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Introduction
During the last decade, many new biological immune modulators 

entered the market as new therapeutic principles. The ongoing 
progresses in the knowledge of the pathogenic mechanisms of various 
immune-mediated or inflammatory diseases such as rheumatoid 
arthritis (RA), systemic lupus erythematosus (SLE), Crohn’s disease 
(CD), ankylosing spondylitis (AS), disseminated granuloma annulare 
(DGA), psoriasis (Ps) and/or psoriatic arthritis (PsA), and the 
availability of innovative biotechnological approaches have lead to the 
development of new drugs which add to conventional treatments [1-7]. 
In particular, efforts have been made to design biologic drugs able to 
counteract the activity of different molecules such as tumor necrosis 
factor (TNF)-α, interleukin (IL)-1, CD20, CD22 and CD11a. TNF-α 
is a pro-inflammatory cytokine known to a have a central role in the 
initial host response to infection and in the pathogenesis of the above-
mentioned diseases [1-9]. TNF-α inhibitors have demonstrated efficacy 
in large, randomized controlled clinical trials either as monotherapy 
or in combination with other anti-inflammatory or disease-modifying 
anti-rheumatic drugs (DMARDs) in the treatment of chronic immune-
mediated or inflammatory diseases [1-7,10,11]. There are five TNF-α 
inhibitors available for clinical use including anti-TNF-α monoclonal 
antibodies (mAbs) (infliximab, adalimumab, golimumab and 
certolizumab pegol) and a fusion protein that acts as a “decoy receptor” 
for TNF-α (etanercept) [1-7,12]. Furthermore, TNF-α inhibitors are 
able to reduce the expression and production of vascular endothelial 
growth factor (VEGF), nitric oxide (NO) and inducible NO synthase 
[12,13]. Notably, VEGF is a critical mediator of inflammation both in 

chronic immune-mediated and allergic diseases [14,15]. It is known 
that VEGF is a pro-angiogenic factor which alters the microvascular 
netwotk and, thus, correlates and may contribute to the development 
and progression of atherosclerosis. Etanercept and adalimumab may 
exert beneficial effects on the lipid profile improving the endothelial 
dysfunction [16]. In summary, the administration of TNF-α inhibitors 
reduces the systemic inflammation in patients with chronic immune-
mediated diseases, improves both the clinical course of the disease 
itself and the endothelial function and, thus, may decrease the risk of 
acute cardiovascular and/or cerebrovascular events [12,17-19]. Finally, 
lymphotoxin (LT)-α seems to play a role in the development of flogosis 
of immune-mediated disease such as RA. Indeed, in RA, in addition to 
TNF-α, also LT-α expression in the synovium is elevated [20]. T-helper 
(Th)-1 and Th-17 lymphocytes have been associated with autoimmune 
diseases such as RA and expressed LT-α [21,22]. Depletion of LT-α–
expressing Th-1 and Th-17 lymphocytes with LT-α–specific mAb 
may be beneficial in the treatment of autoimmune disease such as 
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Abstract
Background: The ongoing progresses in the knowledge of the pathogenic mechanisms of various immune-

mediated or inflammatory diseases such as rheumatoid arthritis, systemic lupus erythematosus, Crohn’s disease, 
ankylosing spondylitis, disseminated granuloma annulare, psoriasis and/or psoriatic arthritis, and the availability 
of innovative biotechnological approaches have lead to the development of new drugs which add to conventional 
treatments. There are five TNF-α inhibitors available for clinical use including anti-TNF-α monoclonal antibodies 
(infliximab, adalimumab, golimumab and certolizumab pegol) and a fusion protein that acts as a “decoy receptor” for 
TNF-α (etanercept). Pharmacogenetics has the potential of increasing drug efficiency by identifying genetic factors 
responsible for lack response or toxicities to TNF-α inhibitors.

Methods: We analyzed the most recent studies in the literature relating to different genetic polymorphisms and 
their potential association with the therapeutic response to TNF-α inhibitors.

Results: SNP at position -308 of the TNF-α promoter genes and particularly the -308 G/G genotype and 
HLA-DRB1-encoding shared epitope (allele *0404 and allele *0101) may predict a better response to etanercept. 
Polymorphisms of TNFR1 and TNFR2 decrease response to infliximab. By contrast, FCGR3A-158 polymorphism 
seems to favor the response to infliximab. G allele of SNP rs610604 located in the TNFAIP3 gene and its haplotype 
with the T allele of rs2230926 could be considered as markers of good response to etanercept, infliximab and 
adalimumab.

Conclusion: Most of these studies are often small and not sufficiently powered to detect an effect and often 
examines only the effects of a single SNP, while it would be more useful to analyze more haplotypes in contemporary 
in the same patients. Candidate genes may be in linkage with other loci, thus, having a true influence upon the 
pharmacology of TNF-α inhibitors. Further studies are needed before a pharmacogenetic approach may be 
applicable in daily clinical therapeutic practice.
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RA [22]. However, it would seem that TNF-α inhibitors could bind 
LT-α as we have proven in PsA patients [23]. Although TNF-α 
inhibitors are generally well tolerated, physicians should be aware of 
the potential adverse events of these drugs [1-7]. Furthermore, high 
costs and concomitant immunosuppressive drugs favoring potential 
opportunistic infections decrease the prescription of TNF-α inhibitors. 
Pharmacogenetics has the potential of increasing drug efficiency by 
identifying genetic factors responsible for lack response or toxicities 
to TNF-α inhibitors [24]. In this paper, the authors will briefly review 
the biological roles of TNF-α in the pathogenesis of immune-mediated 
diseases and the potential role of pharmacogenetics in predicting the 
response to TNF-α inhibitors.

TNF-α: Structure and Biological Effects
TNF-α gene is located in the short arm of chromosome 6 in the 

MHC class III region between the HLA-B and HLA-DR genes. TNF-α 
was identified in 1975 as a factor isolated from the serum of endotoxin-
treated mice able to induce the necrosis of a methylcholanthrene-
induced murine sarcoma [8]. Thereafter, several members of the TNF 
and TNF-receptor (TNFR) superfamily were identified and it was 
demonstrated that this factors play an important role as regulators of 
immune cell proliferation, survival, differentiation, and apoptosis. TNF 
is first produced as a transmembrane protein (tmTNF), which then is 
cleaved by a metalloproteinase to a soluble form (sTNF) [9]. Biological 
activity results from the association of three monomers to form trimeric 
TNF, which then binds to cell-surface TNFR1 or TNFR2, leading 
to receptor oligomerisation. Both TNFR1 and TNFR2 can deliver 
signals through anti-apoptotic and pro-inflammatory pathways [9]. 
Moreover, TNFR1 is necessary for defense against bacterial infection, 
whereas TNFR2 might have a role in downregulating TNF-driven 
inflammatory signals. TNF-α favors the recruitment and the activation 
of lymphocytes, neutrophils and platelets, the expression of adhesion 
molecules such as intercellular adhesion molecule-1 (ICAM-1), 
vascular adhesion molecule-1 (VCAM-1) and E-selectin on endothelial 
cells and induces the neo-angiogenesis in the sites of flogosis. TNF 
has a central role in the initial host response to infection [25]. In 
tuberculosis, it results in macrophage activation, cell recruitment, 
granuloma formation, and maintenance of granuloma integrity [26]. 
Mice lacking the gene for TNF or TNFR1, or treated with an anti-
TNF monoclonal antibody, fail to contain the infection after challenge 
with Mycobacterium tuberculosis [27]. Other studies have implicated 
TNF, TNFR1, and TNFR2 as being important in murine defense 
against other intracellular pathogens such as Listeria monocytogenes 
and Salmonella typhimurium [28,29]. TNF-α is produced mainly by 
activated macrophages in the inflamed synovial membrane tissue 
and induces the production of other pro-inflammatory cytokines, 
including IL-1 and IL-6, together with the production and release of 
chemokines (i.e. IL-8, Rantes) that attract leukocytes from the blood 
into the inflamed tissue. This process is facilitated by the upregulation 
on endothelium of integrins and adhesion molecules, including 
E-selectin and VCAM-1. Finally, the destruction of the underlying 
articular cartilage and subchondral bone is initiated by the induction 
of proteolytic and metalloproteinase enzymes [30].

Pharmacogenetics
Although TNF-α inhibitors have demonstrated to be effective in 

the treatment of patients with immune-mediated or inflammatory 
diseases, a substantial proportion of the patients fall to achieve a 
satisfactory clinical response. However, determinant for drug efficacy 
and toxicity are still largely unknown. Therefore, identifying the 

patients who will benefit from TNF-α inhibitors remains a lottery [31-
35]. Pharmacogenetics holds the promise not only to explain inter-
individual variability in drug response, but also to predict efficacy and 
adverse drug events. Several studies have gathered considerable 
information on drug interaction with TNF-α. Despite genetic 
susceptibility markers such as the shared epitope (SE), recognition that 
variation in response to the treatment TNF-α inhibitors may be linked 
to genetic traits led to the study of genetic markers as potential 
predictors of response to the treatment. Such analyses provide a step 
towards using genetics in a fully translational approach, from both a 
screening and therapeutic response perspective, to informing clinical 
practice. Genes encoding proteins involved in the immune response 
continue to be studied to determine whether they are robust markers to 
predict the response to TNF-α inhibitors. However, several genetic 
variants have been analyzed in the TNF-LTα region. The TNF gene loci 
are obvious candidates for influencing the response to TNF-α 
inhibitors. Several polymorphic regions of the TNF locus have been 
identified and studied, including single nucleotide polymorphisms 
(SNPs) at position -308, -238 and -857 of the TNF promoter genes and 
-676 and -196 of the TNF receptor genes [36]. The SNP at position -308 
represents the best studied potential genetic marker for response to 
TNF-α inhibitors. Polymorphism at position -308 of the TNF-α gene is 
known to influence binding of transcription factors and to control the 
level of TNF-α production [37]. Louis et al. [38] genotyped CD patients 
for the TNF-α -308 A/G polymorphism and compared the response 
rates after infliximab therapy. No significant difference between 
response groups could be demonstrated. Mascheretti et al. [39] 
analyzed SNPs in the TNF-α, TNFR1 and TNFR2 in two cohorts of 
patients with active CD (90 and 444 patients, respectively from the 
ACCENT I study) who were treated with infliximab. Only the 
homozygous mutant G-allele at position TNFR2 +587 seemed to 
predict a worse treatment outcome to infliximab in the small cohort of 
patients. On the contrary, Pierik et al. [40] reported the association 
between the TNFR1 +36 polymorphism and a decrease response to 
infliximab in patients with inflammatory bowel disease. Urcelay et al. 
[41] showed an association between a genetic polymorphism located in 
the 5q31 locus containing the IBD5 gene and a lack of response to 
infliximab. Guis et al. [42] have investigated the influence of -308 A/G 
polymorphism upon the response to etanercept in 86 patients with RA. 
The study demonstrated that the patients with the -308 G/G genotype 
presented a better response to etanercept than those with -308 A/G 
genotype after 1 year of treatment. Moreover, TNF-α polymorphism 
associated with elevated levels of TNF-α is also associated with poor 
response to TNF-α inhibitors. Maxweel et al. [43] studied 1050 patients 
with RA: 455 were treated with etanercept and 450 with infliximab. 
They demonstrated that the TNF-α -308A/A genotype was associated 
with a significantly poorer response to etanercept. There was no 
association between the -308 genotype and the response to infliximab. 
These findings raise important questions about the mechanistic 
differences between etanercept and infliximab and the potential for 
genotype to influence the response to treatment. Notably, etanercept, 
uniquely among the TNF-α inhibitors, binds LT-α [23] and does so 
with similar affinity to soluble TNF-α. It has been reported that in 
patients with inflammatory bowel disease, LT-α synthesis can be 
influenced by genotype at -308 positions. In particular, the A/A 
genotype favors a higher secretion of LT-α. It is possible that in presence 
of elevated quantities of TNF-α and LT-α in patients with the TNF-α 
-308 A/A genotype, the potency of etanercept may not be able to 
neutralize both cytokines with the consequent reduced response to 
etanercept. Schmeling and Horneff [44] also confirmed in 137 patients 
with juvenile idiopathic arthritis treated with etanercept that the TNF-α 
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-308A/A genotype decreases the response to etanercept treatment. 
Marotte et al. [45] investigated the association between the TNF-α -308 
gene polymorphism and the circulating level of bioactive TNF-α in 198 
patients with RA. The authors reported that the circulating level of 
bioactive TNF-α resulted higher in patients carrying the TNF-α -308 
A/A or A/G genotype. However, the circulating level of bioactive 
TNF-α could not be calculated as free TNF-α and, thus, many other 
factors might play a role. Indeed, IL-1, IL-6 and IL-17 act through 
synergistic interactions with TNF-α. Furthermore, both this study and 
that of Cuchacovisch et al. [46] confirmed no association between the 
-308 genotype and the response to infliximab. By contrast, Mugnier et 
al. [47] and Fonseca et al. [48] reported a positive association of clinical 
effect with the TNF-α G/G genotype. The potential role of HLA-DRB1 
shared epitope was investigated in two studies [49,50] in predicting 
infliximab response, showing no positive correlation with response to 
therapy. Padyukov et al. [51] reported that TNF-α -308 G/G and IL-10-
1087G/G favor the response to etanercept in patients with RA. 
However, potential other genetic polymorphism may affect the 
therapeutic response. Indeed, the -857 C/T SNP, which is also located 
in the promoter region of the TNF-α, seems to favor the response to 
etanercept [52]. Moreover, the IL-10 promotor microsatellite allele IL-
10.R3 and the haplotype R3-G9 were demonstrated to be associate with 
positive response to etanercept. Criswell et al. [53] found that patients 
with RA who had 2 copies of the HLA-DRB1-encoding SE (allele *0404 
and allele *0101) were significantly more likely to respond to etanercept 
treatment, while genes in the TNF-LTα region did not appear to be 
related to therapy response. Of note, HLA-DRB1 SE alleles predispose 
to anti–citrullinated protein antibody (ACPA)-positive RA [54]. Soto 
et al. [55] investigated the potential associations between ACPA and 
response to adalimumab therapy in patients with RA. The authors 
reported that the patients carrying -308 TNF-α G/G genotype displayed 
a better response to adalimumab. However, they showed that the 
presence of ACPA did not affect the response to adalimumab in -308 
TNF-α G/G genotype patient. Another study demonstrated that the 
polymorphisms in NOD2, CD14 and Toll-like receptor (TLR) 4 genes 
did not influence the response to adalimumab in patients with CD [56]. 
However, Potter et al. [57] reported that several SNPs mapping to the 
TLR and NFκB as MyD88 and CHUK were associated with the response 
particularly to etanercept. Furthermore, the functional polymorphism 
676 T>G in the TNF super family 1b gene was not also associated with 
the response to infliximab and adalimumab in patients with RA [58]. 
The role of IL-6 in the pathogenesis of RA is supported by several 
studies [59,60]. Jančic´ et al. [61] investigated whether -174 G/G IL-6 
gene polymorphism, which was correlated with IL-6 level, could 
influence the clinical response to etanercept in patients with RA. The 
authors demonstrated that -174 G/G IL-6 gene polymorphism 
enhances the response to etanercept. FCGR3A is another polymorphism 
which has been investigated. FCGR3A gene encodes FcγRIIIa (CD16) 
which is expressed on macrophages, monocytes and natural killer (NK) 
cells. Moroi et al. [62] have demonstrated in patients with CD that the 
FCGR3A-158 polymorphism affects the infliximab-binding affinity of 
NK cells and infliximab-mediated antibody-dependent cell-mediated 
cytotoxicity activity, thus favoring the biological response to infliximab. 
TNFAIP3 gene has been associated with Ps, RA, SLE, type-1 diabetes 
mellitus and celiac disease. It has been demonstrated that the G allele of 
SNP rs610604 located in the TNFAIP3 gene and its haplotype with the 
T allele of rs2230926 could be considered as markers of good response 
to etanercept, infliximab and adalimumab therapy in patients with Ps 
[63]. Furthermore, p38 mitogen-activated protein kinases (MAPK) 
have been considered to play a role in the pathogenesis of RA, including 
production of pro-inflammatory cytokines. More SNPs in genes from 

every level of the p38 MAPK cascade have been associated with the 
response to TNF-α inhibitors, particularly with infliximab and 
adalimumab [64]. However, infliximab and adalimumab have a greater 
ability to stimulate reverse signaling through binding TNF-α on the cell 
surface. It is conceivable that this type of signaling may involve some 
components of the p38 MAPK network, and, thus, variants of the gene 
could alter the degree of signaling [64]. Another study revealed that the 
G allele at rs10865035 mapping to AFF3 favored the response to 
etanercept, infliximab and adalimumab in patients with RA, while, at 
the CD226, the SNP rs763361 C allele decreased the clinical response to 
treatment [65]. Finally, may of the RA risk alleles are near genes 
involved in TNF-α signaling, including PTPRC/CD45 [66]. Cui et al. 
[66] demonstrated that PTPRC/CD45 favored a clinical response to 
TNF-α inhibitors treatment in RA patients, especially among those 
having ACPA or rheumatoid factor (RF). Khanna et al. [67] reported 
an association between the TNFA –308 polymorphism and progression 
of radiographic damage in patients with early seropositive RA. This 
association appeared to be independent of the SE, but might be 
dependent on other genetic variants in linkage disequilibrium with the 
–308 TNFA A allele and DRB1*0301. By contrast, Reneses et al. [68] 
reported that erosive damage at 1 year in patients with recent-onset RA 
is significantly influenced by HLA-DRB1 SE homozygosity, but not by 
RF, ACPA and 308 TNF-alpha genotype. However, both Khanna et al. 
[67] and Reneses et al. [68] did not investigate potential influence of 
this polymorphism upon the response to TNF-α inhibitors.

In table 1 are reported the potential association between genetic 
polymorphisms and response to TNF-α inhibitors.

Conclusion
TNF-α inhibitors have been demonstrated to be effective in the 

treatment of immune-mediated or inflammatory diseases such as RA, 
SLE, CD, AS, DGA, Ps and/or PsA. Although TNF-α inhibitors are 
generally well tolerated, physicians should be aware of the potential 
adverse events of these drugs. There is an increasing need for an 
individualized therapy strategy guided by predictors of response. Several 
studies have reported associations between genetic polymorphisms 
and drug efficient response. A few studies seem to demonstrate that 
the SNP at position -308 of the TNF-α promoter genes and particularly 
the -308 G/G genotype may predict a better response to etanercept 
than those with -308 A/G and A/A genotypes. HLA-DRB1-encoding 
shared epitope (allele *0404 and allele *0101) also seems to favor a 
better clinical outcome in patients treated with etanercept. It is possible 
that high levels of LT-α may affect the therapeutic response. Other 
studies have analyzed polymorphisms of TNFR1 and TNFR2 that 
decrease response to infliximab. It is possible that the poorer response 
to treatment may depend on the more severe disease activity. HLA-
DRB1 and -174 G/G IL-6 gene polymorphism seem also to favor the 
response to etanercept. By contrast, FCGR3A-158 polymorphism 
seems to favor the response to infliximab. However, most of these 
studies are often small and not sufficiently powered to detect an effect 
and markers tend to be more prognostic than predictive of therapeutic 
response. Furthermore, studies often examine only the effects of a 
single SNP, while it would be more useful to analyze more haplotypes in 
contemporary in the same patients. Candidate genes may be in linkage 
with other loci, thus, having a true influence upon the pharmacology 
of TNF-α inhibitors. Difficulties also arise when genetic variants are 
disease related such as HLA-DRB1 which is associated with more severe 
RA disease activity. Finally, in pharmacogenetic studies, it is important 
that baseline characteristics and drug dosages between cohorts are kept 
at similar level to estimate adequately associations between genetic 
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polymorphisms and treatment response. In conclusion, further studies 
are needed before a pharmacogenetic approach may be applicable in 
daily clinical therapeutic practice.
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Tejasvi et al. [63] G allele of SNP rs610604 and T allele of SNP rs2230926 in 
TNFAIP3 Ps Etanercept, infliximab, 

adalimumab Better response

Tan et al. [65] G allele at rs10865035 in AFF3 RA Etanercept, infliximab, 
adalimumab Better response

Table 1: Potential Association between Genetic Polymorphisms and Response to TNF-α Inhibitors.
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