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Abstract

Protein Tyrosine Phosphatase 1B (PTP-1B) is one of the

important targets in the treatment of diabetes and obesity.

They play a very important role in cellular signaling within

and between cells. The best pharmacophore hypothesis

(Hypo 1), consisting of four features, namely, one hydro-

gen-bond acceptor (HBA), one hydrophobic point (HY),

and two ring aromatics (RA), has a correlation coefficient

of 0.961, a root mean square deviation (RMSD) of 0.885,

and a cost difference of 62.436, suggesting that a highly

predictive pharmacophore model was successfully ob-

tained. A chemical feature based pharmacophore model

has been generated from known PTP-1B inhibitors (25

training set compounds) by HypoGen module implemented

in CATALYST software. The top ranked hypothesis

(Hypo1) contained four chemical feature types such as

hydrogen-bond acceptor (HA), hydrophobic aromatic

(HY), and two ring aromatic (RA) features. Hypo1 was

further validated by 125 test set molecules giving a corre-

lation coefficient of 0.905 between experimental and esti-

mated activity. This was also validated using CatScramble

method. Thus, the Hypo1 was exploited for searching new

lead compounds over chemical compounds in Medichem

database and then the selected compounds were screened

based on restriction estimated activity. Finally, we obtained

30 new lead candidates and the one best highly active com-

pound structure was selected as a lead compound. The re-

sults demonstrate that hypothesis derived in this study

could be considered to be a useful and reliable tool in iden-

tifying structurally diverse compounds with desired bio-

logical activity.

Keywords: Protein tyrosine phosphatase 1B; Diabetes; Insu-

lin; Obesity; Catalyst; Pharmacophore

Introduction

Protein tyrosine phosphatases (PTPs) constitute a family of

receptor-like and cytoplasmic enzymes that catalyze the de-

phosphorylation of phosphotyrosine residues in protein sub-

strates. PTPs together with protein tyrosine kinases (PTKs) play

critical roles in regulating intracellular signal transduction path-

ways responsible for controlling cell growth, differentiation,

motility, and metabolism.

Protein tyrosine phosphatases (PTPs) have emerged as a new

and promising class of signaling targets, since the discovery of

PTP-1B as a major drug target for diabetes and obesity. Bio-

chemical and cellular studies have provided evidences that PTPs

have an important role in the regulation of insulin signal trans-

duction. Protein tyrosine phosphates 1B (PTP-1B), a cytosolic

PTP play a major role in the regulation of insulin sensitivity and

dephosphorylation of the insulin receptor. PTP-1B has been

implicated as negative regulator of insulin receptor signaling

Reference (Zhang and Zhang, 2007).

Clinical studies have found a correlation between insulin re-

sistance states and levels of PTP-1B expression in muscle and

adipose tissue, suggesting that PTP-1B has a major role in the

insulin resistance associated with obesity and NIDDM. Block-

ing one or more phosphatases could enhance the phosphoryla-

tion state of the insulin receptor kinase/subunit and/or its down-

stream signaling partners and restore the insulin resistance, which

is a characteristic of type II diabetes (van Huijsduijnen et al.,

2004).

Since then, many drugs have been synthesized by various com-

panies for targeting PTP-1B, which is very challenging due to

the closed form of the catalytic site of PTPs containing a highly

polar phosphotyrosine (pTyr) binding site. The quest for oral

PTP-1B inhibitors, with a satisfactory balance between physi-

cochemical properties and selectivity, is still in its early stages,

but despite the recent progress, compounds with optimal oral

activity remain to be discovered. A pharmacophore model rep-

resents the 3D arrangements of the structural or chemical fea-

tures of a drug (small organic compounds, peptides,

peptidomimetics, etc.) that may be essential for interacting with

the protein for optimum binding.

These pharmacophore models can be used differently in drug

design programs such as

(i) 3D query tool for virtual screening to identify potential new

compounds from 3D databases of “drug-like” molecules that

have patentable structures different from those that currently

exist, and

(ii)Tool to predict the activities of a set of new compounds that

remain to be synthesized Reference (Bharatham et al., 2007).

In the present study, we have generated pharmacophore model

using Catalyst software Reference (Catalyst 4.11, Accelrys, Inc.,



J Proteomics Bioinform                                      Volume 3(1) : 020-028 (2010) - 021

 ISSN:0974-276X   JPB, an open access journal

Citation: Suresh N, Vasanthi NS (2010) Pharmacophore Modeling and Virtual Screening Studies to Design Potential Protein Ty-

rosine Phosphatase 1B Inhibitors as New Leads. J Proteomics Bioinform 3: 020-028. doi:10.4172/jpb.1000117

San Diego, CA, 2005) for diverse set of molecules of PTP IB

with an aim to obtain Pharmacophore model which could pro-

vide a rational hypothetical picture of the primary chemical fea-

tures responsible for activity.

This is expected to provide useful knowledge for developing

new potentially active candidates targeting the PTP-1B which

can be useful for  treatment of obesity and diabetes.

Pharmacophore modeling correlates activities with the spatial

arrangement of various chemical features.

Materials and Methods

Selection of molecules

We selected a set of 150 compounds which are reported to be

inhibitors of PTP-1B. The inhibitory activity of these compounds

was expressed as IC
50

 (i.e., concentration of compound required

to inhibit 50% of PTP-1B was taken). The activity reported for

these compounds was measured according to assay procedures.

The IC
50 

values spanned across a wide range from 0.039 uM to

1800 uM. Of these 150 compounds, 25 compounds were taken

as training set (Table 2) and the rest of the 125 compounds as

test set (Chart 2 Table S1 Additional information). The dataset

was divided into training set and test set. The training set was

selected by considering both structural diversity and wide cov-

erage of the activity range. They were distributed into most ac-

tive, moderately active and least inactive compounds based on

their IC50 values in order to obtain critical information on

pharmacophore requirements. The important aspect of this se-

lection was to ensure that each active compound would teach

something new to the HypoGen module thus it can be able to

uncover as much as critical information possible for predicting

biological activity.

Molecular modeling

The geometry of a compound is built with the Catalyst builder

and optimized by the CHARMM like force field. All molecules

were built using the builder module of Cerius2. All the struc-

tures were minimized using steepest descent algorithm with a

convergence gradient value of 0.001 kcal/mol. Partial atomic

charges were calculated using Gasteiger method Reference

(Gasteiger and Marsilli, 1980). Further geometry optimization

was carried out for each compound with the MOPAC 6 package

using the semi-empirical AM1 Hamiltonian.

Pharmacophore modeling

Multiple acceptable conformations were generated for all of

20.0 kcal/mol above the global energy minimum. Instead of us-

ing lowest energy conformation of each compound, multiple

acceptable conformations were generated for all ligands within

the Catalyst ConFirm module using the ‘‘Poling’’ algorithm. A

maximum of 250 conformations were generated for each mol-

ecule within an energy threshold all conformational models for

each molecule in training set were used in Catalyst for

pharmacophore hypothesis generation.

The training set molecules (25) associated with their confor-

mations were submitted to the Catalyst hypothesis generation

(HypoGen) (Table 1). Features of hydrogen-bond acceptor

(HBA), hydrophobic features (HY), hydrogen-bond donor

aThe error factor is computed as the ratio of the measured activity to the activity estimated by the hypothesis or the inverse if estimated is greater

than measured
bFit value indicates how well the features in the pharmacophore overlap the chemical features in the molecule.
cActivity scale: +++, <0.5 uM (highly active); ++, >0.5-10 uM (moderately active); +, >10 uM (inactive).

Table 1: Output of the score hypothesis process on the training set.

 

Compound 

 

True IC50  

(uM) 

Estimated IC50 

(uM) 

Error 

factor (a) 

Fit Value 

(b) 

Activity Scale 

(c ) 

 

Estimated activity 

scale 

54 0.039 0.064 1.6 12.45 +++ +++ 

78 0.075 0.054 -1.4 11.32 +++ +++ 

76 0.095 0.05 -1.9 11.31 +++ +++ 

62 0.15 0.74 4.9 11.58 +++ +++ 

70 0.37 0.65 1.8 11.66 +++ +++ 

73 0.44 0.37 -1.2 11.93 +++ +++ 

46 0.51 0.51 -1 11.55 +++ +++ 

71 0.58 0.35 -1.6 11.42 +++ +++ 

50 0.65 1.4 2.2 11.45 +++ +++ 
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Table 2: Molecular structures of the 25 training set compounds.

(HBD), ring aromatic (RA) features were included for the

pharmacophore generation on the basis of common features

present in the study molecules. The statistical parameters like

cost values determine the significance of the model. Ten

pharmacophore models with significant statistical parameters

were generated.

The best model was selected on the basis of a high correlation

coefficient (r), lowest total cost, and RMSD values. The final

model was further validated by a test set of 125 molecules.

Generation of pharmacophore model

Based on the structures of the training set compounds and their

experimentally determined inhibitory activities against PTP-1B,

10 best pharmacophore (or hypotheses) were generated using

HypoGen module implemented in Catalyst 4.11 software. On

further analysis, it was observed that four chemical feature types

such as hydrogen-bond acceptor (HA), hydrophobic aromatic

(HY), and two ring aromatic (RA) features could effectively map

all critical chemical features of all molecules in the training and

test sets. These features were further selected and used to build a

series of hypotheses using the HypoGen module in Catalyst us-

ing default uncertainty value 3 (defined by Catalyst software as

the measured value being within three times higher or three times

lower of the true value). Catalyst thereby generates a chemical

feature based model on the basis of the most active compounds.

In hypothesis generation, the structure and activity correla-

tions in the training set were examined. HypoGen identifies those

features that were common to the active compounds but excluded

from the inactive compounds within conformationally allowable

regions of space. It also further estimates the activity of each
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training set compound using regression parameters. These pa-

rameters are computed by the regression analysis using the rela-

tionship of geometric fit value versus the negative logarithm of

activity. The greater is the geometric fit, greater would be the

activity prediction of the compound.

The fit function not only checks the feature is mapped or not

but whether it contains a distance term, which measures the dis-

tance that separates the feature on the molecule from the cen-

troid of the hypothesis feature. Both these terms are used to cal-

culate the geometric fit value.

Pharmacophore validation

The generated pharmacophore model should be able to also

predict the activity of the molecules accurately and also identify

the active compound from the database. Therefore, the derived

pharmacophore map was validated using (i) cost analysis, (ii)

test set prediction and (iii) Fisher’s test.

Cost analysis

The HypoGen module in Catalyst performs two important theo-

retical cost calculations determining the success of any

pharmacophore hypothesis. One is the ‘fixed cost’ (termed as

ideal cost), representing the simplest model that fits all data per-

fectly, and the second is the ‘null cost’ (termed as no correlation

cost), representing the highest cost of a pharmacophore with no

features and estimates activity to be the average of the activity

data of the training set molecules.

A meaningful pharmacophore hypothesis may also result when

the difference between null and fixed cost value is large; with

values of 40-60 bits for a pharmacophore hypothesis may indi-

cate that it has 75-90% probability of correlating the data (Cata-

lyst 4.11 documentation).

Two other parameters determine the quality of any

pharmacophore configuration cost or entropy cost depending on

the complexity of the pharmacophore hypothesis space and

should have a value <17, and the error cost, which is dependent

on the root mean square differences between the estimated and

the actual activities of the training set molecules. The RMSD

represents the quality of the correlation between the estimated

and the actual activity data. The best pharmacophore model has

highest cost difference, lowest RMSD and best correlation coef-

ficient.

Test set activity prediction

In addition to the estimation of activity of the 25 training set

molecules, the pharmacophore model should also be able to es-

timate the activity of new compounds. For external validation of

the pharmacophore model, we have considered 125 compounds

as test set (Table S1 Supporting information), having wide range

of activities (IC
50

, spanning from 0.5 to 10.00 uM) and struc-

tural diversity. The best pharmacophore (Hypo1) having high

correlation coefficient (r), lowest total cost, and lower RMSD

value was chosen to estimate the activity of test set. Test set

compounds were classified on the basis of their activity as highly

active < 0.5 uM (highly active); ++, > 0.5-10 uM (moderately

active); +, > 10 uM (inactive) (Doman et al., 2002; Lazo et al.,

2001; Malamas et al., 2000a; Malamas et al., 2000b; Jia et al.,

2001; Gao et al., 2001; Ripka, 2000; Lyon et al., 2002; Furstner

et al., 2004; Taha and AlDamen, 2005; Cho et al., 2006; Cui et

al., 2006; Dewang et al., 2005; Lazo et al., 2006; Mao et al.,

2006; Na et al., 2006a; Na et al., 2006b; Wang et al., 1998; Liu

et al., 2003; Wipf et al., 2001; Ahn et al., 2002; Chen et al.,

2002; Shrestha et al., 2004; Black et al., 2005; Leung et al.,

2002; Shim et al., 2005; Cao et al., 2005; Huang et al., 2003;

Maccari et al., 2007; Wrobel et al., 1999).

Fisher’s test

Using the module CatScramble, the molecular spreadsheets

of our training set were modified by arbitrary scrambling of the

affinity data for all compounds. These randomized spreadsheets

yield hypotheses without statistical significance; otherwise, the

original model is also random. To achieve a statistical signifi-

cance level of 98%, 41 random spreadsheets were generated for

each of our three hypotheses. For all three targets, randomiza-

tion tests gave hypotheses with total cost values lying well above

those reported for the sets of original hypotheses, yielding lower

values for the differences null hypothesis cost - total cost, further 

supporting the statistical significance of our models Sarma et al., 2008.

Results and Discussion

Pharmacophore models were generated by HypoGen present

in (Catalyst 4.11, Accelrys, Inc., San Diego, CA, 2005) and top

10 hypotheses (Table 1) were exported. Most hypotheses showed

high correlation (>0.90). Interestingly, in the training set, all

highly active compounds map all the features that is hydropho-

bic (HY), hydrogen-bond acceptor (HBA), and two ring aro-

matics (RA1 and RA2). With a few exceptions, in moderately

active and inactive compounds one feature is missing. All the

compounds in the training set map HY and RA1 feature reveal-

ing that these two features should be mainly responsible for the

high molecular bioactivity, thus, should be taken into account in

discovering or designing novel PTP-1B. The most active com-

pound, 54, has a fitness score of 12.45 when mapped to Hypo 1

(Figure 1) whereas the least active, 18, maps to a value of 8.46

as seen in Figure 2B (1). On the basis of similar composition of

the 10 hypotheses, hypothesis 1 (Hypo1), characterized by the

best statistical parameters (Table 1) in terms of its predictive

Figure 1: The best hypothesis model Hypo1 produced by the HypoGen

module in Catalyst 4.11 software. The best hypothesis model Hypo 1 pro-

duced by the HypoGen module in Catalyst 4.11 software. Pharmacophore fea-

tures are color-coded with orange, blue and green contours representing the

ring aromatic features (RA), hydrophobic feature (HY) and hydrogenbond ac-

ceptor feature (HA) respectively. Distance between pharmacophore features is

reported in angstroms.
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ability, as indicated by the highest correlation coefficient and

lowest RMS deviations, has been chosen to represent ‘the

pharmacophore model’. Remarkably, the highest active com-

pound (compound 54) can be nicely mapped onto the Hypo1

model by the best fit values, which are shown in Figure 2A (1)

indicating that the Hypo1 model provides reasonable

pharmacophoric characteristics of the PTP-1B inhibitors for

component of their activities.

Cost analysis

In addition to generating a hypothesis, Catalyst also provides

two theoretical costs (represented in bit units) to help assess the

validity of the hypothesis. The first is the cost of an ideal hy-

pothesis (fixed cost), which represents the simplest model that

fits all data perfectly. The second is the cost of the null hypoth-

esis (null cost), which represents the highest cost of a

pharmacophore with no features and which estimates activity to

be the average of the activity data of the training set molecules.

They represent the upper and lower bounds for the hypotheses

that are generated. A generated hypothesis with a score that is

substantially below that of the null hypothesis is likely to be

statistically significant and bears visual inspection.

The greater the difference between the cost of the generated

hypothesis and the cost of the null hypothesis, the less likely it is

that the hypothesis reflects a chance correlation. A value of 40-

60 bits between them for a pharmacophore hypothesis may indi-

cate that it has 75-90% probability of correlating the data. The

total fixed cost of the run is 119.487, the cost of the null hypoth-

esis 309.536, and the total cost of the Hypo1 is 141.995 (Table

3).

Then, the cost range between Hypo1 and the fixed cost is

25.426, while that between the null hypothesis and Hypo1 is

163.797 (Table 3), which shows that Hypo1 has more than 90%

probability of correlating the data. Noticeably, the total cost of

Hypo1 was much closer to the fixed cost than to the null cost.

Furthermore, a high correlation coefficient of 0.966 was observed

with RMS value of 1.354 and the configuration cost of 14.536,

demonstrating that we have successfully developed a reliable

pharmacophore model with high predictivity.

Journal of Proteomics & Bioinformatics  - Open Access

JPB/Vol.3/January 2010

Figure 2A: Pharmacophore mapping of the most active compound on the

best hypothesis model Hypo1. (1) Compound 54 from the training set. (2)

Compound 77 from the test set.

Figure 2B: Pharmacophore mapping of the least active compound on the

best hypothesis model Hypo1. (1) Compound 18 from the training set. (2)

Compound 110 from the test set.

A1)

A2)

B1)

B2)



J Proteomics Bioinform                                      Volume 3(1) : 020-028 (2010) - 025

 ISSN:0974-276X   JPB, an open access journal

Score hypothesis

To verify Hypo1’s discriminability among PTP-1B inhibitors

with different order of magnitude activity, all training set com-

pounds were classified by their activity as highly active highly

active < 0.5 uM (highly active); ++, > 0.5-10 uM (moderately

active); +, > 10 uM (inactive). The actual and estimated PTP-1B

inhibitory activities of the 25 compounds based on Hypo1 are

listed in Table 1.

The discrepancy between the actual and the estimated activity

observed for the two compounds was only about one-order of

magnitude, which might be an artifact of the program that uses

different numbers of degrees of freedom for these compounds to

mismatch the pharmacophore model. The error factor is also

reported in Table 1. It shows that 20 molecules out of the 25

molecules in the training set have errors less than 10 which means

that the activity prediction of these compounds falls between

10-fold greater and 1/10 of the actual activity.

These results confirm that our hypothesis is a reliable model

for describing the SAR in the training set. In this study, all but

one highly active compound map the hydrogen-bond acceptor

(HA) feature, and one least active inhibitor do not have this fea-

ture.

Validation of the constructed pharmacophore model

The actual activities versus estimated activity of the 125 com-

pounds in the test are shown in Table S1 in the Supporting infor-

mation. A correlation coefficient of 150 generated using the test

set compounds shows a good correlation of 0.951 between the

actual and the estimated activities. Detailed, 7 out of 10 highly

active, 33 of 55 moderately active, and 43 of 60 inactive com-

pounds were predicted correctly. Two highly active compounds

were underestimated as moderately active; five moderately ac-

tive compounds were underestimated as inactive and other seven

moderately active compounds were overestimated as highly ac-

tive; most of inactive compounds were overestimated as moder-

ately active.

The most active compound 77 in the test set had a fitness score

of 12.05 when mapped to the Hypo 1 as seen in Figure 2A(2)

and shows that all the features are being mapped accurately.

The least active compound 110 in the test set had a fitness

score of 8.16 when mapped to the Hypo 1 as seen in Figure 2B

(2) and shows that all the features are not being mapped accu-

rately.

In conclusion, most of the compounds in the test set were pre-

dicted correctly, which mean the hypothesis is suited for screen-

ing high active compounds from the database.

Fisher’s test

To further evaluate the statistical relevance of the model,

Fisher’s method was applied. With the aid of the CatScramble

program, the experimental activities in the training set were

scrambled randomly, and the resulting training set was used for

a HypoGen run. All parameters were adopted which were used

in initial HypoGen calculation. This procedure was reiterated

30 times. None of the outcome hypotheses has lower cost score

than the initial hypothesis.

Finally, cross validation using the CatScramble program avail-

able in CATALYST was applied to assess the statistical confi-

dence of Hypo1. The goal of this type of validation is to check

whether there is a strong correlation between the structures and

activity. CatScramble mixes up activity values of all training set

compounds and creates 19 random spreadsheets (Sarma et al.,

2008).

In this validation test, we select the 95% confidence level. We

employed the first hypothesis (Hypo1) as 3D-search query against

the NCI database using the ‘fast flexible search’ approach imple-

mented within CATALYST. The pharmacophore captured 302

hits from a commercially available database of 10,458 com-

pounds. The molecules identified included a broad range of tem-

plates that were structurally diverse from the starting molecule.

The hits were subsequently fitted against the Hypo1 and the high-

est ranking 30 compounds were selected for being further inves-

tigated as potential new structures for design of novel PTP-1B

inhibitors Sarma et al., 2008.

Model validation and knowledge based screening

The purpose of the pharmacophore hypothesis generation is

not just to predict the activity of the training set compounds ac-

curately but also to verify whether the pharmacophore models

are capable of predicting the activities of compounds of the test

set series and classifying them correctly as active or inactive.

The best pharmacophore hypothesis was used initially to screen

the PTP-1B inhibitors. All queries were performed using the Best

Hypo No.  Total cost  

Cost difference 

(Null cost-Total 

cost) 

Error cost  RMS  
Correlation 

(r) 
Features 

1 125.257  62.436 106.062 1.3258 0.911 HBA, HY, RA, RA 

2 125.899  56.907 106.531 1.3398 0.927 HBA, HY, RA, RA 

3 126.049  52.348 94.041  1.345  0.939 HBA, HBA, HY, RA 

4 126.098  51.151 106.247 1.331  0.947 HBA, HY, RA, RA 

5 126.478  50.764 107.118  1.354  0.966 HBA, HY, RA, RA 

6 125.850  50.656 102.352  1.605  0.949 HBA, HY, HY, RA, RA 

7 125.777  50.925 101.813  1.590  0.957 HBA, HBA, HY, HY 

8 124.566  50.946 101.824  1.590  0.949 HBA, HY, HY, RA 

9 125.594  49.890 100.769  1.560  0.956 HBA, HBA, HY, RA, RA 

10 124.663  49.769 103.641  1.641  0.945 HBA, HY, HY, RA 

 aNull cost = 309.536, fixed cost = 119.487; configuration = 15.469 and weight ~ 1.224. All cost units are in bits.
bHBA, hydrogen-bond acceptor; HY, hydrophobic feature; HBD, hydrogen-bond donor; RA, ring aromatic feature.

Table 3: Results of pharmacophore hypothesis generated using training set against PTP-1B.
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Flexible search databases/Spreadsheet method.

Hyporefine 1 was used to screen the known high, medium and

low active inhibitors of the test set. Database mining was per-

formed in Catalyst software using the BEST flexible searching

technique.

A number of parameters such as hit list (Ht), number of active

percent of yields (%Y), percent ratio of actives in the hit list

(%A), enrichment factor of (E), False negatives, False positives

and Goodness of hit score (GH) are calculated (Table 4) while

carrying out the pharmacophore model and Virtual screening of

test set molecules.

The number of molecules in the database is 302. Of these, 215

are highly active, 54 are moderately active and 36 are low active

compounds.  While the False positives and negatives, 16 and 12

respectively, are minimal, enrichment factor of 1.33 against a

maximum value of 3.0 is a very good indication on the high

efficiency of the screening. Of the 215 highly active molecules,

15 were predicted as moderately active and 4 were predicted as

least active. In the 54 moderately active, 6 were predicted as low

active and 3 as highly active.

The model also predicted 3 of the low active molecules as

moderately active and 2 more molecules from the same set as

highly active. The steric and other interaction effects might have

a subtle, yet crucial role on the predicted activity.

While these additional groups may not prevent in identifying

many low energy conformers or add any penalty for the total

cost, but could be detrimental to fit these conformers in the ac-

tive site.

Thus the features of Hyporefine 1 are relatively well optimized.

However, in the case of highly active molecules, there are bulky

groups present which may decrease the ability of the hyporefine

to select the most highly active molecules Sarma et al., 2008.

Conclusions

The work presented in this study shows how chemical fea-

tures of a set of compounds along with their activities ranging

over several orders of magnitudes can be used to generate

pharmacophore hypotheses that can successfully predict the ac-

tivity.  The models were capable of predicting the activities over

a wide variety of scaffolds and showed distinct chemical fea-

tures that may be responsible for the activity of the inhibitors.

This knowledge can be used to identify and design inhibitors

with greater selectivity.

Thus, the pharmacophores generated from the PTP-1B  can

be used:

1. To generate Pharmacophore models as powerful search tool

to be used as a 3D query to identify lead molecules from chemi-

cal databases as potential PTP-1B inhibitors.

2. To evaluate how well any newly designed compound maps

on the pharmacophore before undertaking any further study

including synthesis.  Both these applications may help in iden-

tifying or designing compounds for further biological evalu-

ation and optimization.

A total data set of test and training of 150 compounds of selec-

tive PTP-1B inhibitors whose chemical features along with their

respective activities ranging over a wide range of magnitude is

used to generate pharmacophore hypotheses to successfully and

accurately predict the activity. A highly predictive pharmacophore

model was generated based on 25 training set molecules, which

had hydrogen-bond acceptor, hydrophobic, hydrophobic bond

donor and ring aromatic as chemical features which described

their activities towards PTP-1B. The validity of the model was

based on 125 test set molecules, which finally showed that the

model was able to accurately differentiate various classes of PTP-

1B inhibitors with a high correlation coefficient of 0.851 be-

tween experimental and predicted activity.

This validated pharmacophore model, as such can be used as

a query for identification of potential inhibitors of PTP-1B while

it can also be used to validate the potential of the compound to

inhibit the enzyme prior to taking any step regarding the synthe-

sis. PTB 1B enzymes have proven to be exciting and promising

novel targets for the treatment of obesity and cancer. In-house

build Medichem database was useful as a powerful resource to

identify many PTP-1B inhibitors with highly varied activities

and chemotypes. These PTP-1B inhibitors have been retrieved

from the resource and some of them have been used to general a

Pharmacophore model while other inhibitors have been used for

virtual screening to validate the model.

The best quantitative Pharmacophore model in terms of pre-

dictive value consisted of four features like one hydrogen-bond

acceptor (HA), one hydrophobic aromatic (HY), and two ring

aromatic (RA) features, which is further validated by using an

S. No Parameter PTP-1B 

1 Total molecules in database (D) 302 

2 Total Number of actives in database (A) 215 

3 Total Hits (Ht) 218 

4 Active Hits (Ha) 201 

5 % Yield of actives [(Ha/Ht)*100] 92.2 

6 % Ratio of actives [(Ha/A)*100] 93.49 

7 Enrichment factor (E) [(Ha*D)/(Ht*A)] 1.3 

8 False Negatives [A - Ha] 14 

9 False Positives [Ht - Ha] 17 

10 Goodness of Hit Score [a] 0.76 

 [a]-[(Ha/4HtA)(3A + Ht) _ (1 _ ((Ht _ Ha)/(D _ A))]; GH score of 0.6–0.7 indicates a very good model.

Table 4: Statistical parameters from screening test set molecules.
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large set of 378 PTP-1B inhibitors and gives a r value of 0.958.

The most active molecule 54 (IC
50

 = 0.039 uM) in the training

set fits very well with this top scoring pharmacophore hypoth-

esis. Virtual screening produced some false positives and a few

false negatives. It is being noted that concurrent use or a consen-

sus study, which readily minimizes these errors, could be an added

tool for Pharmacophore model based virtual screening in order

to produce reliable true positives and negatives. This

Pharmacophore model was further used to search the NCI data-

base consisting of structurally diversified molecules, yielded 218

molecules as hits that satisfied the 3D query. The activities of

those molecules were predicted using the developed

Pharmacophore model and the highly active molecules are fur-

ther used to design more potent lead molecules against PTP-1B

inhibitors for the treatment of various types of diabetes and obe-

sity.

Thus, we hope that the model generated will be helpful to iden-

tify novel and potential lead molecules with improved activity

against PTP-1B.

Experimental

All molecular modeling works were performed on a Silicon

Graphics Octane R12000 computer running Linux 6.5.12 (SGI,

1600 Amphitheatre Parkway, Mountain View, CA 94043) Cata-

lyst 4.11 software was used to generate Pharmacophore models.
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