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Introduction
The definition of deconvolution is a filtering process that removes a 

wavelet from the recorded seismic trace [1] and is this done by reversing 
the process of convolution [2]. The commonest ways that perform 
deconvolution, by designing a Wiener filter to transform one wavelet 
into another wavelet in a least-squares sense [3]. It is often applied 
at least once to marine seismic data. The attenuation of short-period 
multiples (most notably reverberations from relatively flat, shallow 
water-bottom) can be achieved with predictive deconvolution [4]. The 
periodicity of the multiples is exploited to design an operator, which 
identifies and removes the predictable part of the wavelet, leaving only 
its non-predictable part (signal) [5].

Algorithm principle 

The spiking deconvolution in seismic data processing is routinely 
applied to compress the source wavelet included in the seismic traces to 
improve temporal resolution. The general form of the matrix equation 
for a filter of length n is represented in equation (1), [6]:
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Here, ri,, ai, and gi, i=0,1,2,…..n-1are the autocorrelation lags of the 
input wavelet, Winer coefficients, and the Crosscorrelation lags of the 
desired output with the input wavelet respectively.

If the desired output is zero delay spike, it is call spiking 
deconvolution (equation 2):
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The Equation (2) was scaled by (1/ x0). The least squares inverse 

filter has the same form as the matrix in equation (2). Therefore, 
spiking deconvolution is mathematically identical to least squares 
inverse filter. A distinction, however, is made in practice between 
the two types of filtering. The autocorrelation matrix on the left side 
of equation (2) is computed from the input seismogram, in the case 
of spiking deconvolution (statistical deconvolution), whereas it is 
computed directly from the known source wavelet in case of least 
squares inverse filtering. If the input wavelet is not a minimum phase, 
spiking deconvolution cannot convert it to a perfect zero-lag spike. 
Although the amplitude spectrum is virtually flat, the phase spectrum 
of the output is not a minimum phase. The spiking deconvolution 
operator is the inverse of the minimum-phase equivalent of the input 
wavelet. This wavelet may or may not be minimum phase.

There is always noise in the seismogram and its additive in both time 
and frequency domain. An artificial level of white noise is introduced 
before deconvolution [7]. This is called prewhitening.

If the percent prewhitening is given by a scalar, 0 ≤ ε < 1, then the 
normal equations (2) are modified as in equation (3):
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where β = 1 + ε. Adding a constant εr0 to the zero lag of the 
autocorrelation function is the same as adding white noise to the 
spectrum, with its total energy equal to that constant.
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The predicative deconvolution desired output, a time –advance 
from of input series suggests a predication processes. Given input 
x (t), we want to predict its value at some full time (t+α), where α is 
predication lag [8-12]. Wiener show that the filter used to estimate 
(x+α) can be computed by using a special form of the matrix equation 
(4) [6].
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Where Here ri, ai, and gi, i=0, 1, 2 ….n, n-1 are the autocorrelation 
lags of the input wavelet, the Wiener filter coefficients, and the 
cross correlation lags of the desired output .with the input wavelet 
respectively. Since the desired output x (t+α) is the time-advance 
version of the input x (t), we need to specialize the right side of equation 
(4) for the predication problem. Consider a Five-point input time 
series x (t): (x0, x1, x2, x3, x4), and set α=2. The designed may be carried 
out using equation (5) and applied on input series as shown in Figure 1.     
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Work method

This Process is executed by following steps; first we are going to apply 
spiking deconvolution. CMP sort is required. For Design window, is entry 
trace, operator length (240, 128, 40, 10) ms, the percent prewhitening 
(0%, 1%) for each value of n. Also using amplitude scaling (Mean scale) 
with applying signal band pass filter (Low Truncation Frequency 10 HZ, 
Low Cut Frequency 15 HZ, High Cut Frequency 200, High Truncation 
Frequency 250 HZ). Figure 2 shows the flow were used. The execution 
parameters, shot _sequence number (0-1856), receiver _sequence _
number (0-59423), channel _number (1-40), CMP _no (0-7478), inline: 
2 Xline: 7479[0-7478], input traces (59424).

The spiking deconvolution algorithm is applied to original data. 
Figure 1a and the results are shown in Figures 3 and 4. With different 
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Figure 1: A flowchart for predictive -deconvolution using predictive filter (Yilmaz [16]).
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Figure 2: Show the flow processes for spiking and predictive deconvolution.
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(a)                                                                              (b)

(c)                                                                                        (d)

           
(e)

Figure 3: (a) 2d land PSTM Data, CMP sort, before applying  spiking-deconvolution, (b) after  applying spiking-Deconvolution with Operator-length 240 ms, (c) 
after applying spiking Deconvolution with Operator-length 128 ms, (d) after applying spiking-Deconvolution with Operator-length 40 ms, (e) after applying spiking-
Deconvolution with Operator length 10 ms and the, percent prewhitening for all value of operator-length (0%).
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Figure 4: (a) 2d land final PSTM Data CMP sort, before applying spiking deconvolution, (b) after applying spiking Deconvolution with Operator length 240 ms, (c) 
after applying spiking Deconvolution with Operator length 128 ms, (d) after applying spiking Deconvolution with Operator length 40 ms, (e) after applying spiking 
Deconvolution with Operator length 10 ms and the, percent prewhitening for all value of operator length (1%).
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                     (c)                                                                                       (d)

   

          (e)

Figure 5: (a) 2d land final PSTM Data CMP sort, before applying predictive- deconvolution, (b) after applying predictive-Deconvolution with Operator-length 240 ms, 
(c) after applying predictive-Deconvolution with Operator- length 128 ms, (d) after applying predictive-Deconvolution with Operator-length 40 ms, (e) after applying 
predictive -Deconvolution with Operator-length 10 ms and the, lag for all value of operator-length(α=0 ms), and the percent prewhitening for all value of operator 
length (1%).

(a)                                                                                              (b)

                 (c )                                                                                     (d)

                                                                              

                (e )                                                                                       (f)

Figure 6: (a) before applying predictive-deconvolution, after applying predictive-Deconvolution with Operator-length 240 ms, (b) after applying predictive-
Deconvolution with Operator-length 128 ms, (c) after applying predictive-Deconvolution with Operator-length 40 ms, (d) after applying predictive-Deconvolution with 
Operator- length 10 ms and the, lag for all value of operator-length (α=1ms), and the percent prewhitening for all value of operator- length (1%). (e) Final pstm, (f) 
data after applying predictive-Deconvolution.
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operator lengths. Wiener deconvolution causes boosting in random 
noise, which is standard since it generally boosts the amplitudes of high 
frequency noise in the data [13-15]. For this reason, a conventional 
Wiener deconvolution process is generally followed by a band-pass 
filter to suppress this boosted high frequency noise. The band pass filter 
parameters are low truncation frequency is 10 Hz, low cut frequency 
is 15 Hz, high cut frequency is 200 Hz, and high truncation frequency 
is 250 Hz.

Second predictive deconvolution, this step creates a new data set 
with applied trace by trace predictive, No sort is required. For Design 
window, is entry trace, operator length (240, 128, 40) ms, the predication 
lag is unity and equal to (α=0 ms, α=1 ms, α=2 ms) sampling rate, the 
percent prewhitening (1%). Also using amplitude scaling (Mean scale) 
with applying signal band pass filter (Low Truncation Frequency 10 
Hz, Low Cut Frequency 15 Hz, High Cut Frequency 200 Hz, High 
Truncation Frequency 250 Hz). Figure 2 show the flow was used.

We also applied predictive -Deconvolution with same parameters 
and α=2 ms, and due gives exactly same results, we won’t display it.

Comparing the seismic data before and after deconvolution, we can 
see that the deconvolved seismic data shows a significant improvement 
in vertical resolution and enhanced reflections which correspond to 
the geology. Such high resolution reflection detail is a desirable feature 
for seismic interpretation [16,17]. This example indicates that suitable 
parameters can properly enhance the resolution of the seismic data.

There are many papers done this kind of work but each of them just 
only took one parameter, or used for other kind of geophysics methods 
such as Multichannel Wiener deconvolution of vertical seismic profiles 
[18] and predictive deconvolution in seismic data processing in Atala
prospect of rivers State, Nigeria [5]. The second paper was used same
methods as in this paper but didn’t show exactly the effect of predication 
lag due used only one value.

Conclusions
The spiking-deconvolution operator is the inverse of the (minimum 

phase) equivalent of the input wavelet. This wavelet may or may not be 
minimum phase. When the source signature is known a designature 
process can be applied as an alternative or a complement to this step. 
In our cause we had a different approach. First we applied a trace by 
trace spiking deconvolution, and the Deconvolution which In this 
case desired output (zero-lag spike). We tested operator length with 
n= operator length (where n=240, 128, 40, 20, 10) ms, and the percent 
prewhitening (1%). Then we test effect of operator length and lags for 
predicative deconvolution and we found that for spiking deconvolution 
when operator length was 10 ms and prewhitening (0%) give perfect 
results (Figure 3e), and for predicative deconvolution Changing the 

predication lag doesn’t effect, while applying predictive Deconvolution 
give better results and no matter the value of α (lag) (Figures 5 and 6). 
The standard equations are solved for the predictive operator in final 
comparison for each test was made on our data.
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