
International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 270

PARCAHYD: An Architecture of a Parallel Crawler based on Augmented

Hypertext Documents

A. K. Sharma
Department of Comp. Engg.

YMCA University of Science and

Technology,

Faridabad , India

ashokkale2@rediffmail.com

J.P. Gupta
Jaypee Institute of Information

Technology, Noida, India

prof_jpgupta@gmail.com

D. P. Agarwal
Indian Institute of Information

Technology & Management, Gwalior,

India

prof_dpa@hotmail.com

Abstract

Search engines use web crawlers to collect documents for storage, indexing and analysis

of information. Due to the phenomenal growth of web, it becomes vital to create high

performance crawling systems. Augmentations to hypertext documents were proposed [6] so

that the documents become suitable for parallel crawlers. PARCAHYD is an on going project

aimed at designing of a Parallel Crawler based on Augmented Hypertext Documents. In this

paper, the architecture of this parallel crawler is presented.

Keywords : Search Engines, Web Crawlers, Parallel Crawlers, PARCAHYD

1. Introduction

The World Wide Web (WWW)[1,18] is internet client server architecture. It is a

powerful mechanism based on full autonomy to the server for serving information available on

the internet. The information is organized in the form of a large, distributed, and non-linear text

system known as Hypertext Document [2] system. This system defines portions of a document

as being hypertext- pieces of text or images which are linked to other documents via anchor

references. HTTP and HTML [3] provide a standard way of retrieving and presenting the

hyperlinked documents. Client applications i.e. Internet browsers, use search engines to search

the Internet servers for required pages of information. The pages supplied by the server are

processed at the client side.

Due to the extremely large nature of the pages present on web, search engines depend

upon crawlers [4] for the collection of pages. A crawler follows hyperlinks present in the

documents to download and store the pages in the database of the search engine. The search

engine indexes the pages for later on manipulations of the user queries.

The web has more than 350 million pages and is growing in the tune of one million

pages per day. Such enormous growth and flux necessitates the creation of highly efficient

crawling system [5,12,13]. Research is being carried out in the following areas:

mailto:ashokkale2@rediffmail.com
mailto:prof_jpgupta@gmail.com
mailto:prof_dpa@hotmail.com

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 271

 to develop strategies to crawl only the relevant pages

 to design architectures for parallel crawlers

 restructuring of hypertext documents

We proposed augmentation to the hypertext documents [6] so that they become suitable

for downloading by parallel crawlers. The augmentations do not affect the current structure of

hypertext system. This paper discusses hypertext documents, the proposed augmentations, and

the design of an architecture of a parallel crawler based on the augmented hypertext documents

(PARCAHYD). The implementation of this crawler in Java is in progress.

2. Related work

A program that indexes, automatically navigates the web, and downloads web-pages is

called a web crawler [4,14]. It identifies a document by its Uniform Resource Locator (URL).

From the URL, the crawler can search and downloads the document as per the algorithm given

below:

Crawler ()

 Begin

 While (URL set is not empty)

 Begin

Take a URL from the set of seed URLs;

Determine the IP address for the host name;

Download the Robot.txt file which carries downloading permissions and also specifies the files to be

excluded by the crawler;

Determine the protocol of underlying host like http, ftp, gopher etc.;

Based on the protocol of the host, download the document;

Identify the document format like doc, html, or pdf etc.;

Check whether the document has already been downloaded or not;

If the document is fresh one

Then

 Read it and extract the links or references to the other cites from that documents;

 Else

 Continue;

Convert the URL links into their absolute URL equivalents;

Add the URLs to set of seed URLs;

 End;

 End.

 The Google search engine employs a crawler consisting of five functional components

[3]. The components run in different processes listed below:

 URL server process: takes URLS from a disk file and distributes them to multiple

crawler processes.

 Crawler Processes: fetches data from web servers in parallel. The downloaded

documents are sent to Store server process.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 272

 Store server process: compresses the documents and stores them on a disk.

 Indexer process: takes the pages from the disk and extracts links from the HTML pages

and saves them in a different file called a link file.

 URL resolver process: reads the links from the file, resolves their IP addresses, and

saves the absolute URLs to disk file.

 Internet Archive [1,3] uses multiple crawler processes to crawl the web. Each crawler

process is single threaded which takes a list of seed URLs and fetches pages in parallel. The

links are extracted from the downloaded documents and placed into different data structures

depending upon the nature of their links i.e. internal and external links.

 Mercator [7, 15] is a scalable and extensible web crawler. It uses the following

functional components:

 URL frontier : for storing the URLs.

 DNS resolver: for resolving host names into IP addresses.

 Downloader component: downloads the documents using HTTP protocol.

 Link extractor: for extracting links from HTML documents.

 Content Seen Process: to check whether a URL has been encountered before.

Jungoo Cho [3] has suggested a general architecture of a parallel crawler. It consists of

multiple crawling processes. Each process is called as C-Proc. Each C-proc performs the tasks

of which a single processes crawler conducts. It downloads pages from the web, stores the

pages locally, extracts URLs from the downloaded pages and follows the links

A critical look at the available literature indicates that in the current scenario, the links

become available to the crawler only after a document has been downloaded. Hence this is a

bottleneck at the document level from parallel crawling point of view. None of the researchers

have looked into this aspect of the document as one of the factors towards delay in overlapped

crawling of related documents.

2.1 The Augmented Hypertext documents

If the links contained within a document become available to the crawler before an

instance of crawler starts downloading the documents itself, then downloading of its linked

documents can be carried out in parallel by other instances of the crawler. Therefore it was

proposed [6] that meta-information in the form Table Of Links (TOL) consisting of the links

contained in a document be provided and stored external to the document in the form of a file

with the same name as document but with different extension (say .TOL). This one time

extraction of TOL can be done at the time of creation of the document. The algorithm for the

extraction of TOL from a hypertext documents was also provided [6].

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 273

3. The Architecture of PARCAHYD, the Parallel Crawler

 The art of parallelism is to divide a task into subtasks which may execute, at least

partially independently, on multiple processing nodes [8]. This decomposition can be based on

the process, the data, or some combination.

 At the first stage, we have divided the document retrieval system into two parts: the

crawling system and the hypertext (augmented) documents system. The augmented hypertext

documents provide a separate TOL for each document to be downloaded by the crawling

process. Once the TOL of a document becomes available to the crawler, the linked documents,

housed on external sites, can be downloaded in parallel by the other instances of the crawler.

Moreover, the overlapped downloading of the main documents along with its linked documents

on the same site also becomes possible.

 At the second stage, the crawling system has been divided into two parts: Mapping

Process and Crawling Process. The Mapping process resolves IP addresses for a URL and

Crawling Process downloads and processes documents.

3.1 The Mapping Process

The mapping process, shown in Fig.1, consists of the following functional components:

o URL-IP Queue: It consists of a queue of unique seed URL-IP pairs. The IP part

may or may not be blank. It acts as an input to the Mapping Manager.

o Database: It contains a database of downloaded documents and their URL-IP

pairs. The structure of its table consists of the following fields:

 URL

 IP-Address

 Document –ID

 Length

 Document

o Resolved URL-Queue: It stores URLs which have been resolved for their IP

addresses and acts as an input to the Crawl Manager.

o URL Dispatcher: This component reads the database of URLs and fills the URL-

IP Queue. It may also get initiated by the user who provides a seed URL in the

beginning. It sends a signal: Something to Map to the Mapping manager. Its

algorithm is given below:

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 274

URL_Dispatcher ()

Begin

 Do Forever

 Begin

 While (URL-IP Queue not Full)

 Begin

 Read URL-IP pair from Database;

 Store it into URL-IP Queue;

 End;

 Signal (Something to Map);

 End;

 End;

o DNS Resolver: Generally the documents are known by the domain names of

their servers. The name of the server must be translated into an IP address before

the crawler can communicate with the server[15]. The internet offers a service

that translates domain names to corresponding IP addresses and the software that

does this job is called the Domain Name System (DNS). The DNS resolver uses

this service to resolve the DNS address for a URL and returns it back to the

Seed URL–

IP Queue

Database

Mapping

Manager

M1

M2

M3

Mn

Resolved

URL Queue

URLs

MAPCONF.T

XT

 Seed URLs

 Hungry

Something to

crawl

Resolved

URLs

 URL Set

 Signal

 Data

URL

Dispatcher

Initiate

Crawl

Manager

Fig. 1. The Mapping Manager

DNS

Resolver

Something to map

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 275

calling URL Mapper. It then updates the database for the resolved IP address of

URL.

o MapConf.Txt: It is a mapper configuration file which is used by the Mapping

Manager to load the initializing data. The contents of a sample file are tabulated

in Table 1.

Table 1 : Contents of MapConf.Txt

Name Value Description

DbUrl jdbc:oracle:thin:@myh

ost:1521:orcl

The database URL

DbName crawldb The database Name

DbPassword crawldb The database Password

DnsResloverClass dnsResloverClass The DNS RESOLVER CLASS

name. This component is a

pluggable component. Any third

party component can be used. The

name of class will be registered

here and using this name the URL

Mapper would instantiate this

component.

MaxInstances 5 The maximum no. of instances to

be created for URL Mapper

component

LocalInstance No The instances to be created on

same (local) or different machine

ListIP 135.100.2.98,

135.100.2.29,

135.100.2.28

If different then IP detail of those

machines

ArgumentUrl 10 The maximum no. of URLs in a

set to be given as arguments to an

instance

o Mapping Manager: This component reads MapConf.txt. After receiving the

signal Something to Map, it creates multiple worker threads called URL Mapper.

It extracts URL-IP pairs from the URL-IP Queue and assembles a set of such

pairs called URL-IP set. Each URL-Mapper is given a set for mapping. Its

algorithm is given below:

Mapping_manager ()

Begin

 Read MapConf.Txt;

 Create instances of URL Mapper M1 to Mn;

 Do Forever

 Begin

 Wait (Something to map);

 While (URL-IP Queue not empty)

 Begin

 Wait (hungry);

 Pickup seed URLs from URL-IP Queue;

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 276

 Assemble a set of URL-IPs;

 Assign the set to an idle URL_Mapper;

 End;

 End;

End.

o URL Mapper: This component gets a URL-IP set as input from the Mapping

Manager. It examines each URL-IP pair and if IP is blank then the URL is sent

to the DNS Resolver. After the URL has been resolved for its IP, it is stored in

the Resolved URL Queue. It sends a signal Something to crawl to the Crawl

Manager. Its algorithm is given below:

URL-Mapper ()

 Begin

 Do forever

 Begin

 While (URL-IP set is not empty)

 Begin

 Take a URL-IP pair from the set;

 If the IP is blank

 Then

 Begin

 Call DNS resolver to resolve URL for IP;

 Wait for the resolved URL;

 End;

 Store the Resolved URL in the Resolved URL Queue;

 Signal (something to crawl);

 End;

 signal (Hungry);

 End;

 End.

3.2 The Crawling Process

The crawling process as shown in Fig. 2 consists of the following functional

components:

o WorkConf.txt: It is a worker configuration file which is used by the Crawl Manager

to load the initializing data. The contents of a sample file are tabulated in Table 2.

o Crawl Manager: This component waits for the signal something to crawl. It reads

the WorkConf.txt and as per the specifications stored in the file, it creates multiple

worker threads named as Crawl Workers. Sets of resolved URLs from Resolved

URL Queue are taken and each worker is given a set. Its algorithm is given below:

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 277

Fig. 2 The Crawl Manager

Crawl_Manager ()

 Begin

 Read WorkConf.txt file;

 Create multiple instances of Crawl Workers: W1 to Wm;

 Do forever

 Begin

 Wait (something to crawl);

 While (Not end of Resolved URL Queue)

 Begin

 Wait (request processed);

Database

Update

DataBase Crawl

Manager

W1

W2

W3

Wm

Resolved

URL

Queue

WWW

ROBOTS.TXT,

TOL File and

Documents

 WKRCONF.TXT

Something to

crawl

Request

Processed

Resolved URL

Set

 Signal

 Data

Document

and URL

Buffer

Bad URLs

Mapping

Manager

Something To

Update

TOL/ Document-

URL / Bad URL

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 278

 Pickup URLs from Resolved URL Queue;

Assemble and assign a set of URLs to an idle crawl worker;

End;

 End;

 End.

Table 2 ; Contents of WorkConf.txt

Name Value Description

DbUrl jdbc:oracle:thin:@myhost:152

1:orcl

The database URL

DbName crawldb

The database Name

DbPassword crawldb

The database Password

DownloaderClass downLoaderClass

The DOWNLOADER CLASS name.

This component is a pluggable

component. Any third party component

can be used. The name of class will be

registered here and using this name the

Worker threads would instantiate this

component

MaxInstances 10 The maximum no. of instances to be

created for URL Mapper component

LocalInstance YES The instances to be created on same

(local) or different machine

ListIP localhost If different then IP detail of those

machines

ArgumentUrl 5 The maximum no. of URLs to be given as

arguments to an instance

o Crawl Worker: It maintains two queues: MainQ and LocalQ. The set of URLs

received from crawl Manager is stored in MainQ(see Fig. 3). It down loads the

documents as per the algorithm given below:

Crawl_Worker ()

 Begin

 Store the URL set in MainQ;

 While (MainQ is not empty)

 Begin

 Pickup a URL;

 Identify its protocol;

 Download robot.txt;

 If unable to download

 Begin

 Set IP part as blank;

 Store URL in Document and URL Buffer;

 Signal (something to update);

 End;

 Else

 Begin

 Read robot.txt;

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 279

Crawl Manager

Set of URLs Request Processed

MainQ

Get

Robot.txt &

TOL

Bad URLs www

Some thing to update

URL

Segregate

Links

External Links

Internal

Links

TOL

UURL

LocalQ

Download

Document

Something to download

Document

Document
Document

URL Buffer

Some thing to update

Update Database

 Download TOL;

 Segregate the internal and external Links;

Add the URL and internal Links to LocalQ;

 Store the External Links in the

 Document and URL buffer;

 Signal (something to update);

 End;

 While (LocalQ is not empty)

 Begin

 Pickup a URLfrom LocalQ;

 Download document;

 Store the document and its URL in

 Document and URL

Buffer;

 Signal (something to Update);

 End;

 Signal (request processed);

 End;

End.

Fig. 3 Crawl Worker

Store

URL set

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 280

o Document and URL Buffer: It is basically a buffer between the crawl workers

and the Update Database Process It consists of following three Queues:

 External Links queue (ExternLQ): This queue stores the external links.

 Document-URL queue (DocURLQ): This queue stores the documents

along with there URLs.

 Bad-URL queue (BadURLQ): This queue stores all the resolved Bad-

URLs.

o Update Database: This process waits for the signal something to update and on

receiving the same, updates the database with the contents of the Document and

URL Buffer. In order to use storage efficiently, each document is compressed

using zlib [9] algorithm. The algorithm of Update Database Process is given

below:

update database()

 Begin

Set MaxSize to the maximum size of a batch;

Do forever

 Begin

Wait (something to update);

 No-of-records = 0;

 While (ExternLQ is not empty & No-of-records < MaxSize)

 Begin

 Pickup an element from ExternLQ;

 Add to the batch of records to be updated;

 No-of-records= No-of-records+1;

 End;

 Update batch to database;

 If (Updation is unsuccessful)

 Then write batch to ExternLQ;

No-of-records = 0;

 While (DocURLQ is not empty & No-of-records < MaxSize)

 Begin

 Pickup an element from DocURLQ;

Compress the document;

 Add to the batch of records to be updated;

 No-of-records= No-of-records+1;

 End;

 Update batch to database;

 If (Updation is unsuccessful)

 Then write batch to DocURLQ;

No-of-records = 0;

 While (BadURLQ is not empty & No-of-records < MaxSize)

 Begin

 Pickup an element from BadURLQ;

 Add to the batch of records to be updated;

 No-of-records= No-of-records+1;

 End;

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 281

 Update batch to database;

 If (Updation is unsuccessful)

 Then write batch to BadURLQ;

 End;

End.

It may be noted here that each crawl worker independently downloads documents for the

URL set received from Crawl Manager. Since all workers use different seed URLs, we hope

that there will be minimum overlap of downloaded pages. Thus, the architecture requires no

coordination overheads among the workers rendering it to be highly scalable system.

The PARCHAHYD has been used as a tool to test the following schemes / mechanisms for

parallel crawling of documents from the web.

 A bottleneck towards parallel download of a document and its related documents was

identified in the sense that in the current scenario, the links become available to the

crawler only after the document has been downloaded. This bottleneck prohibits the

document from parallel crawling of the related document on the same site or at remote

site. None of the researchers have looked into this aspect of the document as one of the

factors towards delay in overlapped crawling of related documents.

 A mechanism was devised to remove the bottleneck. The crawler is provided with the

links to related documents in the form of a table of links (TOL) [6] even before the main

document itself is downloaded. The TOL containing the meta-information is stored in

the form of a separate file with the same name as of the document but with TOL as the

extension. This eager strategy enables parallel crawling of the main document and its

related documents. The experiments done at the Intranet of A. B. Indian Institute of

Information Technology and Management, Gwalior, establishes the purpose that

PARCAHYD takes 15.1% less time than an identical crawler without TOL. In fact, any

other parallel crawler can also make use of this mechanism for eager crawling of related

documents.

 Due to mirroring of the documents or different URLs pointing to the same document

[18], a crawler may download several copies of the document. A novel scheme to

reduce the duplication of the document has been devised [10] wherein a 64 bit document

fingerprints (DF) for a static document is generated. The DF guaranteed that if two

fingerprints were different then the corresponding two documents were definitely

different. It has been proved that the probability of matching the signature of two

different documents is (1/256)
16

which is very small. The scheme was tested on 16544

files and the results have been reported. The scheme drastically reduces the redundancy

at the search engine side.

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 282

 The web is changing at very high rate. In dynamic documents, the contents contain

volatile information only at particular places. Such documents put tremendous pressure

on network traffic rendering the crawling process helplessly slow and inefficient. A

novel scheme for the management of the volatile information was devised [11]. The

 Tag of HTML document were used to specify pieces of text as volatile

information. Similarly, the user defined <Vol#> tags were chosen in the case of XML

document for exactly the same purpose.

The tags and the information were stored separately in a file having same name but with .TVI

extension. The table of variable information (TVI) file is definitely substantially smaller in size

as compared to the whole document. The crawler needs to bring the .TVI file only to maintain

fresh information at the search engine site. The .TVI file is used to update the main document

either in the transaction processing manner or during the parsing of the document while

displaying it on the screen. The scheme was tested at the intranet of YMCA Institute of Engg.

Faridabad. Storing information in a data base is a computationally expensive exercise especially

when a document contains only a small fraction of volatile information. Downloading of

needless data has been substantially reduced by bringing only the .TVI file instead of the whole

document itself. This scheme can also be used by any other crawler to reduce the network traffic

and needless database operations as well. The documents, which use above scheme of storage

were named as augmented hypertext documents.

4. Conclusions

Parallelization of crawling system is very vital from the point of view of downloading

documents in a reasonable amount of time. The work done reported herein focuses on providing

parallelization at three levels: the document, the mapper, and the crawl worker level. The

bottleneck at the document level has been removed. The efficacy of DF (Document Fingerprint)

algorithm and the efficiency of volatile information has been tested and verified. PARCAHYD

is designed to be scalable parallel crawler. This paper has enumerated the major components of

the crawler and their algorithmic detail has been provided. JAVA 2 has been chosen to make it

platform independent. Besides the PARCHAHYD, it has been found that the schemes to

manage volatile information and to reduce redundancy at storage level can be employed by any

crawler.

References

[1] Mike Burner, “Crawling towards Eternity: Building an archive of the World Wide Web”, Web Techniques

Magazine, 2(5), May 1997.

[2] Berners-Lee and Daniel Connolly, “Hypertext Markup Language. Internetworking draft”, Published on the

WWW at http://www.w3.org/hypertext/WWW/MarkUp/HTML.html, 13 Jul 1993.

[3] Junghoo Cho and Hector Garcia-Molina, “The evolution of the Web and implications for an incremental

crawler”, Proceedings of the Twenty-sixth International Conference on Very Large Databases, 2000.

Available at http://www-diglib.stanford.edu/cgi-bin/get/SIDL-WP-1999-0129.

[4] Allen Heydon and Mark Najork, “Mercator: A Scalable, Extensible Web Crawler”, In Journal of WORLD

WIDE WEB , Volume 2, Number 4, 219-229, DOI: 10.1023/A:1019213109274.

http://www.w3.org/hypertext/WWW/MarkUp/HTML.html

International Journal of Advancements in Technology http://ijict.org/ ISSN 0976-4860

Vol 1, No 2 (October 2010) ©IJoAT 283

[5] Junghoo Cho, “Parallel Crawlers”, In proceedings of WWW2002, Honolulu, hawaii, USA, May 7-11, 2002.

ACM 1-58113-449-5/02/005.

[6] A.K.Sharma, J. P. Gupta, D. P. Agarwal, “Augment Hypertext Documents suitable for parallel crawlers”, Proc.

of WITSA-2003, a National workshop on Information Technology Services and Applications, Feb’2003, New

Delhi.

[7] http://research.compaq.com/SRC/mercator/papers/www/paper.html

[8] Jonathan Vincent, Graham King, Mark Udall, “General Principles of Parallelism in Search Optimization

Heuristics”,

[9] RFC 1950 (zlib] ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html.

[10] A.K. Sharma, J. P. Gupta, D. P. Agarwal, “An alternative scheme for generating fingerprints for static

documents”, Journal of CSI, Vol. 35 No.1, January-March 2005.

[11] A.K.Sharma, J. P. Gupta, D. P. Agarwal, “A Novel Approach towards Efficient Management of Volatile

Information”, Journal of CSI, Vol. 33, No. 3, Mumbai, India, Sept’ 2003.

[12] Robert C. Miller and Krishna Bharat, “SPHINX: a framework for creating personal, site-specificWeb-

crawlers”, http://www7.scu.edu.au/programme/fullpapers/1875/com1875.htm

[13] Vladislav Shkapenyuk and Torsten Suel, “Design and Implementation of a High performance Distributed Web

Crawler”, Technical Report, Department of Computer and Information Science, Polytechnic University,

Brooklyn, July 2001.

[14] Brian Pinkerton, “Finding what people want: Experiences with the web crawler.” In Proceedings of 1st

International World Wide Web Conference 1994.

[15] Sergey Brin and Lawrence Page, “The anatomy of large scale hyper textual web search engine”, Proceedings

of 7
th

 International World Wide Web Conference, volume 30, Computer Networks and ISDN Systems, pp 107-

117, April 1998.

[16] Junghoo Cho and Hector Garcia-Molina, “Incremental crawler and evolution of web”, Technical Report,

Department of Computer Science, Stanford University.

[17] Alexandros Ntoulas, Junghoo Cho, Christopher Olston "What's New on the Web? The Evolution of the Web

from a Search Engine Perspective." In Proceedings of the World-Wide Web Conference (WWW), May 2004.

[18] C. Dyreson, H.-L. Lin, Y. Wang, “Managing Versions of Web Documents in a Transaction-time Web Server”

In Proceedings of the World-Wide Web Conference (WWW), May 2004.

http://research.compaq.com/SRC/mercator/papers/www/paper.html
ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html
http://www7.scu.edu.au/programme/fullpapers/1875/com1875.htm

