriguing that func-

tional measurements obtained by GDDA-BLAST can pre-

dict polymorphisms which alter protein functions, although

the reliability of this method has yet to be rigorously evalu-

ated.

An important observation from our study is the prediction

that likely all SH2 domains bind lipid since the structurally

resolved domains used in our study are from a variety of

proteins. This additional functional annotation of SH2 do-

Figure 3: SH3-SH2 module of Tec Kinases bind lipids in vitro

(a) Left: WT and mutant SH2 domains of mouse BTK were cloned and bacterially purified.  These samples were tested for

binding a PIP-strip(c) array by Western analysis with anti-GST.  The results indicate that WT preparations bind inositol lipids

with the mutant displaying significant reduction in binding.  Right:  Three additional fragments of BTK were tested: (1)

BTKα: SH3 domain and SH2 P-Tyr binding pocket, (2) BTKβ: SH3 domain and whole SH2 domain, and (3) BTKγ: region

inclusive to the small PLB signal observed in the kinase domain.  Analogous peptides to BTKβ were made in mouse ITK and

mouse TXK.  All 5 peptides and negative control were assayed as above and probed with anti-His.  The results indicate that

BTKα, which lacks the hydrophobic pocket, displays different affinity/specificity when compared to BTKβ.  Further, ITK

and TXK are specific for phosphatidic acid (PA) in this assay.  Neither BTKγ nor Pet control displayed strong binding.  (b-

i) Loading controls for bacterially purified protein.  (b-ii) Liposomal assays of ITK and TXK demonstrate specific binding to

PA and diacylglycerol containing vesicles (see Methods).  (b-iii) Liposomal assays demonstrate that BTKβ but not BTKγ
bind to liposomes containing PI, PA, or PIP(4,5)

 2
. (c) Quantitative liposomal binding assays for six different lipid compositions

using WT BTKβ and naturally occurring XLA polymorphisms.   On the right are representative Western analyses.  The

results indicate that these mutations in the P-Tyrosine binding pocket increase lipid binding affinity >50-fold in some cases

while mutations in and near the Hydrophobic pocket have graded inhibition of lipid-binding.
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Figure 4: Phylogenetic Analysis of Tec Kinases

(a) Phylogenetic analyses reveal SH3-SH2 domains in TEC Kinases are rapidly evolving.  Neighbor-joining tree of full-length

TEC, TXK, BMX, and BTK sequences from various taxa.  This tree is rooted by the fruitfly and sponge TEC sequences. (b)

Neighbor-joining tree using only the SH3-SH2 module of TEC Kinases as above.  The results indicate that while full-length

sequences (457 sites) provide a monophyletic tree with robust support, the tree generated from sites segregated to the SH3-

SH2 module (151) lack proper topology and have little support.  These results are not due to the reduced number of sites

utilized since trees generated from PH domain only (92 sites) or SH1 domain only (227 sites) retain the full-length topology

and have significant support (Supplemental Fig 1c).

mains allows for improved design of biological experiments

which aim to determine their cellular functions (e.g. per-

haps an observed functional defect is related to lipid-bind-

ing dysregulation not phosphotyrosine binding). Indeed, ac-

curate annotation of lipid-binding in any protein would aid in

designing appropriate experimentation. For example, most

of the 124 proteins isolated from the Zhu study (Zhu et al.,

2001) are not predicted to bind lipid.  When we analyzed

these sequences using the random frequency of PLB sig-

nals in randomized BTK sequences as our baseline, our re-

sults predict regions in all of these proteins which bind lipid(s)

(Supplemental Table 2). Thus, annotating proteomes for lipid-

binding using this approach would provide important resource

for the scientific community, and is one of our short-term

goals.  To that end we have submitted our molecular inter-

action data to IntAct, a public domain database

(www.ebi.ac.uk/intact).

In theory, the methods developed in this study can be ap-

plied to any protein functionality.  In support of this theory,

we have used this approach to identify multiple previously

unidentified functions.  For example, we identified ATP-bind-

ing in ankyrin repeats, as well as and lipid-binding/traffick-

ing activity in the TRP_2 domain of transient receptor po-

tential channels (Ko et al., 2008; Rossum et al., 2008).  In

addition, we have also identified a chaperone binding do-

main in inositol hexakisphosphate kinase-2 (Perez de et al.,

2008), and lipid-binding domains in a host of other proteins

(Ko et al., 2008; Mustafa et al., 2009; van Rossum et al.,

2005; Caraveo et al., 2006). Therefore, our long-term goals
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are towards creating a completely automated and high-per-

formance algorithm that contains profile sets to generate

SAPPs for any known biological function. We expect that

the data generated from such a tool would rapidly increase

the available functional annotation for any proteome, en-

hancing both computational studies and biochemical/cell-bio-

logical research.

Materials and Methods

Sequences and Phylogenetic Tree Construction

All sequences used are provided in Supplemental Table 3.

For the analysis of structurally resolved SH2 domains from

the PDB library, we curated the respective species specific

full length sequences from RefNCBI.  For convenience and

readability, we annotated them with UniProtKB identifiers

in Figs. 1A and Supp. Fig. 1A.  Phylogenetic Analyses were

performed as previously described(van Rossum et al., 2008).

PIP strips: as per manufacturer’s instructions using 500-

1000 ng of purified protein(van Rossum et al., 2005).

Lipid-binding liposomes: performed as previously

described(Chakraborty et al., 2008). Briefly, lipid mixtures

phosphatidyl-ethanolamine (29.2%), phosphatidylcholine

(29.2%), phosphatidylserine (29.2%), and phosphatidyl-inosi-

tol (12.5%) (all in CHCl
3
) were dried down to form a thin

film in a 0.5-ml minifuge tube (Beckmann) and then bath

sonicated in 0.2 M sucrose, 20 mM KCl, 20 mM Hepes, pH

7.4, 0.01% azide to yield a 10× dense lipid stock. This was

diluted 1:10 in dilution buffer (0.12 M NaCl, 1 mM EGTA,

0.2 mM CaCl
2
 (free Ca2+ concentration of approximately

50 nM), 1.5 mM MgCl
2
, 1 mM dithiothreitol, 5 mM KCl,

20 mM Hepes, pH 7.4, 1 mg/ml bovine serum albumin) con-

taining 500-1000 ng of recombinant protein. Protein com-

plexes were allowed to form by incubation at 30 °C for 5 min

prior to centrifugation (100,000 × g for 30 min). After spin-

ning, supernatants were carefully removed and the pellets

retrieved by addition of an equal volume of 60 °C SDS

sample buffer and subsequent bath sonication. Both PIP-

strip and liposomal assays were visualized via Western analy-

sis. Films were scanned and analyzed using Bio-rad Gel-

dock© system (p-values from student t-test).

Protein Purification

Mouse Tec fragments were cloned into Pet28c HIS-tagged

vectors and transformed into BL21 bacteria. Protein pro-

duction was induced by 100 µM IPTG for 30 minutes at

370C. Cells were lysed by sonication in lysis buffer (PBS

containing 100 mM EDTA, 1 mM PMSF, 5 mM DTT, and

complete protease inhibitor mixture). After lysis, debris is

pelleted by a 5 minute 10,000 x g centrifugation. The super-

natant was incubated on Talon© beads for 30 minutes,

washed 10 times with TBST, and eluted with 500 µl of 10

mM EDTA in TBS pH 8. Proteins were then dialyzed 2X

with 4L of TBS pH 7.4 to remove detergent and EDTA.

GDDA-BLAST Boundaries

In order to generate histograms from our phylogenetic

profiles which reflect structural boundaries and putative func-

tion, the profiles of related structure or function are curated.

In this case we used 131 putative lipid binding domains of

various length, structure, and lipid-specificity (see Supple-

mental Table 4 for a complete description). Each of the

query sequences is compared to the chosen profiles using

GDDA-BLAST. The distribution of the number of hits,

above a predetermined threshold and summed over all the

profiles is determined at each position of the query sequence

for all of these alignments. We normalize the data by sub-

tracting the mean number of hits per amino acid, with the

histograms showing only the positive scoring regions (See

Supplemental Table 1 for examples).

GDDA-BLAST positional analysis: by using Smith-

Waterman algorithm with both settings, such as (BLOSUM62,

GOP=10, GEP=0.5) and (BLOSUM45, GOP=11, GEP=1)

to generate an alignment in the query sequence with pro-

files which were positive (>/= 60% coverage including the

“seed” and >/= 10% Identity excluding the “seed”) by

GDDA-BLAST. Raw scores for each residue are calcu-

lated by scoring a value=2 for identities and value=1 for

positive substitutions in the alignments. These positions were

tallied and the cumulative score was annotated versus the

amino acid position. Following, the score was normalized

for each position using the following equation.

( )Total ScoreNormalized Score= Raw Score - 
The length of a query

Monte-Carlo Randomization Analysis

The human BTK sequence was randomized 10,000 times.

Following, we measured multiple regions corresponding to

the PH domain (a.a. 1-110), the SH3-SH2 domain (a.a. 163-

392), and the kinase domain (a.a. 397-652) for the overlap-

ping PLB domains, and normalized the score by the aver-

age # of profiles over the region measured (as performed

for identifying boundaries using GDDA-BLAST).
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