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Introduction
In phase II clinical trials, multiple competing treatments are 

under the study. Vast literature exists on how to allocate the incoming 
patients to one of the treatments rationally, leading to various optimal 
trial designs with different optimality criteria under different design 
scenarios. In some situations, the covariates of incoming patients 
are known, this information can be incorporated into the design to 
improve the efficiency of the trial. A main consideration in such design 
is to balance the covariates in allocating patients to treatments while 
maintaining randomization. However the two objectives often conflict. 
Also, as in typical phase II clinical trial the sample size is not large, when 
there are multiple covariates to account for, the balance is difficult or 
impossible to achieve.

This article is motivated by the design of a novel stroke 
rehabilitation trial: the Critical Period After Stroke (CPAS) Study 
conducted at Georgetown University and National Rehabilitation 
Hospital. Currently factors contribute to stroke recovery is understood 
by at least two mechanisms. One is the improvement in motor, sensory 
and cognitive func- tions, and the other is through rehabilitation. 
Investigations by Biernaskie et al. (2004) [1] and others in animals 
suggest that the critical periods in stroke recovery do exist in adult 
mammals. However, whether and how the important results apply to 
human stroke patients is unknown. This trial is designed to find the 
critical period where motor recovery is the greatest based on several 
preliminary studies [2,3]. The primary endpoint is the Action Research 
Arm Test (ARAT) score. The known important covariates include age, 
gender, NIH stroke scale, time from stroke onset to baseline evaluation, 
concordance, etc. Patients will be assigned into three treatment arms 
representing three points after stroke: early (initiated within one 
month), outpatient (2-3 months) and chromic (6-9 months) and a 
control group. This sample size of 64 subjects is determined based on 
demonstrating a moderate effect size in the primary endpoint (ARAT 
score) with 80% power at a significance level of 5%, and a nominal 

significance level of 0.01 for one interim analysis using adaptive group 
sequential approaches [4-6]. The 64 subjects are to be assigned into 4 
arms equally and there are five covariates to balance across the 4 arms. 
If a complete randomized procedure is used, sometimes it is possible 
for one group to receive all young patients, while another group may 
get all older patients. On the other hand, if an optimal design is used, 
it will balance the covariates among all the groups, but such procedure 
is often deterministic for trials with relatively small size, and more 
than two covariates. Thus it would be desirable to seek a semi-random, 
sub-optimal procedure which partially balances the covariates among 
groups while retaining partial randomness among the patients. Indeed, 
there is extensive literature of phase II clinical trial design in presence 
of covariates [7]. However, very little theoretical work has been done on 
statistical properties of various designs. Generally, full balance among 
covariates is not possible. Some methods are optimal but non-random, 
some are random but not fully optimal. To our knowledge none of the 
methods are uniformly superior, and in fact, there is no established 
statistical method to best reconcile the needs for balanced covariates 
and proper degree of randomization. McEntegart [8] concluded that 
there is little difference in power between minimization/maximization 
method and stratification. Hammerstrom [9] found by simulations 
that covariate-adaptive random- ization does not significantly improve 
error rates, and is useful only for cosmetic purposes. Pocock and Simon 
[10], Klotz [11] and Titterington [12] considered a maximum entropy 
method, in which the entropy is defined for the probability vector of 
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assigning the treatments to patients, and the maximization is subject to 
a set of imbalance constraints over strata, typically classified based on 
covariate. The method requires subjective inputs: the classification of 
the covariates into stratum, the number of stratum, and the definition 
of the imbalance measure. When the number of covariates is relatively 
large, or with continuous covariates the number of stratum can be 
large, and these methods are not useful. Pursuing the idea in Silvey 
[13], Atkinson [14] proposed an optimal trial design with covariates 
where (say) there are k treatments, n subjetcs and m covariates. Let R 
be the n×m matrix of the covariates, x be a 0-1 valued n×k matrix, each 
x represents a de- sign: x

ij
=1 if and only if the i-th subjects is assigned to 

treatment j; Let X=(x, R), n×(k+m) matrix, and 

M (x)=X’X 

Recall that M (x)
−1

/n is the covariance of the LS estimate of the 
corresponding linear regression model. The optimal design in Atkinson 
is 

x
opt=arg max

x 
|M (x)| 

This method avoids subjective inputs such as dichotomizing 
the covariates into stratum and defining an imbalance measure for 
the covariates. Allocation procedure is derived by minimizing the 
covariance matrix of the estimated regression parameters in the 
corresponding linear model. However the procedure does not aim 
to balance covariates across treatments, which can be problematic in 
phase II trials with moderate sample sizes and more than two arms.

Therefore, motivated from the stroke recovery study described 
before and the work of Atkinson [14], this article proposes a design 
in the presence of covariates which aims to balance covariates and 
retain randomization. We propose to use empirical likelihood to 
assign weights of covariates and then derive the design by balancing 
their (empirical) entropy, which measures the disorder, or evenness, 
of a system. The proposed method uses all the information in the 
covariates, as compared to methods using only the main covariates or 
their principal components. Our method maximizes, over all designs, 
the empirical entropy, formulated from the design and the covariates. 
Since the larger the entropy is, the more evenly patients are assigned 
along with the covariates, our method has an intuitive interpretation 
in balancing the covariates in treatments assignments. This method is 
simple to use without subjective stratification of the covariates, without 
choosing the imbalance measure. It is also different from those in 
Klotz [11] and Titterington [12] in rationale, in that we are optimizing 
the entropy of the assignment matrix while they maximizing the 
entropy of allocation probability, both subject to suitable constraints. 
In addition, our method does not need to stratify the covariates nor 
to impose an imbalance measure. The proposed resulting multi-arm 
design is then used further to construct the optimal and minimax 
design in the presence of covariates for the two-stage trial. Wason et al. 
[15] proposed a multi-arm optimal two-stage design for quantitative 
responses without covariate information. Their work extends the two-
stage single arm trial design of Stallard [16] to multi-arm trials, which 
in turn, extends the optimal two-stage design of binary responses of 
Simon [17] to the case of quantitative responses from multivariate 
normal distribution. There is a large amount of literature on two or 
more stage clinical trial designs. Thall et al. [18] proposed two-stage 
design for testing and selection of comparative clinical trials, Xiong 
[19] and Tan et al. [4] proposed and studied multistage designs used 
on sequential conditional probability ratio test procedures. Sydes et al. 
[20] addressed some common issues in multiarm multi-stage clinical 
trials, Wassmer [21] considered sample size determination in multi-

arm confirmatory adaptive design. Jennison and Turnbull [22] give 
a systematic introduction of methods in this field. Here our setting 
is different, we first assign the patients to multiple treatment groups 
based on their observed covariates, then design the sample sizes for two 
stages based on binary responses.

Method 
From the motivating trial, we formulate problem statistically. There 

are k treatments, N patients with observed covariates, 

xi=(xi1, ..., xid)’ of the i-th patient, 

where the number of subjects N is not large, as is typical for phase 
II clinical trials, and the number of covariates d is typically greater than 
2. Therefore as described earlier it is impossible to fully balance the 
covariates among the treatments and at the same time randomization. 
The goal is to allocate the subjects to the k treatments according to 
the covariates of each subject adaptively, each treatment with n=N/k 
subjects, while balanc ing the covariates among treatment groups and 
at the same time randomization, in some (sub) optimal way. Denote 

Xn=(x1, ..., xN )’ 

be the matrix of all the covariates. We propose to use the empirical 
likelihood method to formulate the weights for each observation.

The early use of empirical likelihood (EL) can be traced back to 
Thomas and Grunkemeier  [23], but the works of Owen [24,25] 
formally established the advantages and the scopes of application of this 
method. Since then EL has gained increasing popularity, due to its wide 
range of applications, simplicity to use and flexibility to incorporate 
auxiliary (or side) information. Qin and Lawless [26] formulated this 
method in parametric estimation and connected it with estimating 
equations. Now the EL has been applied in broad areas, for examples, 
generalized linear model [27], survival data [28-30], nonparametric 
regression [31], goodness-of-fit measure [32], inference in the presence 
of nuisance parameters [33], econometrics [35-37], density and 
quintile estimations [37-39], marginal and conditional likelihood [40], 
and estimations using pseudo EL method [41].

Maximum Empirical Entropy Design
We distinguish two cases, group assignment case in which we have 

a group of 

N=nk 

subjects to be assigned to k treatments, each group with n subjects; 
the second case is sequential adaptive assignments, in which subjects 
come into study one by one, and the assignment is one at a time.

Group Assignment
Let Y=(y

1
, ..., y

N )’ be a 0-1 valued N×k matrix, y
i
=(y

i1
, ..., y

ik )’ 

represents the treatment assignment of the i-th patient: yij=1 iff the 
i-th patient assigned to treatment j; Let Z=(Y, X), a Nx(k + d) matrix, 
zi=(yi, xi) be its i-th row. Let wi=F ({zi}) be the empirical mass/
weight assigned to zi, and w=(w1, ..., wN ). The EL subject to the side 
information constraints g(·), with E[g(z)]=0

1

max
N

iw i

w
=
∏  subject to 

1
1

N

i
i

w
=

=∑  and 
1

( ) 0
N

i i
i

w g z
=

=∑
To construct non-uniform empirical weights for the observed 

covariates, we need some con- straints. Let J be an Nxk matrix of 1s, 
and 1k be the k-dimensional column vector of 1’s. Since we need to 
allocate each treatment the same number n=N/k subjects, let y be an 
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iid copy of the yi’s, a natural constraint on the allocation y is g
1
(y)=y − 

1k/k and so E[g(y)]= 0. For a constraint on the covariate x, for example 
we may set µ=E(x) as long as we have µ from other sources, then the 
constraint g2(x) satisfies E[g

2
(x)]=0. 

Now set g(z)=(g(y),g’(x))’, then we have E[g(z)]=0. Let tn(θ
0
)=(t

N,1
, 

..., t
N,k+d

)’ be the

Lagrange multipliers corresponding to the constraint with g(·) then

, 1
1 1( ,..., )

1 ( )i n i N
N i

w w z z
N t g z

= =
′+

and tN,j=tN,j (z1, ..., zN ) (j=1, ..., k + d) are determined by

1

( ) 0
1 ( )

N
i

i N i

g z
t g z=

=
′+∑

Note the wi’s are the constrained optimizers, which exist and are 
unique, so does tN [42].

Let 1
1

( ) ( ) ( )N
i ii

y N g z g z−
=

′Ω = Ω = ∑
 

As in Yuan, Xu, Zheng 
(2014), we have

1 1/ 2

1

1 ( ) ( )
N

N i
i

t g z op n
N

− −

=

= Ω +∑
 

and 

1 1/ 2 2 1

1

1 1[1 ( ) ( ) ( ) ( ) ( ( ) || ( ) || )Op(n )]
N

i i j i i i
j

w g z g z g z op n g z g z
N N

− − −

=

′= − Ω + + +∑
Since y follows a multinomial distribution, its covariance matrix 

Cov(y) is singular, and consequently, Ω is singular. In the computation 
we Ω− as the Moore-Penrose generalized inverse of Ω, and take the 
approximated weights

1

1 1[1 ( ) ( )]
N

i i j
j

w cg z g z
N N

−

=

′= − Ω ∑
 

(i = 1,...,N) .

In the above, since the generalized in verse Ω− is used in place of a 
proper inverse Ω−1, the resulting weights wi=wi(c)’s may not be non-
negative for c=1, and when c=0 we get wi=1/N for all i, so we impose 
the constant c˜=Avg max0<c<1 min1≤i≤N wi(c)>0, then normalize 
the weights to make them probability weights, and still denote them 
as wi’s.

Based on the empirical weights wi’s, the entropy, as a function of 
x, is

1
( ) log

N

N i i
i

H y w w
=

= −∑
The optimal design is y

*=arg maxy HN (y), it makes the design most 
balanced in terms of entropy, subject to the constraint E[g(z)]=0.y* can 
be easily obtained via computational methods. A complete enumeration 
will search through all possible 

1

k
n
jn

j

m C
=

=∏
values of y’s, where r

nC is the combination number of choosing r 
elements out of n.

However, y* is a deterministic procedure.

We prefer a semi-random procedure y˜ by the following step. For 
this, let ej be the j-th column of the k-dimensional identify matrix. Ω 
is approximated as

1 1

1 1
( , ) ( , )

N k

j i j i
i j

N k g e x g e x− −

= =

′Ω ≈ ∑∑

For the semi-random procedure, fix a number L<m, do the 
following

For s=1, ..., L, do the following:

a)	 For i=1, ..., N , sample r from uniform distribution on {1, ..., k}. 
If r=j, set yi=ej .

Then set 1,...,( )s NY y y= ′  and Zs=(Ys, X).

b)	 Compute HN (ys).

c)	 Set y˜=arg max ys:1≤ s ≤ L HN (y
s
).

In the above procedure the proportion α=L/m controls the tradeoff 
between balance and randomization. If α=1 or L=m, then there is no 
randomization, and we get y˜=y*; if α=1/m or L=1, the procedure is 
completely random without optimization. Recall that the methods in 
Klotz (1978) [11] and Titterington (1983) [12] are also semi-random, 
in which when the trade-off parameter η=1, these procedures are 
deterministic, and when η=0, they are completely random with uniform 
treatments assignment without covariate effects. So they recommend 
intermediate values of η, and particularly for η=0.5.

The proposed method can be used in many other existing designs 
to incorporate the covariate information. Below we illustrate its 
application for the commonly used two-stage optimal and minimax 
design. 

Sequential Adaptive Assignment
Now we consider the case in which the patient comes one at a 

time, and the corresponding patient assignment is different from 
the group design case. As the consideration is the initial stage of the 
clinical trial, the balance of number of subjects in each treatment 
group is of first consideration, and then is the balance with covariates 
among the k groups. Obviously, the first k subjects should be assigned 
to the k treatments, one for each treatment, at random. To weigh each 
treatment equally, we design the assignment in such a way that at any 
time the jk-th patient comes, each treatment get j subjects.

Denote Yk=(y1, ..., yk )’ be the kxk assignment matrix of the first k 
subjects, the corresponding covariate matrix be Xk , and let Zk=(Yk, Xk 
), a kx(k + d) matrix. When the (k + 1)-th patient comes, with covariate 
xk+1, there are possible assignments ej (j=1, ..., k) for this individual, 
denote Yk+1(j)=(ej, Yk ), Xk+1=(xk+1, Xk ) and Zk+1(j)=(Yk+1(j), 
Xk+1), and (k + 1)x(k + d) matrix, and Hk+1(j) be the empirical 
entropy based on Zk+1(j), and set

y
k+1=e

r
, if	 H

k+1
(r)=max Hk+1(j) 1 ≤ j ≤ k

when there is tie, we use random rule to break the tie. Therefore we 
assign the (k + 2)-th patient among the remaining k−1 treatments using 
the above method, and so on and so forth. We assign the 2k-th patient 
the only remaining treatment; so that in the first 2k assignments, each 
treatment get 2 subjects, in a partially covariates balanced way.

Atkinson’s design can also be modified this way. It requires, in 
addition, at least k + d initially assigned subjects, while with our method 
we only require at least k initially assigned subjects.

For completeness, below we derive the optimal and minimax two-
stage design, and the corresponding sample size determination.

Optimal and Minimax Two-stage Design
In the above we studied the maximum em- pirical entropy method 
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to incorporate the covariates into phase II clinical design, here we use 
the same idea to extend the existing two-stage optimal and minimax 
design in the presence of covariates and for multiple treatments. There 
are many such designs under different considerations and setups, such 
as the design proposed by Whitehead [43], Simon [17]’s two-stage 
design, the r-design the optimal design of Stallard [16], among others. 
We should distinguish the term “design” used in the maxi- mum 
empirical entropy design as given above, which means the assignments 
of treatments to subjects; while the same term in the two-stage design 
here means the selection of the numbers (N

1
, N

2
, r

1
, r

2
) to be addressed 

below. Here we concentrate on the case of binary response; the case of 
quantitative response can also be handled as in Wason et al. [15], and 
the r-design of Cheng and Berry [44] can also be modified to include 
covariates. In Simon [17]’s optimal and minimax two-stage design 
for binary response, no covariates is considered and there is only one 
treatment. Here we consider the setting with covariates and multiple 
k treatments, in which one treatment is under evaluation, against the 
other k−1 treatments. We consider the procedure with two steps. In the 
first step we optimize the sample sizes for each stage, namely N

1 and 
N

2
, in the two-stage trial with multiple treatments, then in the second 

step, for the resulting sample size (N
1
) in step one, we allocate to each 

treatment approximately equal number of subjects by the maximum 
empirical entropy method as described above for each stage.

To optimize N
1 and N

2 in the first step, without loss of generality 
we assume treatment 1 is the one under evaluation, let p

j be the positive 
response from a patient with treatment j, g

0
(p

2
, ..., p

k )<g
1
(p2, ..., p

k ) be 
non-negative functions of the observed (p

2
, ..., p

k ). For example g
0
(p

2
, 

..., p
k 
)=c

0
(p

2 + · · · + p
k )/k and g

1
(p

2
, ..., p

k )=c
1
(p

2 + · · · + p
k )/k with given 

0<c
0<c

1<1, or g
0
(p

2
, ..., p

k )=min{p
2
, ..., p

k
} and g

1
(p

2
, ..., p

k
)=max{p

2
, 

..., p
k
}. In phase II clinical trial we are to test the null hypothesis H

0 
: p

1 ≤ min{p
1,0

, g
0
(p

2
, ..., p

k )} versus H
1 : p1 ≥ max{p

1,1
, g

1
(p

2
, ..., p

k )}. 
In practice, often p

1,0=
0.1 and p

1,1=
0.3. If H

0
 is accepted, the trial is 

terminated, otherwise it will continue to phase III for further study. 
Often it is required that for some pre-specified type I error (α) and 
power (β) (0<α, β<1), P (accept|H

0
) ≤ α and P (reject|H

1
) ≤ β. Since for 

given total sample size N and p1 ≤ g
0
, P (accept|p

1
, N ) ≤ P (accept|p

1,0
, 

N ), and for p
1 ≥ p

1,1
, P (reject|p

1
, N ) ≤ P (reject|p

1,1
, N ), so we only need 

to consider. 

P (accept|p
1,0

, N ) ≤ α, and P (reject|p
1,1

, N ) ≤ β

Phase II trials often have two stages including futility stopping, in 
the first stage N

1 subjects are entered, and if it is to be continued, in the 
second stage N

2 subjects are recruited. Since our treatment assignments 
depend on the covariates, and the response rates of treatments are 
independent, we use the maximum empirical entropy design in the 
last section to assign the subjects. i.e., in the first stage, assign n1=N

1
/k 

subjects to each treatment by this method, and if to be continued, in the 
second stage assign n

2=N
2
/k subjects to each treatment by the method 

again. In the first stage the criterion should be somewhat relaxed, as the 
sample size is small. If the number of positive responses from treatment 
1 is no more than

r
1=min {r

1,2
, ..., r

1,k},

where (r
1,2

, ..., r
1,k ) are the positive responses from treatments 

2 to k in the first stage (to be determined by the model, α, β and the 
optimizing procedure below), the drug is rejected; otherwise it goes 
to the second stage with N2 subjects, with the maximum empirical 
entropy design to assign the treatments, in this stage we may put a bit 
more strict criterion, if the number of positive response from treatment 
1 is less than. 

r
2=max {r

2,2
, ..., r

2,k},

where (r
2,2, ..., r2,k ) are the positive responses from treatments 

2 to k in the second stage (to be determined by the model, α, β and 
the optimizing procedure below) observed positive responses, then the 
drug is rejected; otherwise it goes to the phase III trial. For j=1, ..., k, let 
bj (r; p, n) and Bj (r; p, n), be the mass and cumulative distribution of 
Bernoulli distribution for treatment j, of r successes out of n=N/k trials 
with success probability p. These probabilities are independent of the 
treatment assignments y˜ N1 and y˜ N2. Often, the positive response 
rates (p2, ..., pk ) for the baseline treatments are known. We have, with

n1=N1/k, n2=N2/k and N=N1 + N2,

1 1 2

1

1 1 1 1 1
2

(r r )

1 1 1 1
1 2

1 1 2 2 1 2 2
2

( | , ) [1 ( | , )]

( | , ){1 [1 ( | , )]}

( | , ){1 ( | , )}

k

j j
j

n k

j j
r r j

k

j j
j

P(reject | p,N) B r p n B r p n

b r p n B r p n

B r r r p n B r r r p n

=

∧ +

= + =

=

= −

+ − −

× + − − + −

∏

∑ ∏

∏
and P (accept|p, N )=1 − P (reject|p, N ). The above is an extension 

of the case of one treatment to the case of k treatments. Note that there 
are more than one (n

1
, n

2
, r

1
, r

2
)’s satisfies the constraints P (accept|p

1,0
, 

N ) ≤ α and P (reject|p
1,1

, N ) ≤ β.

Wason et al. (2012) [15] studied optimal two-stage design for 
quantitative responses, with- out presence of observed covariates. 
They assumed normal distributions for the responses; the rejection/
acceptance probability is different from those above. With the above 
rejection/acceptance probability we derive an optimal design in the 
presence of covariates and multiple treatments which minimize the 
expected sample size, and the minimax design, which minimizes the 
maximum sample size.

Optimal design 

B
1
(r1|p, n

1
) is called the probability of early termination, the 

expected sample size EN in the trial is

1 1 1 1 2(1 ( | , ))EN N B r p n N= + −

In the above, p is unknown. In the actual minimization of EN, we 
set p=p

1,0. If (p
2
, ..., p

k ) are also unknown, we set them also to p
1,0

.

As the subjects are human being, it is important that a phase II 
trial uses as fewer as possible the number of subjects in the study. As 
for the existing optimal designs for two- stage clinical trials, in the case 
of one treatment without covariate, the optimal phase II trial is one 
which minimizes the expected number of subjects for given (p0, p1, α, 
β) subject to the `two type error probabilities, with p set to 0p . In this 
method, the optimal * * * *

1 2 1 2(N ,N ,r ,r ) is chosen such that

1 1 1 1,0 1 2(

1,0 1,1

arg min { (1 ( | , )) :

( | , ) , ( | , ) }
1 2 1 2

* * * *
1 2 1 2 N ,N ,r ,r )

(N ,N ,r ,r ) N B r p n N

P accept p N P reject p Nα β

= + −

≤ ≤
Note in the above minimization procedure, only (N1, N2, r1) enters 

the objective function 

N
1 + (1 –B (r1|p

1,0, n1
))N

2
, and (N

1
, N

2
, r

1
, r

2
) enters the constraints 

P (accept|p
1,0

, N ) ≤ α and

P (reject|p1,1, N ) ≤ β. The optimal * * * *
1 2 1 2(N ,N ,r ,r )  can be evaluated 

by numerical methods.

Minimax design 
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With the two stage treatments assignments as in the optimal design 
case, and with the acceptance/rejection probability given there, the 
minimax design (N˜1, N˜2, r˜1, r˜2) follows similar way as in Simon 
(1989):

1 2 1 2

~ ~ ~ ~

1 2 1 2 1 2(N ,N ,r ,r )

1,0 1,1

( N ,N ,r ,r )= arg min {N + N :

P(accept | p ,N ,P(reject | p ,N) }α β≤ ≤

Simulation Study 
For illustration of the proposed method, below we present two 

simulated examples. The first is for the group Atkinson design and 
the proposed maximum empirical entropy design; the second is for 
sequential adaptive design with proposed maxi- mum empirical 
entropy method.

Example 1 

We simulate a group design scenario similar to the real example 
given in the introduction, in which covariate values of N=48 patients, 
each with m=6 covariates generated from muti-normal distributions. 
We then allocate the patients to k=3, treatments according to their 
covariate values, using the Atkinson design and the proposed design, 
both with semi-random version. The results are presented in Figure 
1. The first panel plots the covariate values of the patients; the second 
panel plots the treatment assignments for all the patients under the 
Atkinson design; the third panel plots the treatment assignments for 
all the patients under the maximum empirical entropy design. For the 
2nd and 3rd panels, the vertical axes represent the three treatments, 
labeled 1,2,3; a dot in the j-th elevation indicates the underlying patient 
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Figure 1: Treatment assignments under two designs.
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is allocated to the j-th treatment. For this example, c˜=0.15, and both 
designs are semi-random and sub-optimal by their own criterion.

From Figure 1, we see that the covariates are quite varied, it’s not 
easy to pick out the few dominating variable(s), and it is impossible to 
balance the covariates in the three treatments in a randomized design 
with such a small patients size. The two designs, based on different 
principles, allocate the patients quite differently, however much of the 
difference comes from randomization, as both designs take only about 
15% consideration for optimality with respect to their criterion, and 
85% for randomization. It still gives us some sense of how covariates 
can be incorporated into the design in a sub-optimal way in such a 
small trial.

Example 2 

Now demonstrate the sequential adaptive design with the proposed 
method. The setup is the same as in Example one, with three treatments 
and six covariates for each of 48 patients come one by one, so at the 
end there are a total of 48 patients. With the proposed method, each 
group gets 16 patients. In Figure 2, we show how the 6 covariates are 
distributed in the three assigned treatment groups.

Each panel displays one of the covariates of the 48 patients 
distributed in three assigned treatment groups, the three lines represent 
a given covariate allocated to the three treat- ment groups. From this 
Figure we see that the values of each covariate distributed pretty evenly 
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Figure 2: Treatment assignments with proposed adaptive design.
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among the treatment groups. Recall that the proposed method is semi-
random and semi-optimal, considering the balancing of six covariates 
simultaneously, the result is quite reasonable.

Conclusion and Discussion 
We have studied maximum empirical entropy design for phase 

II multi-arm clinical trials in the presence of covariates. The method 
takes into the consideration both balancing the covariates among 
treatment groups and randomization, and is sub-optimal and semi-
random. The proposed method uses all the information in the 
covariates, as compared to methods using only the main covariates 
or their principal components, and has a natural interpretation in 
balancing the covariates as it maximizes the empirical entropy in a 
proper sense. The proposed design is different from existing designs 
to deal with covariates. The existing methods and the proposed one 
have their own pros and cons, none of them is uniformly better than 
the others. The proposed method, like many other ones, has a trade-off 
between the balance of covariates and randomization, on one side it 
provides the flexibility for the experimenter to choose weight toward 
one of the factors, on the other hand this can be regarded as non-
objective. Also, like many other design methods, the proposed method 
has no formal theoretical justification for optimality. Our method is 
also implemented in the optimal two-stage phase II multi-arm trials 
with covariates information, and can also be implemented in other trial 
designs.
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