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Introduction
The quest to identify novel antigens has been the focus of a number 

of studies over the last four decades [1,2]. Autologous typing had 
been used to identify some antigens including alpha fetoprotein (in 
hepatoma and germ cell tumours), carcinoembryonic antigen (CEA) 
(in gastrointestinal cancers), prostate-specific antigen (in prostate 
cancer), cancer antigen 125 (CA-125) (in ovarian cancer) and AU 
(in melanomas)(reviewed in [3,4]). However the technique has 
limitations, including a requirement that the cells under examination 
can be cultured. Furthermore, the recognition of antigens by low titre 
antibodies in patients often prevents their further characterisation. The 
Boon group developed representational difference analysis and were 
successful in identifying a number of cancer-testis (CT) antigens from 
melanoma patients, the MAGE family of CT antigens, and one antigen 
from renal cancer, RAGE [5,6].

In 1995 Sahin et al. described the use of the serological identification 
of antigens by recombinant expression cloning (SEREX) to discover 
antigens in a range of cancer tissues [7,8]. In this technique patient 
immunoglobulins (IgG) from peripheral blood sera were used to 
immunoscreen cDNA from tumours, cell lines or normal testis 
tissues in the form of polypeptides on the surface of the phage. There 
are over 2,000 tumour antigens detailed in the Cancer Immunome 

database (http://ludwig-sun5.unil.ch/CancerImmunomeDB/) each 
identified using the SEREX technique [9]. SEREX was validated by the 
identification of known antigens such as SSX2 (synovial Sarcoma X 
2) [10], mutated p53 [11] and the AKT oncogene [12]. To maximise
the chance of finding new CT antigens cDNA libraries made from 
healthy testis cDNA have been immunoscreened with patient sera. 
This has led to the identification of a number of CT antigens including 
cTAGE-1, NY-ESO-1, SSX2 [13,14] and PASD1 [15,16]. One-third of 
all antigens identified by SEREX were found to be novel and have led 
to the development of a number of clinical trials, most notably those 
targeting NY-ESO-1 positive tumour cells [17,18].

Tumour antigens are classified into the following categories: CT, 
mutational, differentiation, amplified/overexpressed, splice variant 
and viral antigens [7]. CT antigens show restrictive expression, their 
presence only in tumours and in testis rendering them very attractive 
therapeutic targets. The testis is an immunologically protected site i.e. 
lacking in MHC class I expression, therefore targeting CTAs should 
not lead to catastrophic auto-immune responses against healthy tissue 
[19].

The debate now remains as to whether we have found enough 
tumour antigens and whether there is a need to continue the search for 
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Abstract
In general, there is a lack of good immunotherapy targets within the spectrum of haematological malignancies. 

However haematopoietic stem cell transplants and continuing antigen discovery have allowed further insight into how 
further improvements in outcomes for patients might be achieved. Most patients with haematological malignancies 
can be treated with conventional therapies such as radio- and chemotherapy and will attain first remission. However 
the removal of residual diseased cells is essential to prevent relapse and its associated high mortality. PASD1 is 
one of the most tissue restricted cancer-testis (CT) antigens with expression limited to primary spermatagonia in 
healthy tissue. However, characterisation of PASD1 expression in cancers has been predominantly focussed on 
haematological malignancies where the inappropriate expression of PASD1 was first identified. PASD1 has one 
of the highest frequencies of expression of all CT antigens in acute myeloid leukaemia, with some suggestion of 
its role as a biomarker in diffuse large B-cell lymphoma. Here we describe the characterisation of the function and 
expression patterns of PASD1 in cell lines and primary tissues. Development of DNA vaccines targeting PASD1 
epitopes demonstrate effective ex vivo T-cell responses in terms of IFNγ secretion and tumour cell killing. Of 
particular note these vaccines have led to the destruction of cells which process and present endogenous PASD1 
indicating that effectively primed CTLs could kill PASD1-positive tumour cells.
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more. Supported by the National Cancer Institute, Cheever et al. [20] 
reported a short-list of antigens which demonstrated properties that 
would support their further investigation as targets for immunotherapy 
clinical trials. From a list of 75 antigens identified as the most promising 
for translational therapies, the authors ranked antigens by criteria such 
as, but not limited to, therapeutic function, immunogenicity, their 
role in cancer development, specificity to cancer, expression levels 
and percent of antigen-positive cells within a cancer type, stem cell 
expression, number of patients with antigen-positive cancers, number 
of antigenic epitopes and the cellular location of antigen expression. The 
aim was to focus funding and research effort on antigens that showed 
the most potential to make it through to clinical trials and benefit 
patients. However in some cancers, and most notably haematological 
malignancies, few of the antigens on this short-list were expressed with 
a frequency that would justify targeting them in clinical trials.

Today techniques including the Serological identification of 
antigens by Recombinant Expression cloning (SEREX) [8], Serological 
Proteome Analysis (SERPA) [21] and peptide elution from MHC for 
mass spectrometry analysis [22] are commonly used to identify which 
antigens are important in a given cancer. There are of course pros and 
cons to each including cost and labour intensity. Most of the focus 
concerns tumour types which lack suitable targets for immunotherapy 
and for which conventional or current therapies still do not overcome 
poor survival rates. An additional major benefit of new antigen 
identification is that such antigens can provide invaluable insight into 
disease mechanisms [23], act as biomarkers of disease stage [24] and 
predict survival rates at disease presentation [25-28]. 

Here we review the CT antigen, PASD1 and whether it has the 
hallmarks of an “ideal” cancer antigen which meets the criteria 
as outlined by Cheever et al. [20]. If so then this would justify the 
progression of PASD1 into clinical trials.

The PASD1 Gene
The CT antigen database (http://www.cta.lncc.br) indicates 

there are more than 250 CT antigens categorised as either CT-X and 
located on the X-chromosome or located on an autosome [29,30]. 
Approximately 10% of genes on the X-chromosome appear to be 
CT antigens [29,31,32]. Antigens on the X chromosome, such as the 
MAGE antigens, tend to group in families and are usually expressed 
in the testes in a co-ordinated way [2,31]. However spermatagonia and 
cancer share a number of features including rapid proliferation and 
global promoter hypomethylation and as such share expression of a 
number of CT antigens. Like many CT antigens, the gene encoding 
PASD1 also maps to the X chromosome at Xq28 [33], near NY-ESO-1 
and LAGE-1. 

Two SEREX antigens were found to be encoded by the per ARNT 
SIM (PAS) domain containing 1 (PASD1) gene: OX-TES-1, identified 
through the immunoscreening of a healthy donor testis cDNA library 
with diffuse large B-cell lymphoma (DLBCL) [34] and the SEREX 
antigen GKT-AML20 found through the immunoscreening of a healthy 
donor testis cDNA library with acute myeloid leukaemia (AML) sera 
[15]. 

Although PASD1 is transcribed from 16 exons [35], the PASD1_v1 
transcript is longer than the PASD1_v2 transcript due to a retained 
intron between exons 14 and 15. The presence of a stop signal in the 
retained intron leads to the translation of a shorter PASD1-1 protein 
(PASD1a) from PASD1_v1. Such retained introns are relatively 
common in cancer [36,37] and have been described previously in 

tumour antigens [38]. The PASD1_v1 transcript encodes a 639 aa 
protein product named PASD1a while PASD1_v2 encodes the PASD1b 
protein which is 773 aa long, with the first 638 aa being common to 
both proteins [35]. 

The PASD1 protein contains two PAS domains in the N-terminal 
region between aa 32-94 and aa 41-137 [35]. PAS domains are found on 
proteins which are critical regulators of developmental and metabolic 
processes, including transcriptional responses to stimuli such as 
hypoxia and environmental pollutants, mediated by factors including 
hypoxia inducible factors (HIF-α) and the dioxin (aryl hydrocarbon) 
receptor (DR) [39]. A family of 23 known members, the PAS domain 
genes contain a basic helix-loop-helix (bHLH) sequence, and are 
involved in signal transduction in a wide number of organisms [40]. 
Incorrect signalling by PAS domains has been associated with diseases 
including heart arrhythmias [41] as well as myocardial and cerebral 
ischemia [42].

PASD1 homologues have been identified in 16 additional species 
including gorilla, cow, chicken and mouse and referred to as GM1141 
(Entrez Gene). In mice, PASD1 shows most similarity to the CLOCK 
gene essential for circadian behaviour. Circadian rhythms are biological 
processes that show endogenous oscillations which are adjusted to the 
environment-often natural light levels. Such processes may include 
daily fluctuating hormone levels or sleeping patterns.

We have previously examined whether PASD1 levels of expression 
were affected by the cell cycle. Briefly we synchronised K562 cells using 
either serum starvation (105 cells/ml in 0.1% foetal calf serum for 5 
days to cause a block at G0) or using 0.3 mM hydroxyurea for 3 days 
to block at the G1/S interface of the cell cycle, as demonstrated by flow 
cytometry [43]. We detected no significant changes in the number of 
PASD1 expressing cells within the synchronised population over a 24-
hour period (with hourly sampling). However PASD1 expression was 
only found within a subset(s) of the K562 cell population throughout 
the period of analysis.

Sub-Cellular Localisation of PASD1 Expression in 
Healthy and Cancerous Tissue 

PASD1 expression in normal tissues was restricted to the nuclei of a 
subpopulation of spermatogonia [44] and labelling intensity decreased 
with maturity of the spermatogoa. Both PASD1-1 and PASD1-2 
monoclonal antibodies gave comparable labelling of testis tissue. 

In a cohort of haematological malignancy derived cell lines, the 
sub-cellular localisation of PASD1, as determined by immunostaining 
with monoclonal antibodies, was variable [44] (Table 1). Cooper et al. 
showed that in the non-germinal centre DLBCL-derived cells OCI-Ly3 
[45] PASD1-1 strongly labelled the cell membrane and cytoplasm while 
there was no staining of these cells with PASD1-2. KM-H2, established 
from the pleural effusion of a patient with Hodgkin’s disease of mixed 
cellular type [46] and the mantle cell lymphoma (MCL)-derived cell 
line Granta519 showed nuclear staining with PASD1-1 and PASD1-2 
antibodies while strong cytoplasmic labelling with PASD1-2 was also 
observed in a subpopulation of Granta519 cells. K562 cells derived 
from a patient with myeloid leukaemia [47] and the Thiel multiple 
myeloma (MM) cell line all exhibited nuclear staining. The detection of 
nuclear staining was not unexpected and likely reflects the presence of 
a nuclear localisation signal in the common region of the PASD1-1 and 
PASD1-2 proteins. Expression of PASD1 was also demonstrated in the 
FEDP (ALK-negative anaplastic large-cell lymphoma) cell line.

The antibodies PASD1-1 and PASD1-2 both label the 100 kDa 
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PASD1b protein in lysates from Thiel and KM-H2 cells by Western 
blotting, while the PASD1-1 antibody also identified a 40kDa protein 
in OCI-Ly3 and FEPD cells. The PASD1-2 antibody did not recognise 
any proteins in these two cell lines. This 40 kDa protein is smaller than 
was predicted from the translation of the PASD1_v1 or PASD1_v2 
transcripts and suggests the presence of an additional novel PASD1 
isoform in these cells, not least due to its cytoplasmic expression [44]. 
In 2010, Joseph-Pietras et al. showed that in addition to a full length 
PASD1 protein found in Thiel cells there was a higher molecular weight 
protein labelled by the antibody to PASD1-2 in KMS-12-BM again 
suggesting the existence of additional variants of PASD1 [48].

Comparison of the Expression of PASD1 with Other 
CTs

PASD1 mRNA expression was seen to be highest in G361 
(melanoma) and SW480 (colorectal adenocarcinoma) of the nine cell 
lines tested on matched tumour/normal tissue Northern blot arrays 

[35]. Using real-time polymerase chain reaction (RQ-PCR), PASD1 
transcripts expression were detected in the K562 (chronic myeloid 
leukaemia (CML), Jurkats (T-cell leukaemia) and H1299 (lung cancer) 
cell lines. PASD1 levels were significantly higher in the lung cancer 
cell line H1299 (88 times higher than K562 and more than twice the 
levels seen in the testis) [15]. PASD1 transcripts have also been found in 
33% (4 of 12) AML patients, 1 of 6 CML patients and 4 of 16 cell lines, 
(Hn5, Jurkats, K562 and H1299) by RQ-PCR [15] as well as in primary 
MM samples at presentation and following treatment [49]. Reverse 
transcription (RT)-PCR analysis of the expression of 32 antigens in 
cell lines derived from 21 B- and 4 T-cell malignancies indicated that 
eight CT genes had the broadest expression profiles. Of the 25 cell lines 
examined expression of CT antigens was found as follows: Sp17 (25/25, 
100%), PRAME (25/25, 100%), CSAGE (24/25, 96%), PASD1 (22/25, 
88%), CAGE/DDX53 (19/25, 76%), CTAGE1 (19/25, 76%), HAGE/
DDX43 (16/25, 64%) and PLU-1/JARID1B (15/25, 60%) [50].

Previous data also showed PASD1 expression in 25 of 68 solid 

Cell line name and tissue derived from Method of analysis Frequency and subcellular localisation of PASD1 expression Reference
FEDP (ALK-negative anaplastic large-cell 

lymphoma) Immunostaining PASD1-1, but not PASD1-2, positive [44]

G361 (melanoma) Tissue arrays PASD1 positive [35]

Granta519 (mantle cell lymphoma cell line) Immunostaining
Nuclear staining with PASD1-1 and PASD1-2 antibodies, while 

strong cytoplasmic labelling with PASD1-2 was also observed in a 
subpopulation of Granta519 cells.

[44]

H1299 (lung cancer) RQ-PCR
Immunostaining 

PASD1 positive
>99% expression of PASD1-2 

[15]
[63]

Hn5 (head and neck cancer) RQ-PCR PASD1 positive [15]
Jurkats (T cell leukaemia) RQ-PCR PASD1 positive [15]

K562 (CML) Immunostaining 17.6 ± 3.6% nuclear staining [63]
KH-M2 established from the pleural effusion 
of a patient with Hodgkin's disease of mixed 

cellular type
Immunostaining Nuclear staining with PASD1-1 and PASD1-2 antibodies [44]

KMS-12-BM MM cell line
Immunostaining Expression of PASD1-1 and PASD 1-2. Expression in >95% nuclei of 

cells [48]
MOLP-8 MM cell line

OCI-LY3 (non-germinal centre diffuse large 
B-cell lymphoma) Immunostaining PASD 1-1 strongly labelled the cell membrane and cytoplasm while there 

was no staining of these cells with PASD1-2 [44]

Thiel (MM)
Immunostaining

Nuclear staining PASD 1-1 and PASD1-2 staining 5 of 11 multiple 
myeloma cell lines, of which THIEL and RPMI8226 expressed both 

PASD1 mRNA and protein.

[49]
[44]RPMI8226 (MM)

SW480 (colon cancer)
Tissue arrays RQ-PCR

Immunostaining and flow  
cytometry

PASD1 positive 
Expression of PASD1-2 [15,35,63]

A.

Tissue Technique Reference
Expression in 25 of 68 solid tumours Probing Northern blot arrays [35]  
A range of normal tissues including brain, liver, kidney, placenta, breast, uterus or ovary RT-PCR and ICC [15,44]
4 of 12 AML patients, and 1 of 6 CML patients  RT-PCR and RQ-PCR [15] 
Normal testicular tissues expression was only found in the nuclei of a subpopulation of spermatogonia. Labelling intensity 
decreased with maturity of the spermatogoa. Immunostaining [44]

Examples of PASD1-1: 21 of 51 DLBCL, 4 of 9 mantle cell lymphoma, 4 of 15 follicular lymphomas, 4 of 12 Burkitt’s 
lymphoma. PASD1-2: 11 of 52 DLBCL, 2 of 4 MM, 4/10 peripheral T cell lymphoma and a range of other tumour cells from 
patients with haematological malignancies. 41% overall. PASD1-1 was mostly cytoplasmic and weak nuclear staining in 
DLBCL and MM. Stronger labelling towards the periphery of the tumour.PASD1-2 was nuclear staining.

Immunostaining [44]

14 of 16 primary MM samples including 9 presentation and 7 previously treated cases RQ-PCR [49]
Two of four primary MM tumour samples  ICC [49]
PASD1 (22/25) cell lines derived from 21 B- and 4 T-cell malignancies RT-PCR [50]

3.4% of 320 newly diagnosed and 264 relapse cases of MM Microarray using Affymetrix 
GeneChips [51]

Not found in 78 basal cell carcinoma RQ-PCR [53]

B.

AML: Acute Myeloid Leukaemia; CML: Chronic Myeloid Leukaemia; DLBCL: Diffuse Large B-cell Lymphoma; MM: Multiple Myeloma

Table 1: PASD1 expression in human cells (A) cell lines and (B) tissues.
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theory is that tumour cells may induce some immune response in 
the mid-stages of the cancers’ development, when there are enough 
tumour cells to be seen by the immune response, but as these tumour 
cells proliferate they downregulate the immune system of the patient 
and escape effective killing [55]. Many of the antigens recognised by 
SEREX are nuclear transcription factors with low immunogenicity. 
It is proposed that those antigens with high enough immunogenicity 
would have already induced tumour cell killing. Only antigens with 
poor immunogenicity would have escaped immune surveillance. 
Immunotherapy, therefore, offers a way to enhance immune 
recognition of CT and tumour-associated antigens by the immune 
system and induce effective residual tumour cell killing.

Indeed we have shown that the elevated expression of some tumour 
antigens at disease presentation is associated with enhanced patient 
survival [25,27,28]. We have proposed that, during conventional 
therapy, the resulting tumour lysis would lead to inflammation and 
provide the requisite “danger signals” [56] which in turn leads to the 
induction of effective anti-tumour immune responses. Patients with 
elevated antigen expression would be better able to induce immune 
responses which would lead to the killing of antigen positive tumour 
cells and subsequent epitope spreading [57]. There is increasing 
evidence that chemotherapy may have a synergistic effect on the 
immune response to support this possibility [58]. 

T cell responses

T-cell immunogenic epitopes within PASD1a and PASD1b were 
identified using the TEPITOPE [59], SYFPEITHI [60] and BIMAS 
[61] prediction programmes (Table 2 and Figure 1). The capacity of 
the MHC class I epitopes to bind HLA-A2 were confirmed using T2 
assays (assay detailed in [62]) which can predict A2-peptide off-rates. 
T2 cells are TAP-deficient and only stabilize the HLA-A*0201 molecule 
on the surface of the cell when binding peptide. The avidity and half-
life of peptide binding to MHC were detected by fluorescent activated 
cells (FACs) analysis using anti-HLA-A2. In each case the criteria 
used required that epitopes under investigation should not be similar 
to epitopes from other known human proteins. A cut-off of similarity 
across the 9-10 a.a. peptides was ≥ 40% to any other known human 
protein and utilisation of SYFPEITHI predicted epitopes in favour of 
BIMAS ones [63]. 

Cytotoxic T cells are considered to be the major effector cells in 
tumour immunity. A cytotoxic T-cell (CTL) response to PASD1 could 
be detected in DLBCL patients [64]. Furthermore, interferon-gamma 
(IFNγ) release was detected in 21 out of 29 HLA-A*0201-positive 
DLBCL patients following short-term culture of their peripheral blood 
mononuclear cells stimulated with five HLA-A*0201-restricted PASD1 
peptides. However, there was no response in the 21 patients who were 
HLA-A*0201-negative. 

CD4 T helper cells are known to promote immunity in a number 

tumours on matched tumour/normal tissue array [35]. Of note in this 
study, the highest levels of hybridisation of PASD1 cDNA was observed 
with stomach and uterine cancer samples when compared with normal 
adjacent tissues samples.

Cooper et al. (2006) [44] also showed PASD1 expression in 21 of 51 
diffuse DLBCL patients, 4 of 9 MCL, 4 of 15 follicular lymphomas and 
a range of other tumour cells taken from patients with haematological 
malignancies. Notably PASD1a expression, was found more often than 
PASD1b, and was often cytoplasmic. PASD1 protein expression has 
been shown by immunostaining 2 of 4 primary MM tumour samples 
[49] and 5 of 11 MM cell lines, of which THIEL and RPMI8226 
expressed both PASD1 mRNA and protein. 

Despite these results, PASD1 did not achieve the elevated expression 
in the required cut-off of ≥ 5% of 320 newly diagnosed and 264 relapse 
MM patients when analysed by Affymetrix GeneChips. In contrast 87 
of the 123 CT antigens analysed did merit further evaluation in this 
study by van Duin et al. [51]. We have also found variation between 
the relative expression of antigens on microarray [52] compared with 
detection of antigens by SEREX [15] in AML samples. The results of 
Van Duin may, in part, be explained by the propensity for probe sets 
on microarrays to favour 3’ transcripts, the most variable end of most 
transcripts, especially for genes like PASD1 which are anticipated 
to have multiple transcriptional variants. In addition PASD1 is not 
present on some microarray chips including U133A perhaps leading 
to a small under estimate in the frequency of expression. In addition 
PASD1 transcript expression was not found in 78 basal cell carcinoma 
by RQ- PCR [53].

PASD1 as a Biomarker
Insufficient evidence is available to determine whether PASD1 

is a suitable prognostic biomarker. To date, two of the four DLBCL 
patients in whom antibodies to PASD1 were found also had poor 
survival markers [35]. Germinal centre markers CD10 and BCL6 are 
associated with better survival while expression of the non-germinal 
centre marker MUM1 suggests worse overall survival [54]. Patients 
with non-germinal centre type showed serum reactivity with PASD1, 
and PASD1_v2 expression was restricted to non-germinal cell lines.

Immune Responses to PASD1
Humoral immune responses

Humoral responses to PASD1 have been demonstrated through 
the use of SEREX [15,16] indicating that at disease presentation 4 out 
of 10 patients with DLBCL, 6 out of 17 AML and 1 of 6 CML patients 
had already mounted cellular immune responses releasing antibodies 
into the peripheral blood volume of these patients. Similar antibody 
responses were not found in the periphery of 20 and 10 healthy donors 
in these studies, respectively. The question remains why these antibody 
responses were insufficient to kill PASD1 positive tumour cells. One 

Name of epitope MHC binding Peptide sequence Immunogenicity

PASD1(1) 38–47 HLA-A*0201 QLLDGFMIT IFNγ secretion following MLR with patient T cells [64]. Demonstrated by IFNγ ELISpot and CTL 
assays ex vivo [48]

PASD1(2)167-175 HLA-A*0201 YLVGNVCIL IFNγ secretion following MLR with patient T cells [64]. Demonstrated by IFNγ ELISpot and CTL 
assays ex vivo [48]

PASD1(6)31–50 HLA-DRB1 DYFNQVTLQLLDGFMITLST IFNγ secretion following MLR with patient T cells [65]
PASD1(7)42–61 HLA-DRB1 DGFMITLSTDGVIICVAENI IFNγ secretion following MLR with patient T cells [65]

Pw8/Pa14 HLA-A*0201 RLWQELSDS/RLWQELSDI IFNγ secretion following MLR with patient T cells. Demonstrated by IFNγ ELISpot and CTL assays 
ex vivo [63]

Table 2: Details of the most immunogenic PASD1 epitopes.
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of ways such as stimulating production of antibodies. CD4 responses 
against PASD1 epitopes were investigated by Ait-Tahar et al. [65] 
in patients with DLBCL. They showed that immunogenic PASD1 
epitopes predicted to bind several class II DR beta 1 alleles were able to 
induce CD4+ T helper responses to PASD1-positive cells from patients 
with DLBCL. Two of the five peptides (PASD1(6) and PASD1(7)) were 
shown to be immunogenic in 14 of the 32 patients tested and T-helper 
cell lines generated from two patients were able to lyse PASD1 positive 
cell lines derived from haematological malignancies. CD4+ T helper cell 
lines raised from two patients were able to lyse PASD1-positive tumour 
cell lines corroborating that these T cells recognized intracellular 
expressed PASD1. The PASD1-negative cell line was not lysed.

None of the seven MHC class I binding nonamers (named 
sequentially Pw4 through to Pw10) identified using predictive 
programmes were able to stabilise HLA-A*0201 in T2 assays and 
all had poor SYFPEITHI scores [63]. However, modification of one 
of the anchor residues at a.a. 2 or 9 (to a lysine, valine or isoleucine) 
did lead to epitopes with improved SYFPEITHI scores and enhanced 
and/or extended periods of binding to HLA-A*0201 in T2 assays. 
One of these modified peptides, named Pa14, was shown to be able 
to stimulate patient T cells. This caused a very limited expansion in 
CD8+ T cell numbers from two of three HLA-A*0201 positive, PASD1-
positive AML patient samples. This corresponds with the findings of 
others [66] who also found limitations in the expansion that can be 
achieved with AML T cells ex vivo. A 2-3 week limited expansion is the 
maximum that has been achieved prior to cell death. Reasons for the 
limited responses may be due to the presence of myeloid suppressor 
cells in mixed lymphocyte assays [67], interleukin-6 (IL-6) secretion 
by myeloid leukaemia cells [68] and/or defects in T cell populations 
in myeloid leukaemia patients [69]. However stimulation of T cells 
from a single colon cancer patient, in this study, led to a substantial 
increase in the number of Pa14-specific T cells to 13.6% of the CD8+ 
cell population after 4 rounds of weekly Pa14 stimulation, with Pa14-
specific IFNγ responses being evidenced [63].

The combined treatment of conventional (surgery and 

chemotherapy) and immunotherapy in a patient with metastatic 
melanoma has been recently described [70]. Palliative treatment with 
radiation had eliminated the patient’s primary tumour and in-transit 
non-irradiated metastases. This abscopal effect was shown to be due, at 
least in part, to a systemic anti-MAGEA3 immune response. When the 
patient relapsed, they were treated with radiosurgery and anti-CTLA4 
(ipilimumab) immunotherapy (reviewed in [71]). After this treatment 
the patient entered a complete response and, notably, in addition to an 
increase in MAGEA3 antibodies the patient also showed a new anti-
PASD1 response.

pMHC arrays

To compare the T-cell responses in patients to the PASD1 epitopes 
identified by Hardwick et al. [63] and Ait-Tahar et al. [64] we have used 
peptide major histocompatibility complex (pMHC) or tetramer arrays. 
pMHC arrays were validated originally with mouse T cells by Soen et al. 
[72] and then shown to be able to detect tumour antigen specific T-cell 
responses in melanoma by Chen et al. [73]. The technique is able to 
simultaneously detect multiple T- cell populations, without haplotype 
restriction, using small numbers of CD8+ T cells (~1.2×106 cells/
array) incubated for 20mins with pMHC (1ng per spot) spotted onto 
polyacrylamide gels. Briefly CD8+ T cells were negatively isolated from 
the peripheral blood of patients with cancer. When we performed the 
pMHC arrays, T cells were not expanded or stimulated with peptide. 
These “untouched” T cells were dyed with the lipophilic tracer DiD 
and incubated with arrays printed with pMHCs from more than 50 
tumour-associated antigen and viral epitopes (including HLA-A*0201/
CMV and Flu controls). Positive scoring of T-cell populations was 
only made when T cells were consistently bound to three of six of 
the same pMHC spots in two distinct regions on the array. We have 
now analysed PASD1 epitope recognition by T cells from patients 
with leukaemia, colon cancer, head and neck cancer and pancreatic 
cancer and compared the frequency of T cell recognition of other well-
known tumour antigen epitopes including Wilm’s tumour-1 (WT1), 
Proteinase 3, receptor for hyaluronan-mediated motility (RHAMM) 
and Surviving. 

PASD1-1

PASD1-2

1 639

7731 269
GKT-ATA20

Pw8/Pa13/Pa14/Pa15
691-699

PASD1(1)
39–48

PASD1(7)*
42–61

PASD1(6)*
31-50

PASD1(2)
168-176

PASD1(3)
64-72

PASD1(4)
495-503

PASD1(5)
695-703

PASD1(8)*
58-77

PASD1(9)*
170-189

PASD1(10)*
599-618

Pw9/Pa16
542-550

Pw4/Pa11/Pa12
587-595

OX-TES-1

*indicates MHC class II binding epitopes.

Figure 1: Location of the immunogenic PASD1 epitopes within the PASD1-1 and PASD1-2 proteins. OX-TES-1 and GKT-AML20 are the cDNAs identified by SEREX 
immunoscreening of a testis library with DLBCL and AML sera respectively [15,16]. Grey text indicates potential epitopes in PASD1 which have not been investigated 
in vivo.
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Development of Immunotherapy Strategies Targeting 
PASD1

Joseph-Pietras et al. [48] used the pDOM-epitope DNA vaccine 
design [74] to compare the efficacy of the whole PASD1_v1 cDNA 
(FL) in vaccination studies compared with the CTL PASD1(1)38–47 
and PASD1(2)167-175 epitopes [64] (Table 2). The group found a greater 
T-cell response in HHD mice [75] to PASD1(1) than PASD1(2) 
in IFNγ ELISpot assays and significant CTL killing of loaded and 
endogenously PASD1 positive myeloma cell lines. Vaccines containing 
the FL PASD1 induced greater anti-PASD1(1) responses compared 
with anti-PASD1(2) suggesting immunodominance. In addition the 
FL PASD1 vaccine could induce CTL killing of MM cells. 

The DNA fusion gene vaccine has also been used to assess PASD1 
analogue peptides in HHD humanized mice [63]. One of the epitopes 
Pa14 was shown to be capable of inducing immune responses against 
the modified (Pa14) and wild type (Pw8) peptides in studies using 
mixed lymphocyte reaction (MLR) and CTL assays. Splenocytes from 
vaccinated mice demonstrated in vitro cytotoxicity against myeloid 
leukaemia tumour cells, which were either exogenously loaded with 
the corresponding wild type peptide (Pw8) or presented endogenously 
processed PASD1 peptides. Of note mice immunised with a pDOM-
Pw8 DNA vaccine were unable to mount a significant immune 
response but mice immunised with the modified peptide pDOM-Pa14 
killed Pw8 loaded and endogenous PASD1 presenting targets.

Further epitopes could be identified through the immunoscreening 
short overlapping peptide libraries [76,77] although some of the already 
predicted PASD1 epitopes [63-65] remain to be more thoroughly 
studied in vivo. 

Summary
Clinical trials targeting PASD1 have yet to be initiated however there 

is accumulating evidence of the utility of DNA vaccines in such settings 
[78,79]. The expression of PASD1 in a range of tumour types, especially 
haematological malignancies, suggests that PASD1 specifically has a 
role as a target for the immunotherapy of these difficult to treat cancers 
that do not respond well to conventional therapy and frequently lack 
a more suitable treatment for the removal of minimal residual disease.

Although further studies of the frequency of PASD1 protein 
expression in cancers will help determine the suitability of PASD1 
as a target for immunotherapy; major issues are why PASD1 has 
such variable expression in some cell lines and primary tissues; and 
whether this indicates more progressed cancer cell populations within 
affected tissues. The role of PASD1 as a biomarker will help us to 
better understand its role in cancer progression. Furthermore, PASD1 
expression has been shown to exist after treatment in some patients 
[49] highlighting it as a potential robust post-conventional therapy 
target. In addition increasing our understanding of the functional role 
of PASD1 in cancer development will help determine whether killing 
tumour cells which express PASD1 will impact on cancer progression in 
a more meaningful way than just acting as a target for immunotherapy 
strategies. 
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