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Introduction
Drugs that interfere with cannabinoid CB1 receptor transmission 

suppress a number of food-related behaviours and these compounds 
are currently being assessed for their potential utility as appetite 
suppressants.  Rimonabant (SR 141716A) is a cannabinoid receptor 
1 (CB1) antagonist-inverse agonist which was developed for obesity 
treatment [1]. Clinical trials showed that rimonabant caused 
cumulative weight loss and a significant change of waist circumference, 
an increase of High-Density Lipoprotein (HDL) cholesterol level and 
a decrease in triglycerides and fasting insulin [2]. Further research 
showed that the effects of rimonabant on food intake and weight loss 
were associated with alteration of leptin expression in hypothalamus 
[3]. CB1 receptors, found in the endocannabinoid system are expressed 
in the brain, the adipocyte, the skeletal muscle and the enteric nervous 
system. CB1 pathway is believed to affect central and peripheral actions 
on lipid and glucose metabolism in adipose tissue [4] and helps to 
regulate food intake, energy balance and gastrointestinal motility [5]. 
Gastric motility is a key mediator of hunger, satiation and satiety. 
Alterations in GI motility have been observed in obese patients and 
these alterations could be important factors to the development of 
obesity and eating disorders [6]. Therapies aimed at regulating the 
observed changes in GI motility are being actively explored and applied 
clinically in the management of obese patients [7]. Rimonabant was 
reported to accelerate gastric emptying and small intestine transit in 
a number of rodent studies [5,8]. In some studies [9,10] rimonabant 
was found to increase electrically evoked, cholinergically mediated 
contractions in rat- and guinea-pig isolated myenteric plexus-
longitudinal muscle preparations. One of recent human studies [11] 
showed that, rimonabant did not influence gastric compliance and 
sensitivity to distension, but the meal-induced gastric accommodation 
reflex was inhibited by rimonabant. However, there is no systematic 
study investigating the effects of rimonabant on GI motility, including 
gastric tone, accommodation, compliance, antral contraction and 

small intestinal transit in animals or humans. In this study, we aimed 
to determine the effects of rimonabant on upper GI motility in healthy 
dogs. 

Material and Methods
Animal and surgical preparation

A total of 12 healthy female dogs (18-27 kg) were operated after 
an overnight fast under general anaesthesia as described earlier [12]. 
Under midline laparotomy, one pair of 28-gauge cardiac pacing 
wires (A and E Medical, Farmingdale, NJ, USA) were implanted on 
the gastric serosa along the great curvature 6 cm above the pylorus. 
Another pair of wires was implanted in the small-bowel serosa 35 cm 
below the pylorus. The two electrodes in each pair were arranged in 
a circumferential pattern with an interval of about 0.5-1.0 cm. The 
electrodes were affixed to the serosa by nonabsorbable sutures. The 
connecting wires of the electrodes were tunnelled through the anterior 
abdominal wall subcutaneously and placed outside the skin. In six of 
the dogs, a cannula was placed in the duodenum 20 cm beyond the 
pylorus. In the other six dogs, a cannula was placed in the stomach. At 
the end of the surgical procedure, the dogs were placed in a recovery 
cage after receiving medications for postoperative pain management. 
The study was initiated after the dogs had thoroughly recovered from 
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the surgery (usually 2 weeks after the surgery). The study was approved 
by the Institutional Animal Care and Use Committees of the VA 
Medical Centre, Oklahoma City, OK (P#1102-002). 

GI motility measurements 

Gastric emptying: The animal was fed with a 237 ml liquid meal 
(240 kcal; Boost; Novartis Medical Nutrition) mixed with 100 mg 
of phenol red. The gastric effluent was collected from the duodenal 
cannula every 15 min for 90 min. For each collection of the gastric 
effluent, the volume was recorded and a 5 ml sample was taken and 
analyzed all together at the end of the study using a spectrophotometer 
[13].

 Gastric and intestinal slow waves: Gastric and intestinal slow 
waves were recorded from the gastric and intestinal electrodes using a 
multichannel recorder (Acknowledge III, EOG 100A; Biopac Systems, 
Santa Barbara, CA, USA). A previously established spectral analysis 
method was used to evaluate the following slow wave parameters: 
a) the Dominant Frequency (DF) and Dominant Power (DP); b) 
the percentage of normal slow waves (4-6 cycles/min (cpm) for the 
stomach and 17-22 cpm for the small bowel) [14]. 

Gastric tone: Gastric tone was assessed by the measurement 
of gastric volume under an isobaric operating pressure. For each 
individual animal, one same operating pressure was used, defined as 
a pressure 2 mmHg above the minimal distending pressure. Gastric 
volume was calculated by averaging all values during a particular 
period excluding initial transient data. 

Gastric compliance: A stepwise pressure distension procedure was 
applied to test gastric compliance. Isobaric distension was performed 
in 4 mmHg steps every 60 s from 2 mmHg to a maximum of 18 
mmHg. The volume was averaged over the last 30 s of each pressure 
level. Gastric compliance was defined as the linear slope of the volume-
pressure curve [15]. 

Gastric accommodation: Gastric accommodation was defined as 
the difference in gastric volume measured under the isobaric condition 
between the postprandial state and the preprandial state. It was 
computed as the averaged gastric volume after a liquid meal minus the 
average gastric volume in the pre-prandial state [16]. 

Intestinal and gastric antral contractions: Intestinal and gastric 
antral contractile activities were recorded from the four pressure 
sensors attached to a manometric catheter using a microcapillary 
infusion system (Medtronic Synectics, Stockholm, Sweden). The 
manometric catheter was inserted into the gastric antrum or the 
jejunum via the gastric or the duodenal cannula. Small-bowel or gastric 
antral contractions were recorded for 30 min before a solid meal (413 
kcal; Pedigree; Master foods USA) and for 40 min immediately after 
the solid meal. The area under contractions, defined as the Contractile 
Index (CI) was computed using the Polygram function testing software 
(Medtronic, version 2.04; Synectics Medical) [17].

Experimental design

Four experiments were performed in each dog. Each experiment 
included 3 sessions: control (saline) and 2 rimonabant sessions (1 mg/
kg or 0.5 mg/kg) in a randomized order on separate days at an interval 
of 3 days. The dose of rimonabant was determined based on a previous 
study performed by others [8]. The solvent of rimonabant is the solvent 
was saline. The protocol for the rimonabant sessions were the same as 
control session except that rimonabant was given one hour before the 
session was initiated.

Experiment 1: Experiment was performed to study the effects of 
rimonabant on gastric emptying and gastrointestinal myoelectrical 
activities in the dogs with a duodenal cannula. In the control session, 
preprandial gastrointestinal myoelectrical activity was recorded for 30 
min. After the dogs were fed with a liquid meal (tell compositions of the 
meal), the gastric effluent from the duodenal cannula was collected and 
postprandial gastrointestinal myoelectrical activities were recorded for 
60 min. 

Experiment 2: Experiment was designed to study the effects of 
rimonabant on gastric tone, compliance and accommodation in the 
same six dogs with the gastric cannula. Each session included a 30 
min recording of gastric volume under an isobaric operating pressure 
followed by gastric compliance test. Then gastric volume was recorded 
for 40 min immediately after a liquid meal (Ensure, 350 calories / 
bottle, Walmart, Oklahoma City, OK). 

Experiments 3 and 4: Experiment was performed in the dogs with 
the gastric cannula and dogs with the duodenal cannula to investigate 
the effect of rimonabant on gastric antral contractions and small bowel 
contractions, respectively. The contractions were recorded before a solid 
meal (Pedigree Complete Nutrition Beef and Chicken, 450 calories/
can, Walmart, Oklahoma City, OK) for 30 min and immediately after 
the solid meal for 40 min. 

Statistical Analysis
All data are presented as the mean ± the standard error. One-way 

ANOVA was used to investigate the difference in any of the above 
mentioned parameters among different sessions. Statistical significance 
was assigned at p<0.05.

Results
Rimonabant accelerated gastric emptying of liquid 

Rimonabant significantly accelerated gastric emptying of liquid at 
a dose of 1.0 mg/kg but not 0.5 mg/kg. Gastric emptying was 62.3 ± 
7.7% at 75 min and 67.2 ± 7.7% at 90 min in the control session, and 
increased to 72.1 ± 5.1% at 75 min (p=0.049, vs. control) and 76.8 ± 
5.3% at 90 min (p=0.039, vs. control) in the session with rimonabant of 
1mg/kg (Figure 1).

Rimonabant increased gastric tone and impaired gastric 
accommodation

Rimonabant at both doses significantly increased gastric tone in the 
dogs. The typical tracings of gastric volume measured under the same 
isobaric condition in the control and rimonabant sessions are shown 
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Figure 1: The effects of rimonabant on the percentage of gastric emptying 
of liquids. Gastric liquid emptying percent was significantly accelerated after 
rimonabant 1 mg/kg administrated.
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in Figures 2A1-2A3. Gastric volume was significantly reduced in both 
rimonabant sessions and the effect was significantly more potent with 
the dose of 1.0 mg/kg than the lower dose of 0.5 mg/kg (Figure 2B). 
Rimonabant also significantly decreased gastric accommodation in a 
dose-dependent manner with the dose of 1.0 mg/kg being significantly 
more potent than the dose of 0.5 mg/kg (Figure 2C).

Rimonabant impaired gastric compliance

Rimonabant reduced gastric compliance (Figure 3) shows the 
pressure-volume curves in the control and rimonabant sessions. The 
gastric compliance expressed as the slope of the pressure-volume was 
reduced from 9.59 ± 0.72 ml/mmHg in the control session to 6.97 ± 
1.15 ml/mmHg in the rimonabant of 1.0 mg/kg session (P=0.0002 vs. 
control) and 7.01 ± 0.58 ml/mmHg in the rimonabant of 0.5 mg/kg 
session (P=0.0002 vs. control).

Rimonabant inhibited gastric antral motility

Rimonabant significantly decreased gastric antral contractions in 
a dose-dependent manner (Figure 4A). The postprandial contractile 
index of the antrum was 10.1 ± 1.4 in the control session and decreased 
to 7.3 ± 1.5 in the session with rimonabant of 0.5 mg/kg and 5.8 ± 
1.2 (p=0.014 vs. control) in the session with rimonabant of 1.0 mg/
kg. Typical tracings of postprandial gastric antral contractions in the 
control session and the sessions with Rimonabant are presented in 
(Figure 4B).

Rimonabant increased small-bowel contractions

Rimonabant significantly increased postprandial small-bowel 
contractions in a dose-dependent manner (Figure 5A). The contraction 
index of the small bowel was 9.6 ± 2.4 in the control session and 
increased to 12.4 ± 1.5 (P=0.018 vs. control) in the session with 
rimonabant of 0.5 mg/kg and 14.8 ± 2.5 (P=0.008 vs. control) in the 
session with rimonabant of 1.0 mg/kg. Typical tracings of postprandial 
small-bowel contractions in the control and rimonabant sessions are 
presented in (Figure 5B).
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Figure 2A: A1: Rimonabant increased gastric tone dose-dependently 
(reflected as a decrease in gastric volume measured under isobaric condition: 
A1: control). A2: Rimonabant increased gastric tone dose-dependently 
(reflected as a decrease in gastric volume measured under isobaric condition, 
A2: rimonabant 0.5 mg/kg). A3: Rimonabant increased gastric tone dose-
dependently (reflected as a decrease in gastric volume measured under 
isobaric condition: A3: rimonabant 1mg/kg).
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Figure 2B: Rimonabant increased gastric tone and decreased gastric 
accommodation significantly and dose-dependently. The gastric volume 
decreased in fasting state after rimonabant administration.
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Figure 2C: Rimonabant increased gastric tone and decreased gastric 
accommodation significantly and dose-dependently. The gastric volume 
decreased postprandially after rimonabant administration.
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Figure 3: The volume–pressure curves represent the mean value of barostat 
intraballoon volume for each of the distension with or without rimonabant 
administration. Gastric compliance was significantly decreased after 
rimonabant administration (*p<0.01). These effects were dose-dependently.
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Rimonabant had no effects on gastric and small intestinal 
slow waves

Rimonabant did not alter gastric and intestinal slow waves. In 
the control session, the DF of the gastric and intestinal slow waves 
was 5.01 ± 0.34 cycles/min (cpm) and 19.44 ± 0.54 cpm respectively 
in the fasting state 4.91 ± 0.32 and 19.63 ± 0.54 cpm, respectively in 
the postprandial state and 4.79 ± 0.29 cpm and 19.14 ± 0.61 cpm, 
respectively in the postprandial state in the session with rimonabant 
1mg/kg (p > 0.05 vs. the corresponding control). Also, the dominant 
power was not changed with rimonabant. It was –4.05 ± 0.98 dB and 
–9.60 ± 3.9dB, respectively in the fasting state, –4.20 ± 0.76 and –6.89 
± 4.71dB, respectively in the postprandial state and –4.4 ± 1.12 dB and 
–6.37 ± 5.79 dB, respectively in the postprandial state in the session 
with rimonabant 1mg/kg (p > 0.05 vs. the corresponding control). In 
addition, the percentages of normal gastric and intestinal slow waves 
were not changed with rimonabant. It was 93.6 ± 6.0% and 99.4 ± 
1.4%, respectively in the fasting state, 95.6 ± 2.4% and 95.5 ± 2.2%, 
respectively in the postprandial state, and 94.1 ± 2.12% and 95.71 
± 4.03% respectively in the postprandial state in the session with 
rimonabant 1mg/kg (p>0.05 vs. the corresponding control). 

Discussion
In the current study, we have found 1) rimonabant accelerated 

gastric liquid emptying; 2) rimonabant increased gastric tone, impaired 
gastric accommodation and compliance; 3) rimonabant inhibited 
postprandial gastric antral contractions; 4) rimonabant increased 
postprandial small bowel contractions; and 5) gastric or small bowel 
slow waves were not affected by rimonabant. Gastric liquid emptying 
was accelerated with rimonabant in our current study, which was in 
agreement with a precious rodent study [8]. An initial acceleration of 
gastric liquid emptying may result in reduced symptoms of fullness 
arising in the stomach, but may lead to a higher rate of energy delivery 
into the duodenum, thus increasing volume load and distension of the 
proximal small intestine, which may cause a greater fullness or satiation 
after the meal [18]. That is, the accelerative effect of rimonabant on 
liquid gastric emptying may provide earlier and stronger satiety signals. 

We also observed that rimonabant increased gastric tone and impaired 
gastric accommodation and compliance. Gastric tone is generated 
by sustained muscular contractions of the stomach wall. Gastric 
accommodation and compliance play an important role in the regulation 
of gastric distention and intestinal exposure of nutrients, hence it may 
also control satiation [19]. The increased gastric tone impairs gastric 
accommodation and compliance. Impaired accommodation and 
compliance are primarily responsible for the fullness sensation in 
dyspepsia [20]. The decrease in gastric accommodation and compliance 
with rimonabant observed in the present study suggests a peripheral 
role of rimonabant in limiting food intake. Other the other hand, it has 
been known that different mechanisms are involved in gastric emptying 
of solids and liquids, which cause different effects on food intake and 
appetite. Gastric emptying of liquid is driven mainly by the tone of 
the gastric fundus, whereas the emptying of solid is achieved by antral 
contraction and gastric peristalsis. Accordingly, the acceleration in 
liquid gastric emptying with rimonabant in our study may be attributed 
to the increase in gastric tone. While it enhances tone of the stomach, 
rimonabant inhibited antral contractions. The exact mechanisms 
involved in this inhibitory effect were not clear. However, as an anti-
obesity agent, the suppression of antral contractions might have a 
synergistic effect on the reduction of food intake. As mentioned above, 
gastric emptying of solid is accomplished by antral contractions. The 
reduction in antral contractions may lead to delayed gastric emptying 
of solids, which results in prolonged feeling of abdominal fullness and 
postprandial satiety. We also found that the rimonabant increased small 
intestinal contractions, which may increase the small intestinal transit. 
The small bowel transit plays an important role in nutrient absorption 
that is related to the development of obesity. On one hand, increasing 
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intestinal transit caused the reduction of fat absorption [21], suggesting 
the therapeutic potential for obesity. On the other hand, under normal 
physiological situations, undigested nutrients can reach the ileum, 
which activates the ileal brake. A reduction in small bowel transit time 
may diminish absorption of the components of that meal in the small 
bowel [22] and induce early triggering of ileal brake. The relevance of 
the ileal brake as a potential target for weight management is based 
on specific findings [23]: First, the ileal brake activation reduces food 
intake and increases satiety levels, which appeared to be maintained 
over time. Second, previous study proved that the increasing exposure 
of the ileum to nutrients under surgical procedures produced weight 
loss and improved glycemic control. These findings suggest that 
the actions of rimonabant on regulating energy balance and lipid 
metabolisms might be partially attributed to the enhancement in small 
bowel motility. 

However, rimonabant has tolerance and some side effects. In a non-
obese rodent study with repeated administration of rimonabant [24] 
tolerance to the anorectic effect of rimonabant was reported to develop 
over time. In a study investigating the effects of repeated administration 
of rimonabant on gastrointestinal propulsion in mice, the acute 
administration of rimonabant produced a marked stimulation of small 
intestinal peristalsis [25]. But, tolerance to this effect rapidly developed 
after repeated treatments and the stimulant effect of rimonabant on 
the transit of the non-absorbable marker through the small intestine 
vanished on the third day of treatment [25]. The prokinetic effect 
of CB1 receptor antagonists in animals is consistent with data from 
clinical trials that highlighted diarrhea as one of the initial adverse 
events associated with rimonabant. Van Gaal et al. reported that at 
1 year, adverse events more frequently related to  rimonabant  were 
gastrointestinal, neurological and psychiatric in nature and serious 
adverse events were infrequent and almost equivalent to placebo [26]. 
Due to the central action of the CB1 receptor agonists, adverse events of 
severe depression and suicidal thoughts were frequently reported with 
the use of rimonabant [27-29]. On the other hand, recent studies have 
been undertaken to characterize the behavioral effects of CB1 receptor 
neutral antagonists such as AM4113 to determine if these drugs can 
reduce feeding and food-reinforced behaviors. Across a variety of 
different tests, AM4113 produces effects on food-motivated behavior 
that are very similar to those produced by CB1 antagonist-inverse 
agonists (such as rimonabant) [30]. Moreover, this drug did not induce 
conditioned gaping in rats or vomiting in ferrets [31]. These results 
suggest that CB1 receptor neutral antagonists may decrease appetite by 
blocking endogenous cannabinoid tone, and that these drugs may be 
less associated with nausea than is the case for CB1 antagonist-inverse 
agonists. Above all, the strengths of rimonabant are as follows: (1) In 
4 well-designed studies with >6600 overweight and obese patients, 
rimonabant has demonstrated consistent efficacy with regard to weight 
reduction [1,2,32]; (2) Rimonabant offers a novel mechanism of action, 
which may make it well suited as an alternative for people who do not 
respond well to other agents and for combination treatment with other 
anti-obesity agents; (3) Weight loss achieved with rimonabant also 
appears to improve some features of metabolic syndrome [32]; (4) Its 
pharmacokinetic profile appears to be favorable in general; (5) Most 
side effects appear to be mild and transient; (6) No evidence of any 
significant cardiovascular adverse effects exists. 

The limitations of rimonabant are the following: (1) Weight-
reduction efficacy is not superior to the modest effects observed with 
currently approved anti-obesity drugs; (2) Although rimonabant 
appeared to be reasonably well tolerated in general, psychiatric 

symptoms (severe depression and suicidal thoughts) were the most 
common adverse effects [27] that led to suspension from the European 
market. (3) In a non-obese rodent study with repeated administration 
of rimonabant, tolerance to the anorectic effect of rimonabant was 
reported to develop over time [24,25].

(3) The sample of subjects enrolled in the RIO trials had limited 
racial diversity. According to the discussion above, this compound has 
limitation in clinic application. However, since the EC system plays 
a very important role in energy metabolism and food intake, the CB 
receptor antagonists still have potentials in obesity treatment. One 
of the mechanisms may be mediated via the GI motility modulation 
effects. Our current research helped to understand anti-obesity effects 
of rimonabant, the CB1 receptor antagonist. Future works should be 
devoted to develop CB1 antagonists that do not cross the blood-brain 
barrier or improving the chronic use of low dose rimonabant.

Conclusion
In conclusion, rimonabant increases gastric tone and impaired 

gastric compliance and accommodation; it also inhibits antral 
contractions but increases intestinal motility. These findings suggest 
the peripheral mechanisms of rimonabant in reducing food intake and 
body weight loss in obesity patients. 
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