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Abstract

The aim of this study was to investigate the therapeutic effects of photothermal targeting of hollow gold
nanospheres on lymphoma. Hollow gold nanospheres were modified by PEG (polyethylene glycol) and conjugated
to anti-CD138 antibody. The conjugates were then injected into the A20 mouse lymphoma model followed by near-
infrared laser radiation (NIR). By examining the level of immunoglobulin G2a secreted by A20 cells and measuring
the weight of specimen biopsy, tumorgenesis was determined. Finally, the possibility of lymphoma-targeted
photothermal therapy was evaluated. Anti-CD138 antibody-conjugated hollow gold nanospheres (HAuNs-CD138)
were prepared and the A20 mouse lymphoma model was established. After NIR treatment, A20 lymphoma growth
was significantly suppressed. HAuNs-CD138 treatment represents a potential therapeutic strategy for CD138+
lymphoma.

Keywords: Lymphoma; A20 lymphoma cells; Gold nanosphere;
Photothermal therapy; Cancer-targeting therapy

Introduction
Traditionally, treatments for lymphoma include chemotherapy,

radiotherapy, and immunotherapy, among which chemotherapy is the
principal treatment for blood tumors represented by lymphoma, but
the emergence of drug resistance to chemotherapy makes it an urgent
task to seek new treatments. Recently, photothermal therapy based on
nanoparticles has become an attractive novel cancer treatment strategy
[1-7]. One of the most striking innovations is the combination of
noble metal nanoparticles and photics. Noble metal nanoparticles
show strong extinction and strong scattering effects by near-infrared
laser radiation (NIR, near-infrared region, wavelength 700–850 nm),
due to surface plasmon resonance (SPR) [8-11]. It is remarkable that
the wavelength range shows minimum absorbance for biological tissue
and good penetration. These properties make gold nanoparticles a
vital option for cancer treatment.

In recent years, second-generation hollow gold nanospheres
(HAuNS) were developed [12]. This nanostructure combines small
size (outer diameter is only 30 to 60 nm), spherical shape, hollow
interior, and strong and tunable absorption band (520–950 nm),
constituting a highly unique nanostructure [12,13]. When this type of
nanoparticle is coated by polyethylene glycol (PEG), HAuNS under
100 nm in diameter show significantly prolonged half-life in the
circulatory system [14,15]. By enhancing permeability and retention
[16], HAuNS with the ability of long cycle have a greater probability of
penetrating tumor vascular structures, reaching tumor tissue
eventually. Because passive diffusion of nanoparticles to tumor tissue

is mainly affected by the perforation diameter of the tumor vessel wall,
obviously, smaller HAuNS have an advantage over the bigger
nanostructure formed by a silica core in terms of penetrating the
tumor vessel wall. Indeed, it has been confirmed that the perforation
diameter of tumor vessel wall is only about 7 to 100 nm in gliomas and
ovarian cancer [17,18].

Here, we describe a new type of active targeting photothermal
therapeutic agent, HAuNS-CD138, applied in lymphoma mouse
model treatment. CD138 (also known as syndecan-1), a 220
kDheparan sulfate proteoglycan, acts as an adhesion molecule and is
widely expressed on the cell surface of multiple myeloma, leukemia,
and lymphoma [19], which makes CD138 a potential therapeutic
target for lymphoma. The A20 lymphoma mouse model established
here was intraperitoneally injected with HAuNs-CD138, and after NIR
treatment, A20 lymphoma growth was significantly suppressed. In
conclusion, we have successfully prepared an active targeting
photothermal therapeutic agent of HAuNs-CD138 nanoparticles and
results in an animal model have suggested that HAuNs-CD138
nanoparticles are a potential therapeutic approach in CD138+
malignancies.

Materials and Methods

Main materials
The A20 mouse lymphoma cell line was provided by the

Department of Myeloma and Lymphoma, MD Anderson Cancer
Center (USA). A20 cells were maintained at 37°C in a humidified
atmosphere containing 5% CO2 in RPMI (Roswell Park Memorial
Institute) 1640 medium and 10% fetal bovine serum (Life
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Technologies, Inc., Grand Island, NY, USA). Female 6- to 8-week-old
BALB/c mice were purchased from the Animal Facility, Soochow
University (China), and anti-CD138 antibody was purchased from BD
Biosciences (USA). Trifluoroacetic acid, triethylsilane and piperidine
were purchased from Chem-Impex International (USA). Methoxy-
PEG-SH (MW 5000) was purchased from Nektar (USA). NH2-PEG-
COOH.HCl (MW 5000) was purchased from JenKem Technology
(USA). Cobalt chloride hexahydrate, sodium borohydride, chloroauric
acid trihydrate, hydroxylamine, and dialysis bag were purchased from
Fisher Scientific (USA). PD-10 Spin Column was purchased from
Amersham-Pharmacia Biotech (China).

Synthesis of HAuNS-CD138
PEG-modified HAuNS were provided by Pro. Chun Li (MD

Anderson Cancer Center, USA). The antibodies were first conjugated
to one end of the PEG chain to prepare CD138-PEG-SH [13], and then
HAuNS (8.5×1012 particles/mL) were added to an argon-purged
aqueous solution containing CD138-PEG-SH (50 μg/mL) and PEG-
SH (500 μg/mL). The reaction was allowed to proceed overnight at
room temperature. For purification, the reaction mixture was
centrifuged at 7000 rpm for 15 min, and the resulting pellet was
resuspended with deionized water. The process was repeated twice to
remove unreacted PEG molecules.

Establishment of mouse model
Each mouse was injected intraperitoneally with A20 lymphoma

cells (1×106 cells/mL) and mice in the experimental group were
injected intravenously with HAuNS-CD138 gold nanoparticles. All
mice received NIR laser radiation through the skin surface at 24 h post
injection. A group without injection of nanoparticles, a group injected
with nanoparticles without NIR laser treatment, and a group injected
with nanoparticles without anti-CD138 antibodies were prepared and
used as controls.

Detection of Immunoglobulin G2a (IgG2a) by ELISA
Heavy chain-specific, polyclonal rat anti-mouse IgG2a (ABD

Serotec, Kidlington, UK) at 5 μg/mL in phosphate buffered saline
(PBS) pH 7.2 was coated overnight at 4°C and blocked for 1 h at 37°C
using 2% bovine serum albumin. Plates were washed four times with
PBS/0.05% Tween 20 between all steps. Serial dilutions of purified
mouse IgG2a (R&D System, Minneapolis, USA) were used to generate
a standard curve for detection. After addition of primary antibody or
standard, the plates were incubated for 1 h at 37°C. Then o-
phenylenediamine (Sigma-Aldrich, St. Louis, USA) was added,
followed by four washes and blocking for 1 h. After 20 min, the ELISA
was terminated by the addition of 50 μl 2M H2SO4 and quantified at
490 nm using a Molecular Devices Thermo Max Microplate Plate
Reader (USA). Finally, the concentration of IgG2a was determined
according to the standard curve.

Results
The amount of IgG2a antibody produced and secreted by A20

tumor cells is an important indicator of A20 lymphoma growth.
Therefore, the growth condition of A20 lymphoma in mice can be
evaluated by detecting IgG2a concentrations in sera. The mice were
first divided into three categories and each category contained seven
groups (each group had 10 female BALB/c mice). These three
categories were: before NIR; 1 day after NIR treatment; and 4 days

after NIR treatment. The seven experimental groups were as follows:
Q1, no nanoparticles and no NIR treatment; Q2, targeted
nanoparticles and no NIR treatment; Q3, no nanoparticles but NIR
treatment; Q4, non-targeted nanoparticles and NIR treatment,
sampling after 6 h; Q5, targeted nanoparticles and NIR treatment,
sampling after 6 h; Q6, non-targeted nanoparticles and NIR treatment,
sampling after 24 h; and Q7, targeted nanoparticles and NIR
treatment, sampling after 24 h (Table 1). Subsequent to treatments,
A20 cells in the logarithmic phase were washed twice and suspended
in PBS, and then injected into BALB/c mice tail vein at 105 cells/
mouse. The mice were checked for deaths and abnormal behavior at
24 h post injection. On the basis of previous work, A20 lymphoma
would evidently be touched at 6 weeks post injection. At 27 days after
inoculation, various nanoparticles were injected into anesthetized mice
by the caudal vein. After 72 h, PEG-modified gold nanoparticles in the
blood vessels were removed, and at the same time (on the 30th day),
mice began to receive radiation therapy.

 Before NIR 1 day after NIR 4 days after NIR

Q1
－nanoparticles －nanoparticles －nanoparticles

－NIR －NIR －NIR

Q2

＋ targeted
nanoparticles

＋ targeted
nanoparticles

＋ targeted
nanoparticles

－NIR －NIR －NIR

Q3
＋ nanoparticles ＋ nanoparticles ＋ nanoparticles

－NIR －NIR －NIR

Q4

－ targeted
nanoparticles

－ targeted
nanoparticles

－ targeted
nanoparticles

＋ NIR ＋ NIR ＋ NIR

sera collected after 6
hours

sera collected after 6
hours

sera collected after 6
hours

Q5

＋ targeted
nanoparticles

＋ targeted
nanoparticles

＋ targeted
nanoparticles

＋ NIR ＋ NIR ＋ NIR

sera collected after 6
hours

sera collected after 6
hours

sera collected after 6
hours

Q6

－ targeted
nanoparticles

－ targeted
nanoparticles

－ targeted
nanoparticles

＋ NIR ＋ NIR ＋ NIR

sera collected after
24 hours

sera collected after
24 hours

sera collected after
24 hours

Q7

＋ targeted
nanoparticles

＋ targeted
nanoparticles

＋ targeted
nanoparticles

＋ NIR ＋ NIR ＋ NIR

sera collected after
24 hours

sera collected after
24 hours

sera collected after
24 hours

Table 1: Design scheme of experimental groups

Simultaneously, serum levels of IgG2a in each group were
determined and the time of determination was set as the 7th, 14th,
21st, 28th, 30th, 31st, and 35th days after inoculation with A20 cells
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(set as day 0). The experimental results showed that the basal levels of
IgG2a averaged between 0.05 mg/mL and 0.08 mg/mL on day 0. In the
first 30 days, all A20 lymphomas of experimental mice without NIR
treatment showed a similar growth rate, with no significant difference
(Figure 1), although IgG2a levels rose to 0.3 to 0.38 mg/mL. On the
first day of NIR treatment, that is, 31 days post inoculation of A20
lymphoma cells, growth delay of the tumor in the Q5 and Q7
experimental groups began to emerge. Compared with the day before,
IgG2a levels in the Q5 group was slightly decreased, from 0.31 mg/mL
to 0.28 mg/mL, while IgG2a levels in the Q7 group remained at 0.35
mg/ml. Meanwhile, IgG2a levels of the rest of the experimental mice
obviously kept increasing. At 4 days after NIR treatment, namely, 35
days after inoculation with A20 cells, lymphomas in Q5 and Q7
showed significant growth delay, and the concentration of IgG2a
decreased to 0.24 mg/ml and 0.26 mg/ml, respectively. At the same
time, the other groups, including those injected with non-targeted
nanoparticles (i.e., HAuNS) and treated by NIR, and those injected
with targeted nanoparticles (i.e., HAuNS - CD138) but were not
treated by NIR, did not show any delay in tumor growth (Figures 1
and 2). In addition, IgG2a levels reached 0.4–0.5 mg/mL,
demonstrating that HAuNS-CD138 nanoparticles have great potential
in lymphoma targeted therapy.

Figure 1: Detection of IgG2a levels in mouse sera by ELISA

Figure 2: Detection of IgG2a levels after photothermal therapy

In order to investigate the growth of lymphoma further, A20
lymphomas were collected and comparison of their weight showed
that it was consistent with IgG2a levels, except that the tumor weight

of the Q5 and Q7 groups was significantly decreased (0.25 ± 0.06 g),
while the tumor weight of the other experimental groups reached 0.45
± 0.09 g (Figure 3).

Figure 3: Weight analysis of A20 lymphoma after NIR treatment

Discussion
Cancer is one of the main diseases that affect human health. There

are 2.2 million new cases of cancer each year, and deaths caused by
cancer are 1.6 million per year, making cancer the top cause of death
in China. However, traditional treatments for cancer cannot achieve
the goal of tumor eradication because of their side effects and
limitations. In recent years, with the rapid development of
nanotechnology, it provides a bright prospect for cancer treatment
[1,20-25]. In particular, unique optical tunable gold nanomaterials
show extensive and important potential in the field of biomedical
application. They can be used as a carrier for drugs and biological
molecules, as well as an active reagent for biological imaging and
photothermal treatment in early diagnosis and treatment [2,26-30].

Most successful applications of nanoparticles for diagnosis and
treatment depend on their aggregation at tumor sites [31,32]. The
aggregation mainly depends on several molecular mechanisms.
Conventionally, nanoparticles can passively aggregate at tumor sites by
abnormal leakage of blood vessels around tumors. New angiogenesis is
a major feature of tumors and the newly generated blood vessels
around the tumor have an irregular shape and lumen diameter (up to
2 μM), which can allow macromolecules and nanoparticles in the
blood vessels to be absorbed by the tumor [17,18]. However,
nanoparticles without proper coating would be quickly metabolized in
blood circulation. Therefore, chemical modification of nanoparticles
can effectively improve their retention period in blood
circulation.Recent research has shown that PEG-modified
nanoparticles have a greatly improved retention period in blood
circulation, enhancing their absorption by the tumor. Besides being
passively absorbed by cancer cells, nanoparticles are able to recognize
proteins or ligands expressed on the surface of tumor cells, facilitating
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their active and selective targeting of tumor cells [14-16]. For example,
many solid tumors always abnormally overexpress HER2(human
epidermalgrowth factor receptor-2), 5α-integrin receptors, or
interleukin receptors. Conjugating an antibody to these proteins or
ligands to nanoparticles will actively facilitate nanoparticle targeting of
these tumor cells. Nanoparticles used for cancer killing can absorb
near-infrared light so as to generate heat that will ablate tumor cells
under laser radiation. In this study, anti-CD138 antibody was
covalently conjugated to gold nanospheres and the conjugates would
specifically target A20 lymphoma. With the application of
photothermal therapy, gold nanoparticles treated by NIR laser
radiation generate heat that is able to destroy tumors [33], achieving
the purpose of treatment of the tumor.

In terms of the choice of target molecules, previous experiments
showed that A20 lymphoma cells had an high affinity for anti-CD19,
anti-CD20, and anti-CD138 antibodies, which reached 92.1%, 88.5%,
and 95.2%, respectively (Figure 4). Anti-CD20 monoclonal antibody
(rituximab) has been widely used in the treatment of B lymphoma and
is currently one of the most successful monoclonal antibody drugs.
However, it was found in our study that anti-CD138 antibody had a
higher affinity for A20 cells than CD20, so anti-CD138 antibodies were
chosen for preparation of antibody-conjugated gold nanospheres.
Anti-CD138 antibody recognizes CD138 antigen, which is also called
syndecan-1. CD138 is a transmembrane glycoprotein molecule that
interacts with extracellular matrix proteins, cell surface molecules, and
other soluble proteins [19]. It is also a plasma cell marker that can be
used for recognition of B lymphoma and myeloma. The results of this
study have confirmed that anti-CD138 antibody is a good targeting
molecule for A20 lymphoma, and anti-CD138 antibody-conjugated
hollow gold nanoparticles show great potential in clinical therapy.

Figure 4: Anti-CD138 antibody shows the strongest affinity for A20
lymphocytes

Our studies raise a number of interesting questions that should be
addressed in the future. For instance, it is important to confirm
whether the suppression of A20 lymphomas will be sustained over
time and whether sustained suppression will require repeated
treatment, so long-term studies to evaluate the antitumor activity of
targeted HAuNS in combination with near IR-region laser irradiation

will need to be carried out to further confirm the short-term results
obtained in the current studies. Using a small-molecular-
weight(CD138) peptide as atarget and attaching it at the end of PEG
chains, we found that receptor-mediated active targeting of lymphoma
in vivo. Although our current study has shown promising results
inselective photothermal ablation of lymphoma using targeted
HAuNS, much work remains to be done to advance thistechnology
further into the clinic. For example, more detailedpreclinical studies
with regard to clearance, safety, and efficacy of targeted HAuNS need
be documented.
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