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Abstract

This review considers the current literature on sinkhole formation and occurrence. It incorporates several
examples from around the world in order to gain a broader geographical scope on the problem. Challenges
associated with sinkholes center around atmospheric acidification (pollution) and the formation of dissolution
sinkholes. In addition, urbanization and its imposed changes on surface drainage as well as aquifer contamination
also bear upon this geohazard. Solutions have been grasped through the deployment of geophysical techniques, in
particular GPR. Engineering solutions are presented and critically discussed. Preventative planning based on early
detection (through geophysical, GIS and multivariate analysis plus modeling, and possibly remote sensing
techniques) are among the most effective available solutions. More research is needed to investigate the effects of
increasing surface temperatures and interactions (synergies) with pollution.

Keywords: Karst regions; Climate change; Groundwater levels;
Urbanization; Surface drainage; Pollution-climate synergies;
Anthropogenic geomorphology

Abbreviations: DEMs: Digital Elevation Models; GIS: Geography
Information Systems; GPR: Ground-Penetrating Radar; LiDAR: Light
Detection and Ranging; UK: United Kingdom; US: United States;
USGS: US Geological Survey

Introduction
Limestone dissolution is affected both by pollution and climate, as

acidic concentration and temperature work to weather carbonate rock.
This paper focuses on sinkholes from the perspective of anthropogenic
atmospheric acidification and within the context of global warming. As
a climate-affected hazard, sinkholes forming in karst regions pose
problems for ground stability and are thereby considered to be a
geological hazard (geohazard).

They are a complex issue of growing concern in Florida, for
instance, and other limestone-rich regions around the world. The aim
of this review paper is to identify contemporary challenges in the
global appearance of sinkholes, with an American focus (brief case
study, Part 2) on Florida, and presentation of modern techniques and
approaches for mitigation and remedy of the problem.

According to the USGS Water Science School, “sinkholes” are
commonly found in areas of carbonate rock as well as where there are
salt beds or naturally dissolved rocks by groundwater [1]. Any water-
soluble rock can, therefore, be naturally susceptible to sinkhole
formation. These are normally visible only when the ground finally
gives way and collapses due to a lack of support after much dissolution
and or spaces and caverns have developed (out of sight) below the
ground surface. As such, they represent a landform where chemical
weathering (dissolution) of soluble rocks meets climate (intense

rainfall or drought causing the water table to fluctuate) and climate
change that can be affected by human impacts on natural systems.

The formation of sinkholes is easily evident in the built environment
and appear in various American states, as for instance from Texas to
Florida and up to Pennsylvania (the USGS recognizes occurrences in
the seven states of Florida, Texas, Alabama, Missouri, Kentucky,
Tennessee, and Pennsylvania in the US alone [1].

They typically develop in areas of poor (or no) natural drainage,
where water collects. Some of these can be quite large, affecting up to
hundreds of thousands of square meters of land and appear more than
30 m below the surface [1].

Table 1 presents a summary of some examples of generic “sinkholes”
reported [2]. It is evident, based on this information, that these
landforms are geographically diverse, and affect locations outside of
the US (e.g., China, Russia, Siberia, Canada, Guatemala, Germany,
Brazil, New Zealand, etc.). Even the reported American incidents
located were more widespread than anticipated by the USGS, with an
additional at least seven states being affected (New Jersey, Washington,
DC, Oklahoma, Ohio, Maryland, California, and Kansas).

As evident for the US alone, the distribution of states underlain by
soluble rocks, such as karst (from evaporite as well as carbonate rock)
as well as evaporites (salt and gypsum) alone, is more widespread than
just seven states and most (if not all) can be affected by sinkhole
formation to some degree, depending on the proportion of the state
comprising this soluble material.

In addition, rock weaknesses (along joints, bedding planes, and
faults), along with earthquakes (as in California) and unconsolidated
(sandy or clayey) deposits, in addition to altered drainage, can trigger
sinkholes. Based on information contained in Table 1, for instance, the
states surrounding the original seven recognized by the USGS as
sinkhole-prone can also be affected, including New Jersey, Washington,
DC, Oklahoma, Ohio, Maryland, California, and Kansas [1].
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Location Date

South Amboy, New Jersey March-2015

Guilin, Guangxi Zhuang, China January-2015

Suburban Washington, DC January-2015

Zhenjiang, Jiangsu, China December-2014

Quanzhou, China December-2014

Siberia-200 m deep November-2014

Tampa, Florida November-2014

Crimean capital of Simferopol September-2014

Ross Township, near Pittsburgh, Pennsylvania August-2014

Siberia July-2014

National Corvette Museum, Bowling Green, Kentucky February-2014

Xi'an, Shaanxi province, China, 27 October 2013 October-2013

Antipayuta, Russia-15 m wide September-2013

Oklahoma City, Oklahoma September-2013

Summer Bay Resort, Clermont, Florida-15-18 m August-2013

Montreal, Quebec-8 m long, 5 m wide August-2013

Toledo, Ohio July-2013

Arlington, Texas June-2013

Russian Black Sea resort of Sochi March-2013

Guangzhou, China-305 m2 wide, 9 m deep January-2013

Harbin City, northeast China August-2012

Turkmenistan, Karakum Desert-70 m wide July-2012

Guatemala City-81 cm, 12 m deep July-2011

Beijing, China April-2011

Leshan, China-20 m wide January-2011

Chevy Chase, Maryland December-2010

Schmalkalden, central Germany November-2010

Shanxi Provincial People's Hospital, Taiyuan, China August-2010

Guatemala City May-2010

Los Angeles, California September-2009

La Jolla, California-61 m by 73 m October-2007

Pinheiros subway station, Sao Paulo, Brazil January-2007

Waihi, North Island, New Zealand-50 m wide, 15 m deep December-2001

Austin Peay State University᾿s football field-12 m deep -

Sharon Springs, Kansas -

Table 1: Summary table of “sinkhole” occurrences. Dates appear in
reverse chronological order. Includes undated events (-) [2].

Sinkhole occurrence
There are different types of sinkholes: 1) dissolution; 2) cover-

subsidence (for sandy sediments); and 3) cover-collapse (for clayey
sediments, which can occur abruptly over a period of hours) [1]. Any
of these can be represented in Table 1 (affected by sediment types/size
of overburden) in addition to dissolutional types (which occur where
there is limestone or dolomite (carbonate rock) and or evaporites (salt,
gypsum, or anhydrite [1]). Events reported in October 2015, for
instance, from the UK (e.g., 20 m wide, 10 m deep sinkhole that
opened up in Fontmell Close in St. Albans, Hertfordshire [4]), are
likely more representative of the third type of sinkhole (cover-
collapse), where water lubricates clayey layers to cause eventual
collapse. The recent incident that received much media attention
involved the death of Jeffrey Bush, who was then (in 2013) 36 years of
age and vanished into a 6 m wide, 30 m deep sinkhole while sleeping in
his home one night in February 2013. This sinkhole, that occurred in a
Tampa suburb in Seffner, Florida, has since reopened [5]. So, these
erosional landforms are capable of being reactivated years later.

Under natural circumstances, sinkholes form due to various
environmental influences. These are summarized in Table 2. These
erosional features appear alongside gullies and swallow holes in the
Hungarian Karst Mountains [6]. They appear in karst regions
experiencing drought and floods [7] and are affected by drastic
changes in rainfall, such as torrential rains in southern China [8]. In
Florida, the distribution of new sinkholes differs from existing ones;
there are processes acting today that are different from in the past [9].
Climate change could accelerate the formation of large closed
depressions/collapse dolines, which take 1 million years to form [10].
Drainage is key, as it affects both surface and underground waterflow
routes and their development through time [11]. There are
interactions, as with corrosion and geomorphic processes, including
slope deformations and karst, fluvial, glacial phenomena; for example,
Dead Sea sinkholes, which are forming through slow salt dissolution
and form within highly conductive zones [12,13].

Influence Details

Natural Substrate/rock properties and dynamics, e.g. solubility and strength
[14]

 Landscape evolution along coasts, e.g. inlets and bays [15]

 Known to occur more in evaporite than carbonate karsts due to
higher solubility and lower strength [6]

 Seismic events/earthquakes [16]

 Groundwater flow-affected by rainfall (recharge) [17]

Human Climatic change [6]

 Changes to drainage patterns-sinkhole frequency increases near
drainages, fault, etc. [18]

 Subsurface drainage also needs consideration-e.g. karst aquifers
vulnerable to pollution (acidification) [19]

 

Overburden/sedimentary cover burying carbonatic bedrock
outcrops (where there are pressurized aquifers, seismogenetic
faults, and springs-lakes/ponds enriched with CO2 and H2S);
upward erosion through vertical conduits (deep faults) from piping
where there are acidic fluids [20]

 The Dead Sea-its rapid fall in the last 30 years due to water
abstraction (water quantity) [21]
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 Groundwater contamination (water quality), e.g. Apulia, SE Italy
[22]

Table 2: Influences on sinkhole formation.

Beside natural forces, there are also human activities that are
affecting the formation of sinkholes. Human impacts in the Caribbean,
for instance, include destruction of natural vegetation; contamination
of water supplies; urbanization; quarrying; and so on [7]. So that biotic
and abiotic elements are involved [6]. Changes to natural drainage
patterns, including water diversions, can also cause sinkholes to form.
New sinkholes can also develop due to groundwater pumping and can
be linked to development practices and construction. For example,
standing water (in swimming pools, ponds, etc.) can trigger them, as
can the addition of weight on the ground surface (as with reservoirs,
dams, coolant tanks, etc.). They have the capacity to drain entire lakes,
as was seen in St. Louis, Missouri [23]. Sometimes they are already
apparent, but only below the ground surface, so that they are buried
and invisible before development, as for instance where aquifers are
present.

Sinkholes are not a new phenomenon, but their occurrence is more
noticed as the world becomes increasingly urbanized and more
structures are susceptible to failing under their appearance. In
Missouri alone, over 160 catastrophic collapse sinkholes (which are
rarer than bowl-shaped (cover-subsidence) types), were reported by
the public between 1970 and 2007, with the majority being small-sized
(<3 m across, 3 m deep) [23]. Toward the eastern US, carbonate rock
aquifers (consisting of limestone, also dolomite and even marble) are
affected because of the water-yielding properties of carbonate rocks,
which lead to wells and springs (as in the submarine springs of coastal
Florida) that affect subsurface water drainage [24]. A new irrigation
well, for example, that developed in west-central Florida led to
hundreds of sinkholes ranging in size from <0.3 m to over 45 m across
and spanning over 80,000 m2 [25].

In addition to the impacts of groundwater pumping, which lead to
over 80% of identified subsidences in the US, there are also the human
impacts associated with the drainage of organic soils, where organic
carbon drains from agricultural lands and makes for acidic (and in
some cases some very acidic, pH 3.4-4) groundwater [25]. Acidic soils
affect groundwater quality and the dissolution of soluble rocks.
Evaporites alone make up 35-40% of the US, even if buried at depths,
and can cause sinkholes to develop over the course of days to years (for
salt and gypsum) and at a slower rate (from centuries to millennia) for
carbonate bedrock [25,26]. However, this natural process can be
expedited by human influences.

Atmospheric pollution, particularly in wet environments, can lead
to the development of acids and environmental acidification. Carbonic
acid, for example, has been shown to cause limestone dissolution; the
chemical reaction is known to occur early (as soon as within 13 days)
in the dissolution process and even at relatively high temperatures
(19°C) [27]. According to this, it seems that previously weathered
surfaces are less affected by carbonic acid dissolution [27]. However, it
can affect new-build, including limestone-containing materials, such as
concrete, which are widely used in modern urban construction.
Surface acidification is affected by atmospheric quality, but can also be
influenced by vegetation (organic acid) as well as climatic regime

(precipitation, humidity), and so requires a systems approach.
Vegetation, for example lichens, has been associated, for instance, with
solution basin formation in the Burren, Co. Clare of Ireland [28].

Sinkholes as geohazards
Sinkholes pose a serious hazard to humans. Among these are: land

subsidence; infrastructure and building damage; danger to human
safety; etc. This can be considered an environmental quality problem,
as involving pollution and acidification, when acid-sensitive
(calcareous) rocks are affected. Moreover, they are can form in salty
(arid/coastal) regions, where there are evaporites, and many examples
of this exist from around the world (Table 3).

Condition Example

Salty (arid/
coastal)
regions

Eastern part of Saudi Arabia-land subsidence problems [29]

 Eastern Dead Sea shoreline in Jordan-old water channels and
water table effects, plus active tectonism [30]

 Apulia in southern Italy-coastal plains [15,31]

 Plains in carbonatic ridges of bedrock outcrops in the
Apennines [20]

Rock type:
evaporites

Britain-evaporite karst causing subsidence and building
damage [32]

 Hamburg, Germany-salt diaper; seismically affected [16,33]

Rock type:
calcareous

Co. Durham, UK-gypsum dissolution below town of Darlington
[34]

 
NE Spain-evaporite dissolution (gypsum, halite, Na-sulphates)
under alluvial deposits; groundwater flow accelerates
dissolution [17]

Table 3: Some examples of locations of sinkhole hazards.

In turn, sinkholes affect human structures. For example, the
Madrid-Barcelona high-speed railway is affected by human-induced
sinkholes; land usage in Hamburg, Germany; and causing damage to
the built environment, as with mining geohazards in Reading [35-37].

Sinkhole challenges and solutions
There are implications of sinkhole occurrence for planners,

developers/construction, engineers, and the insurance industry [31].
Planned development, for instance “safe development” using
subsidence-proof designs and the role of “preventive planning” have
been deployed as longer term responses to the challenges [14,38].
Long-term sustainability has also been advocated, as for instance
[7,19]. Finally, there is a role of geomorphological methods, such as
sinkhole susceptibility mapping; cross-temporal geomorphological
mapping; spatial-temporal predictions; GIS; DEMs; air photo
interpretation and borehole drilling; archival research, etc. Table 4
presents the methods currently available to address challenges and
head toward solutions. These appear with consideration of their
advantages and disadvantages in an assessment of methodological
contributions.
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Method Advantages Disadvantages

GIS (including digital map data) Allows for spatial analysis; can assess specific problems;
multicriteria approach

Scale dependent; need georeferencing and
software (e.g. ArcGIS) expertise

Remote sensing Can be integrated with geological information (geothematic
data); can integrat geophysical information

Surface-based assessment; restricted by
resolution

Geophysical surveys (e.g., seismic, geoelectrics/
electrical resistivity tomography, georadar/GPR,
resistivity imaging, and magnetic, conductivity,
microgravimetric)

Subsurface detection and mapping Equipment (some expensive/specialist) and
expertise required

DEMs and modeling Allow for topographic assessments, e.g. of flooding;
predictive modeling possible

Scale dependent; informed by datasets; need
to be field-verified for “ground-truthing”

LiDAR High resolution Surface detection

Geological information and geothematic data;
geomorphological mapping

Support other methods, e.g. remote sensing, GIS; linked
cartography; cost-effective; hazard mapping possible to
inform planning

Data availability; scale dependent

Aerial photo interpretation Cross-temporal analysis possible Surface analysis only; limited to availability

Table 4: Current solutions possible through a variety of methods.

Recent academic attention has been directed at sinkholes. For
example, a review paper published in the journal Geomorphology in
2011 as part of karst geomorphology focused on the natural hazards
occurring in karst areas, including subterranean karst [39].

Additionally, a special issue by the journal Environmental Geology
was concerned with environmental impacts as well as natural and
anthropogenic hazards [40]. Because sinkholes can be human-induced,
it is important (and timely) to consider sinkholes from the perspective
of an “anthropogenic geomorphology,” whereby human activities (in
mining, agriculture, and construction) are considered as shaping the
hazard [41].

One of the most wide-scoping human impacts on the landscape is
that of anthropogenic climate change. More work is needed to
investigate the consequences of humans (through climatic change) on
landscape change and hazards, such as sinkholes.

Urbanization is one of the areas that need particular continued
address, especially because of the implications for karst hydrology.
Some of the current challenges and some potential solutions are
presented in this section, with climate change indicated as the first
challenge.

Contemporary Challenges

Climate change
The relationship between temperature and the rate of dissolution of

calcareous rocks needs to be revisited. As aforementioned, dissolution
continues to occur even at high temperatures, with most weight loss
evident early following exposure to carbonic acid [27].

Sinkholes have also been observed appearing in thermal springs, as
in Turkey, where at the Kozakli geothermal field a sinkhole some 30 m
across and 15 m deep developed in January 2007 [42]. This means that
dissolution can occur even at high temperatures, which has
implications in a warming planet.

Urbanization and drainage
Analysis of Turkish sinkholes in the Karapinar region, investigating

30 factors affecting their occurrence (of existing and new sinkholes),
found that more sinkholes formed where there was greater drainage,
well, and fault density and where there was a lowering of groundwater
[43]. Similarly, water pumping was one of the reasons for
paleosinkhole reactivation in the Ventanielles area of Oviedo in NW
Spain in addition to alterations to drainage due to the construction of
an underground parking lot in combination with gypsum dissolution
[44]. In Tangshan, China, groundwater management for multi-aquifer
systems could restore groundwater levels to confined states in lands
that are at risk of collapse so that remediation is possible [45].

Water quality is another major issue affecting many aquifers around
the world, even though many have not be tested, as for instance the
aquifer providing water to the city of Merida in southeastern Mexico
[46], where the Ring of Cenotes is known to represent sinkholes [47].
Elsewhere, in Bexar County, Texas, contaminated spills as well as
leakage of hazardous substances and polluted urban runoff from
developing urban areas on karst limestone outcrops in the recharge
zone of the Edwards aquifer is a major concern, especially in the more
porous subdivisions of outcrop [48].

Sinkholes can appear in flat terrain, where wetlands are present due
to poor drainage, as is the case with the Dougherty plain in
southwestern Georgia, USA [49]. Similarly, on the Hamadan plain
situated northwest of Iran, there are 39 sinkholes of various sizes and
another nine located in the Lar valley north of Iran [50]. They are
known to form on carbonate bedrock here, but have also been found
where there is dolomite (and not just limestone) in South Africa, where
sinkholes as well as compaction subsidence and potentially polluted
dolomite aquifers occur [51-54]. Here, dolomite extends around
Johannesburg and Pretoria, and sinkholes develop due to fluctuations
in the water table (e.g., produced by dewatering for gold mining, etc.),
and poses an increased risk where there is urban development due to
changes in runoff and surface drainage as well as water leaks [55]. This
problem is worse where low-cost housing (and informal settlements)
appears, as sinkholes with a large diameter form on dolomite located
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within 15 m of the ground surface. In the Cheria area of NE Algeria,
imposed loading affecting the stability of karst terrain depends on
geomechanical properties (strength, etc.) as well as gallery depth and
dimensions [56,57]. Stability is particularly compromised with
increased cavity width and a roof thickness:gallery width ratio of at
least 0.30 is required to ensure stable conditions.

Sinkholes are known to develop in former stream channels, where
these (streams) can pose a risk to buildings and highways, as is evident
in the Burlington limestone found in Springfield, Missouri [58]. The
appearance of aquifers can also trigger sinkholes, as for instance in
Turkey, where Egirdir lake is connected to a karst aquifer via sinkholes
located on its western border [59]. This affects drainage patterns as
well as anything entering the water cycle at ground level and
contaminants can spread a great distance in this system. A similar
problem is evident in Kermin city in southeastern Iran, where a
drawdown of the water table has occurred (80 cm per year) that
accelerates land subsidence (6 cm per year) [60]. In Tuzla, Bosnia
Herzegovina, subsidence up to 12 m between 1956 and 2003 was
effectively counteracted, particularly in urban areas (where uplift
displacements are actually taking place) since it was affected by brine
withdrawals impacting the level of the water table [61]. One of the
most recognized variables affecting sinkhole development is that of
hydrology in karst areas, where improper design and location of storm
drainage discharge can lead to increased erosion as well as sinkhole
development [62].

Drainage is an important consideration, particularly in areas
underlain by soluble rock, such as gypsum between Rapid City and
Spearfish in South Dakota, where gypsum is becoming unstable due to
urbanization and suburbanization in the area due to (mainly new
housing) increasing development pressure [63]. It has been suggested
by these authors that mapping of engineering hazards be carried out
for the entire Interstate-90 development corridor in the Black Hills.
The karst Madison aquifer is the main reservoir in western South
Dakota, with the Rapid City and communities in the eastern Black
Hills as the main water sources [64]. The (Madison) aquifer is very
sensitive to contamination due to its high water velocities and limited
filtering capacity. Where it is most vulnerable, there are sinkholes (as
well as disappearing streams, etc.) evident along highways and where
there are wastewater systems in place (in residential areas and where
there is urban development). The failure of a wastewater storage lagoon
in the Lehigh River valley in Allentown, Pennsylvania, for example,
polluted an aquifer through cracks, fissures, and solution channels in
the Allentown Formation [65]. The Black Hills of South Dakota and
Wyoming are made from Jurassic gypsum and anhydrite that have led
to karst collapse and subsidence, causing damage to houses and sewage
retention sites [66]. Steep-sided sinkholes over 18 m deep have
developed in the area, in some cases resulting in sediment disruption
that has also contaminated local water wells and springs. These
sinkholes have developed since 26,000 years ago and include the Vore
Buffalo Jump (near Sundance, Wyoming) and the Mammoth Site (in
Hot Springs, South Dakota).

Current Solutions

Detection and monitoring
Cavities and or sinkholes appearing on roads in the karst terrain of

the Apulia region in South Italy are either air or sediment-filled [67].
These underground voids (holes and tunnels either air- or water-filled)
occur due to rainwater infiltration into calcarenite sedimentary rocks.

It is possible to detect these beneath road surfaces using geophysical
methods (seismic, geoelectrics, and georadar), which have revealed
that these roads are affected by surface cracks leading to structural
instability. In Apulia, caves with the potential to propagate upward as
well as underground quarries (tunnels), which may now be abandoned
and forgotten in the midst of urban expansion, represent a significant
risk [68]. The karst geohazard is being monitoring in the UK, for
instance, using digital map data (bedrock and superficial deposits) in
conjunction with digital elevation slope models, etc., by the British
Geological Survey to derive a database used to assess subsidence in
karst regions (of limestone, dolomite, chalk, gypsum, and salt) [69].
This database can be accessed using GIS to address specific problems,
for example sustainable drainage systems. Soak-aways and open loop
ground source (heating and cooling) pump systems, in particular, can
cause ground instability in karst areas [69]. Changing groundwater
levels in Dzershinsk, Russia led to the formation of suffosion sinkholes,
which were likewise assessed using GIS in an aggregated dataset [70].
The use of GIS also assisted a multicriteria approach to ground
deformation in Bosnia [61] and was likewise employed (with remote
sensing) for land subsidence susceptibility mapping in the Kinta valley
of Perak, Malaysia [71]. Similarly, a multicriteria approach was adopted
for subsidence hazard mapping in the Val d᾿Orléans located south of
Paris, France [72].

High-resolution detection methods are now available for sinkhole
monitoring, as for instance LiDAR technology sinkhole mapping is
particularly effective for tracking sinkholes in Kentucky that have been
either filled or covered for urban development and agriculture and that
are missed by low-resolution topographic maps [73]. Also in Rome,
Italy, remote sensing has been integrated with geological information
and geothematic data to detect potential instabilities, although it is
difficult to discern sinkholes (subsurface features) based on satellite
data [74]. However, subsidence zones tend to mainly overlap with
alluvial areas, as of the Tiber river system [74]. In Saudi Arabia,
however, it has been possible to successfully integrate remote sensing
of surface features with geophysical studies deploying electrical
resistivity surveys to identify circular features or rings and
unconsolidated subsurface material indicating karst [75]. These
authors were able to detect below surface sinkholes using the dipole-
dipole method with electrode spacing of 1 m [76]. Furthermore, it was
possible to obtain three-dimensional volumetric profiles using closely
spaced profiling.

Geophysical surveys, including GPR, resistivity imaging, magnetic,
conductivity, and natural potential, were executed in Austin, Texas as
geotechnical studies of the subsurface in areas of residential buildings,
shopping malls, tunnels, pavements, etc. in order to develop integrated
geophysical surveys of near-surface karst features [77]. Both GPR and
microgravimetric geophysical methods were employed in the coastal
(Marina di Capilungo) area of Lecce, Italy, with the former (GPR)
being able to detect smaller shallow voids that can be deployed with
modeling data to estimate depth and shape of anomalies representing
underground voids [78]. In the city of Casalabate in this region of
Lecce, Italy, a combination of methods (geological analysis, aerial
photo interpretation, electrical resistivity tomography, and GPR)
allowed for the location of karst conduits and an identification of the
zone of high sinkhole geohazard [79].

As a geophysical technique, GPR is capable of characterizing karst
hazards, including cavities and paleocollapses [80]. It has been
deployed in the central Ebro basin (in Zaragoza city located in NE
Spain), for instance, as part of an integrated analysis that comprised
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historical geomorphological analysis based on maps and aerial
photographs, geophysical surveying (GPR, magnetometry, gravimetry,
etc.), and subsoil characterization by way of trenches, boreholes, etc
[81]. Through field inspection as part of this integrated approach, it
was possible to determine an external subsidence ring (twice the size of
its inner zone) detected using geometrical changes in GPR profiles
[82]. Moreover, GPR made three-dimensional subsurface
characterization possible with the integration of three boreholes and
other available information [83]. Also in Zaragoza (Spain), trenching
and geophysics (GPR) were executed across two buried active
sinkholes of different genetic types (suffosion, collapse, and sagging)
using different antenna frequencies (50 and 100 MHz unshielded and
180 MHz shielded) in order to characterize sinkholes in covered karst
[84]. Identifying different types of karst (typology) is important in the
assessment of subsidence hazards [85]. Geoelectric resistivity
tomography and GPR were both used for shallow subsurface cavity
imaging in Al-Amal Town in Cairo, Egypt, and led to the detection of a
(known) cave system plus an extension, which was inferred and also
revealed (vertical) linear fractures affecting the stability of the area
[86].

There are limitations associated with methods deployed in urban
settings, however, as for instance of noise affecting magnetic and
electromagnetic techniques; GPR itself is also limited, as in agricultural
areas, where clayey soils and conductive layers disturb the signal [87].
Indeed, GPR was excluded from an investigation in the Cheria area of
NE Algeria because clay layers from a Mio-Plio-Quaternary deposit on
top of Eocene limestone prevented its application and instead a
resistivity survey (along with geological surveying, discontinuity
analysis, and borehole drilling) was deployed [56]. Modeling of
sinkhole susceptibility have also been applied to the evaporite karst of
the Ebro valley [88], testing for clustering based on nearest neighbor
distance as well as sinkhole density, etc. In addition, a hazard
assessment was conducted for the periphery of the city of Zaragoza (in
the Ebro River valley of NE Spain) and, based on trenching and dating
techniques it was possible to determine that sinkholes with diameter of
10-15 m may occur in this area [89].

Other alluvial settings have caused problems associated with
drainage (from urban areas, such as the city of Calatayud, Spain),
where flooding is dissolving the evaporite bedrock and causing
subsidence and rockfalls [90]. Buildings are especially affected by
dissolution and subsidence aggravated by water leaks and sewage
pipes. Geomorphological mapping has been recognized as a cost-
effective approach to locating subsidence and avoiding development in
these hazardous zones [90]. A vulnerability assessment also from Spain
(performed in the Sierra de Líbar in Andalusia) produced a hazard
map conveying the risk of groundwater contamination [91]. A
composite hazard map was generated for Miocene calcarenites and
Pleistocene sands east of Portimao in the Algarve, Portugal that was
intended for use by planners and developers [92]. Before drilling a
tunnel in Switzerland, for instance, it was necessary to use a predictive
model to determine whether to expect high-flow events into the tunnel
(due to high water head and discharge) affecting the construction [93].
Infrastructural development (tunnel construction) elsewhere, as within
the urban Doha area of Qatar, has required geophysical surveys,
including electromagnetic, multichannel analysis of surface waves, and
electrical resistivity tomography, which have been found to produce
good quality maps of weathered limestone [94]. Borehole (or drill
hole) data on its own was found to be insufficient due to the irregular
shape of sinkholes. Instead, electrical resistivity has been considered a

viable tool to delineate shallow solution networks in the karst area of
southeastern Johnson County, Kansas [95].

This geophysical monitoring is crucial, as detection should always
precede development, particularly in built-up areas where a
concentrated population can augment karst hazards. In the city of
Zaragoza, Spain, alluvial karst has been mitigated by water-proofing
and filling sinkholes [96]. However, this practice (of filling sinkholes
with concrete injection) has actually been increasing karst activity in
urban settings. In such (urban) settings, according to these authors, the
methodology that appears to work best is that of mapping using GPR
surveys, borehole data, and microgravimetry surveying. Elsewhere, as
in Tung Chung new town, carbonate dissolution has produced
sediment-filled collapse basins [97]. These have been surveyed with
drilling and seismic profiling, but gravity surveying has been most
effective for identifying low-density materials. In Orléans, France, the
application of microgravimetry combined with spectral analysis of
surface waves, GPR, and borehole information made it possible to
identify karst conduits and a zone of mechanical weakness where one
sinkhole had already occurred [98]. This research showed that the
occurrence of buried networks does not necessarily lead to significant
gravity anomalies.

Engineered approaches
It is important to deploy sustainable methods to counteract the

sinkhole geohazard. Karst terrain represents a high-risk situation for
urban centers with an extensive road network, as for instance in the
Campania region of southern Italy [99]. Here, collapse sinkholes can
be located on carbonate slopes, particularly where there are fault lines
and aquifers (and their springs). A student paper has provided a
geological engineering perspective on how to stabilize sinkholes using
a granular filter, concrete slab (with a filtered drain), and a rock drain
to establish a bridge across bedrock fissures [100]. However, it is
recognized that this method may not work because all sinkholes are
unique and must be dealt with individually.

This complicates engineering solutions to sinkhole stabilization and
further investigations are required. For instance, by testing the
infiltration rates of karst in Texas, it was discovered that a clay loam
soil consisting of 30-40% clay retains infiltration [101]. Simply infilling
sinkholes is not a sustainable solution, as it would take much concrete
and in some cases entire networks need to be filled due to hole
connectivity. Instead of cement infilling, another (more viable) option
may be infilling with garbage (in areas away from aquifers and other
groundwater resources at risk to contamination), which is a plentiful
material and waste disposal sites for landfill are in demand, as in the
Permian carbonate outcrop east of Leeds in the UK [102].

Conclusions
The main contemporary challenges for the occurrence of sinkholes

in the current environment revolve around increased surface
temperature (climatic warming) and its impact on dissolution
sinkholes, in particular, as well as urbanization and its effects on
drainage. Solutions to these contemporary challenges are presently
limited to the ability to inform planning in advance through proper
detection and monitoring. The first identified challenge has been
largely overlooked in the current literature and more work (especially
simulations) is needed, particularly since dissolution is the primary
weathering process affecting karst systems in the formation of caves
and conduit systems. Second, urban expansion is occurring
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everywhere around the world and a global perspective is necessary (as
in this review) in order to gain a spatial understanding of the
occurrence. A temporal dimension is also necessary, as this would
permit for a determination of rates, which may affect planning and
development decisions and management. Possible solutions can be
informed by detection and monitoring using a diversity of techniques,
including geophysical, in an integrated methodological approach.
Technology is constantly developing and solutions are being devised to
resolve problems that could go a long way to promote early detection,
in particular and inform decisions that could reduce the risk and
hazard.
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