
Huang et al., J Geol Geosci 2013, 2:2
DOI: 10.4172/2329-6755.1000115

Open AccessResearch Article

Volume 2 • Issue 2 • 1000115J Geol Geosci
ISSN: 2329-6755 JGG, an open access journal

Parallel Buffer Generation Algorithm for GIS
Xiaomeng Huang1*, Tian Pan2, Huabin Ruan1, Haohuan Fu1 and Guangwen Yang1

1Ministry of Education Key Laboratory for Earth System Modeling, and Center for Earth System Science, Tsinghua University, Beijing, 100084, China
2Department of Computer Science, Yale University, 51 Prospect Street, New Haven, CT 06511, USA

Abstract
A buffer generation algorithm that identifies areas of a given distance surrounding geographic features is one of

the most frequently used functions in GIS. With the increase of scale and precision in geographic data, the efficiency
of the buffer generation algorithm has been of great concern. This study presents a novel integrated solution consisting
of a points-based, load-balanced method and a binary union tree method to accelerate the buffer generation. By
comparing several parallel candidates, the experimental results show that our new parallel algorithm achieves greater
performance and scalability, and its speed increases by 21 times with 32 processes.

*Corresponding author: Xiaomeng Huang, Ministry of Education Key
Laboratory for Earth System Modeling, and Center for Earth System Science,
Tsinghua University, Beijing, 100084, China; Tel: +86-10-62798365 E-mail:
hxm@tsinghua.edu.cn

Received February 21, 2013; Accepted April 27, 2013; Published May 23, 2013

Citation: Huang X, Pan T, Ruan H, Fu H, Yang G (2013) Parallel Buffer Generation
Algorithm for GIS. J Geol Geosci 2: 115. doi: 10.4172/2329-6755.1000115

Copyright: © 2013 Huang X, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: GIS; Buffer generation; Parallel computing

Introduction
Over the past two decades, GIS has become an important

technology, deployed across a range of application areas to investigate
and understand our world. With the growing amount of data, the
processing time required to perform GIS analysis has increased.
Although computational performance has been unhindered thus far,
the large data volumes and the growing sophistication of analysis
procedures suggest that performance will increasingly become a
serious concern in GIS [1,2]. The traditional methods of performing
GIS processing on desktop computers are quite insufficient in terms of
performance. Parallel computing offers a potential solution to solve the
problem. Massive numbers of parallel computers provide a huge amount
of memory and computation power to accelerate GIS simulation and
analysis. However, traditional GIS algorithms may not run effectively
in a parallel environment, so the utilization of parallel technology is
not entirely straightforward. Processing algorithms must be reworked
to allow for this collaboration between computers. Buffer analysis is the
core function of spatial analysis in GIS; thus, the method for generating
buffer zones effectively plays a pivotal role in the software development
of GIS. Buffer analysis is used to identify areas with a given distance
surrounding geographic features. In other words, polygons are created
at a certain distance around the input features and are stored in the
database as geographic layers, e.g., rivers, roads, Contour lines, etc.
Irrespective of the type of input geographic features, buffer polygons
can delineate geographic spatial proximity. As one of the fundamental
functions of GIS, buffer polygons have significant applications for
environmental and ecological protection, decision support, automatic
procession of structural geo-data, etc [3]. Buffer generation itself is
computing-intensive and time-consuming. Large-scale geographic
data have further curbed the speed of buffer generation. For these
reasons, real-time reactions of the trends in modern GIS are not able to
be met. This paper focuses on the current strategies used by scientists
and engineers for the development of this crucial algorithm for
parallel computing and GIS. An implementation case study involving
a parallel buffer generation algorithm is included and is based around
a parallelization GIS problem, which illustrates some of the principles
involved in [4]. This paper proposed a number of methods, including
a points-based load-balance and a binary union tree, to implement
parallel optimization. The experimental results show that our parallel
algorithm has good performance and scalability. The algorithms
speed increases by 21-fold with 32 processes, and its efficiency is well-
maintained with the increase in process number. The rest of the paper is
organized as follows. The next para describes the work related to buffer
generation for GIS, followed by introduction of the detailed algorithm

of our parallel buffer generation and the experimental results and
analysis, and conclusions are provided at the end.

Related Work
In general, the sequential buffer generation algorithm can fall into

two categories: raster-based algorithms and vector-based algorithms
[5]. The main difference between the two categories is that the former
thickens entities in the raster and records a new border, while the latter
sets up double parallel lines and circular arcs around the entities and
then smoothes their borders. Wang et al. [6] analyzed the existing
buffer generation algorithms systematically and re-viewed their
characteristics, performance, and applicability, among other aspects.

Traditional raster-based algorithms are relatively easier to
understand and to implement than vector-based algorithms. The
earliest foundation of raster-based algorithms is laid by primitives
of dilation and erosion in mathematical morphology, which can
explain how pixels expand or contract the raster shape. Raster based
algorithms dilate raster points, lines, areas, etc., to a target cell in the
distance and then identify their borders to compute the buffer zones.
The precision of buffer rendering relies on the resolution of the raster,
which is measured by the size of the raster. However, high resolution
raster exhaustively consumes memory resources. A trade-off between
speed and resolution must be made. On the contrary, vector-based
algorithms can handle the precision problem rather well. Nevertheless,
they are more complex for dealing with curve intersection, arc-segment
cutting and recombination, inclusion relation judgment, etc. A vector-
based algorithm consists of three main steps: simple parallel lines are
drawn for each line-segment, cusp-smoothing correction is performed,
and finally, self-intersection is tackled. A large number of strategies have
been proposed to optimize the second and the third procedures. For
example, Elber et al. [7] compared offset curve approximation methods.
Er et al. [8] defined and implemented a corridor rendering algorithm
with variable leg buffer distances. A corridor is defined by a path and
two distances for each leg to yield a buffered zone around the path.

Journal of Geology & GeosciencesJo
ur

na
l o

f G
eology & Geophysics

ISSN: 2381-8719

Citation: Huang X, Pan T, Ruan H, Fu H, Yang G (2013) Parallel Buffer Generation Algorithm for GIS. J Geol Geosci 2: 115. doi: 10.4172/2329-
6755.1000115

Page 2 of 5

Volume 2 • Issue 2 • 1000115J Geol Geosci
ISSN: 2329-6755 JGG, an open access journal

Wolff et al. [9] created an algorithm to calculate curved labels and to
run in O(n2) time, where n is the number of points of a polyline. Ren
et al. [10] took advantage of the Douglas-Peucker algorithm to remove
non-characteristic points on curves and to extract characteristic points.
Jiechen et al. [11] designed a novel method of buffer generation based
on vector boundary tracing. This method could avoid complex vector
calculations while retaining the high precision of existing vector-based
algorithms. The emergence of parallel computing further improved
the speed of buffer computation. Sorokine [12] introduced a parallel
high-performance visualization technique in GRASS GIS. Darling
et al. [13] reported the performance of a prototype parallel data
partitioning algorithm for the input of vector-topological data into
parallel processes. Huang et al. [14] proposed and designed a specific
parallel IDW interpolation algorithm, incorporating single processes,
multiple data and master/slave frameworks. Yao et al. [15] presented a
parallel algorithm for buffer analysis, featuring a task-assignment based
on the map layer and geographic spatial area. Their algorithm consists
of four parts: task division, communication analysis, task union, and
task assignment. They adopted a client/server architecture in which the
servers generate buffer zones and the client collects and combines the
results from these servers. Their experimental results showed that this
parallel algorithm achieved speed increases of 1.8x, 2.7x, and 3x with
2, 3, and 5 nodes, respectively. Pang et al. [16] analyzed the sequential
buffer generation algorithm and advanced a parallel mechanism by
establishing a master/slave cluster. They distributed N entities to M
computing nodes, each of which could process N/M entities. Finally, the
master simultaneously combined the results. A case study showed that
the authors achieved a greater than 1.5x performance increase with 10
nodes. Obviously, there is still great potential for improving efficiency
in existing solutions. In fact, sequential buffer generation has evolved
to a certain degree of maturity. Tools such as GRASS GIS, Quantun
GIS, etc., have matured technologies in sequential buffer generation.
Additionally, for processing large-scale geographic data, GIS is usually
flooded by the number of features in databases, instead of the number of
entities in one feature. Considering the granularity of the input, parallel
solutions without the need for re-implementing the existing sequential
algorithms have been considered. However, there is no need to
reinvent the wheel. In the following sections, we will mainly discuss the
optimization of vector based buffer analysis algorithms because gDOS-
GIS is based on vector-based geographic data structures. gDOS-GIS is
a cluster-based GIS service developed by the Institute of Geographic
Sciences and Natural Resources Research (IGSNRR) of the Chinese
Academy of Sciences (CAS). We believe some parallel principles in our
vector-specific algorithm can also be applied to raster-based algorithms.

Design of the Parallel Buffer Generation Algorithm
Buffer generation and union operations

To generate the sequential buffer algorithm in gDOS-GIS, the
pseudo code is shown in table 1. Essentially, there are two operations
required for parallel buffer analysis. The first operation is buffer
generation stage, where the raw geographic data are computed to
generate separate buffer zones. The second operation is buffer union

stage, where the separate buffer zones are combined, with refinements,
to produce a final result. To accelerate the buffer generation algorithm,
we mainly aimed to optimize these two operations. We assume the total
consumption time for the serial program to be Ts(n), where n is the
number of features. The individual parts of buffer generation and union
are Tbuffer (n) and Tunion (n), respectively, yielding the following equation:

Ts(n) = Tbuffer(n) + Tunion(n) (1)

To evaluate the relations between each operation in buffer analysis,
we conducted eleven experiments with different numbers of rivers (i.e.,
features or layers) and points from a random set of geographic data
consisting of 208,637 features provided by IGSNRR. The rivers are
stored in the database as features, and a river feature may contain many
points. Table 2 shows how execution time is related to the number of
features and points. Direct manipulation of the points is not permitted
in the database. To make the results more comprehensible, figure 1 and
2 were created. Figure 1 shows the relationship of the execution time

1. fetch data from the database
2. generate buffer zones as features // buffer generation
3. for each feature // buffer union
4. merge current feature with previous features
5. end for each
6. store the result feature into the database

Table 1: The pseudo code of the buffer generation algorithm.

ID Number
of Features

Number
of Points

Tbuffer
(Seconds)

Tunion
(Seconds)

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

11,840
30,128
52,611
72,078
88,985
103,797
112,963
126,439
144,375
169,131
187,788

196,659
393,351
590,004
786,656
983,305
1,181,160
1,377,917
1,574,599
1,771,258
1,968,152
2,164,802

7.96
15.25
21.94
29.16
36.40
43.98
55.64
63.72
72.27
77.92
84.25

11.79
32.82
58.12
85.94
109.04
124.64
156.16
179.42
207.35
240.16
273.93

Table 2: The execution time for buffer generation and union in eleven experiments.

300

250

200

150

100

50

0

Buffer

Union

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10E11
Experiment

Ti
m

e(
S

)

Figure 1: The execution time for buffer generation and union in different
experiments.

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10E11
Experiment

Buffer

Union

Ti
m

e
P

er
ce

nt
(%

)

Figure 2: The percentage of time for buffer generation and union in different
experiments.

Citation: Huang X, Pan T, Ruan H, Fu H, Yang G (2013) Parallel Buffer Generation Algorithm for GIS. J Geol Geosci 2: 115. doi: 10.4172/2329-
6755.1000115

Page 3 of 5

Volume 2 • Issue 2 • 1000115J Geol Geosci
ISSN: 2329-6755 JGG, an open access journal

to the number of points in the different experiments. Figure 2 displays
the distribution of time, as a percentage, for the union and buffer
generation parts in the different experiments. From figure 1 and 2, we
can see that in most of the experiments, the union operation takes up
75% of the total execution time, while buffer generation only takes up
25% of the total execution time. A linear relationship exists between the
execution time and the number of points. In the following sections, we
will describe the optimization methods for buffer operation and union
operation.

Data decomposition for individual buffer generation

In a serial program, if we divide a dataset into small data chunks,
in which the number of chunks is p, perform a buffer operation on
each chunk, and finally perform a union operation on their results. The
equation 1 becomes:

Ts (n,p) = p. Tbuffer(n/p, p) + Tunion(n, p) (2)

These data subsets do not need to communicate with one another.
Therefore, the buffer operation could be ideally computed using a
parallel data method. Assuming that there are p processes and the
execution time for the parallel program is Tp (n), it is easy to achieve
the following:

Tp (n, p) = T buffer (n/p, p) + T union(n, p) (3)

Next, we must define how to partition the data and assign tasks
in parallel. Because the GIS data are always stored in databases as
features and are processed by features, it is natural to allocate different
layers to different computing units. The computing units do not need
to communicate when processing different features. However, as the
entities included in each feature are uncertain, we cannot confirm that
every task allocated to every computing unit can finish synchronously.
Thus, it is hard to keep a good load balance using this feature-based
parallel method; it is too coarse-grained. The area-based parallel method
[17] is another choice. This method divides the area covered by all of the
features in the database among the computing units. Each computing
unit is responsible for all of the records that exist in that geographical
region. However, for most existing GIS systems, proper map size
evaluation and map division are too complicated. Thus, this area-based
method is too difficult to implement, as the basic data structure usually
does not support the method. Moreover, a feature may appear in several
sub-maps repeatedly, which will lead to redundant computing. Based
on the above analysis, we designed a points-based parallel method to
achieve fine-grained parallelization. As we have discussed previously,
the execution time of individual buffer operations is defined by the
number of points. To achieve the maximum performance for buffer
operation, the best way is to allocate all computing tasks evenly. As
there were no direct data that showed the number of points included
in all of the features, we had to iterate all of the data in the database to
map the number of points in each feature to compute the total number
of points. Furthermore, we needed to divide all of the features into
smaller groups to align the number of points in each group to be closer
to the average span. This process adds extra overhead to the points-
based parallel method, whose execution time is acceptable as discussed
in the following section 4. Its pseudo codes based on MPI (Message
Passing Interface) are shown in table 3. The most important feature of
this algorithm is the ability to compute a specific span to ensure that
each participating computing unit is responsible for approximately the
same number of points.

Optimization of union operation

In this section, we will discuss the optimization method for the

union operation. The classical parallel method utilizes a split-map-
reduce scheme as shown in figure 3. The master process splits and
assigns tasks to slave processes. Each slave process executes buffer
operations and union operations individually. Finally, the master
process gathers results from slaves and combines them into one final
feature. This classical method has been deployed in current gDOS-GIS
systems. An obvious bottleneck of this method is the reducing phase.
In the reducing

phase, the master process has to collect each union result from
the slave process and execute the final union operation. Because the
data waiting for combination are large and are not parallel, the final
union step is very slow. To address this problem, we designed a binary
union tree for parallel buffer generation and the union algorithm. This
method is shown in figure 4. There are no differences among the master
processes and the slave processes. Every process follows the same steps:
retrieval part of a portion of the geographic data and execution of the

1. initialize MPI
2. if (master process){
3. map the number of points in each feature to an array
4. get the number of total points
5. calculate the average span of the number of points
6. iterate the array and compute the specific span for each node
7. broadcast the specific span information
8. } else {
10. receive the specific span information
11. generate the buffer zone for specific span
12. }
13. finalize MPI

Table 3: The pseudo code of parallel buffer operation based on MPI.

Master P0

Slave P1

Buffer

Union Union

Union

Output

Union Union

Buffer Buffer Buffer

Slave P2 Slave P3 Slave PM

Preprocess: Load Balance
Split

Map

Reduce
Master P0

Figure 3: The split-map-reduce method.

Preprocess: Load Balance

Buffer Buffer Buffer Buffer BufferBuffer

P0 P1 P2 P3 P4 P5

Map

Reduce

Union

Union

Union

output

Union Union

Union Union

Union Union Union

Figure 4: The binary union tree method.

Citation: Huang X, Pan T, Ruan H, Fu H, Yang G (2013) Parallel Buffer Generation Algorithm for GIS. J Geol Geosci 2: 115. doi: 10.4172/2329-
6755.1000115

Page 4 of 5

Volume 2 • Issue 2 • 1000115J Geol Geosci
ISSN: 2329-6755 JGG, an open access journal

buffer operation and the union operation. Subsequently, one combined
buffer feature is pulled by another process and then merged with the
counterpart buffer feature in that process. Every pair of buffer zones
is combined until only one bu_er zone exists. The union process is
entirely parallel. This binary union tree method can decrease the time
complexity of union operations from O(N) to O(logN).

Experiments and Analysis
Based on the analyses presented above, our points-based load

balance and binary union tree strategies are predicted to be much
better than the existing work. The following experiments and results are
presented to illustrate the advantage. The results display the uniqueness
of our algorithm compared to the different candidates. All of the
programs run on a two-node cluster. It is noteworthy that the nodes
do not directly send data with MPI; instead, the nodes save the data
in the local database, send IP addresses, and fetch data from remote
databases. In fact, data Structures (or memory models) in geodata do
not fully support parallel computing, and MPI is unable to serialize
and send data represented as points in a geographic object in C++. For
comparison, we implemented three algorithms in C++ to evaluate the
binary union tree and points-based load balance. The first algorithm,
named Algorithm1, highlights a features-based load balance and a one-
by-one union operation conducted by the master. Every slave inputs
the same number of features, conducts buffer generation (including a
buffer function and a union function), and saves its result into the local
database. Finally, the master process retrieves data from the databases
in all slaves and combines them one at a time. The second algorithm,
named Algorithm2, differs from the previous algorithm by replacing
the one-by-one union with the binary union tree. Every slave inputs
the same number of features, conducts buffer generation (including
a buffer function and a union function), and saves its result into the
local database. The features in every two processes are combined until
there is only one output, as shown in figure 4. The third algorithm,
named Algorithm3, is our integrated design. It replaces the features-
based load balance mentioned above with the points-based load
balance. The remaining part is the same as Algorithm2. To prove that
parallel buffer generation, highlighting a points-based load balance and
binary union tree, has a better performance and a higher efficiency, we
conducted experiments in which three algorithms were run on 1, 2, 4,
8, 16, or 32 processes. The data set contains over 200,000 features. The
experimental results are shown in figure 5, 6 and 7. These figures show
the execution time, speedup and efficiency of the three algorithms with
the various numbers of processes. The execution time is the actual time

for executing the GIS program. Speedup is defined as the ratio of Ts, the
execution time for the single-process algorithm, to Tp, the execution
time for the parallel algorithm: S=Ts / Tp

Efficiency is defined as the ratio of speedup to P, the number of
processes executing the algorithm: E =S/P The closer the efficiency is to
1, the greater the efficiency of the parallel algorithm. For Algorithm1,
the single-process algorithm spends 381.9 s in buffer generation. While
utilizing 32 processes, the parallel algorithm reduces the execution
time to 47.52 s. The maximum speedup is 8.04. However, as the
number of processes increases, the efficiency decreases to 0.25 with
32 processes. The low efficiency is largely caused by union operation
in the master process. As we have mentioned before, when the master
process combines the generated buffer zones, other processes are
idle. For Algorithm2, the speedup reaches 12.07 with 32 processes.
Algorithm3 surpasses the other two algorithms in both speedup and
efficiency. Algorithm3 decreases the execution time from 395.51 s
with the original single process to 18.47 s with 32 processes, arriving
at a speedup of 21.41. Similar to Algorithm1 and Algorithm2, the
overall execution time of Algorithm3 also decreases substantially. This
result confirms that the overall computation time of Algorithm3 is at
a minimum when the buffers are combined by every two processes.
Figure 5 also reveals that when the number of processes is low,
Algorithm 3 is not the optimal method, as its load balance goes through
an additional iteration of each source feature. In general, Algorithm
3 was the most outstanding choice when the number of processes is
greater than 4. Figure 7 reveals the trends of efficiency among the three
algorithms. Efficiency is an important criterion for developing a parallel

450

400

350

300

250

200

150

100

50

0
1 2 4 8 16 32

Number of Processes

Algorithm1

Algorithm2

Algorithm3E
xe

cu
tio

n
Ti

m
e(

S
)

Figure 5: The execution time of different algorithms.

25

20

15

10

5

0
1 2 4 8 16 32

Number of Processes

S
pe

ed
up

Algorithm1

Algorithm2

Algorithm3

Figure 6: The speedup of different algorithms.

1.2

1

0.8

0.6

0.4

0.2

0
1 2 4 8 16 32

Algorithm1

Algorithm2

Algorithm3

Number of Processes

E
ff

ci
en

cy

Figure 7: The efficiency of different algorithms.

Citation: Huang X, Pan T, Ruan H, Fu H, Yang G (2013) Parallel Buffer Generation Algorithm for GIS. J Geol Geosci 2: 115. doi: 10.4172/2329-
6755.1000115

Page 5 of 5

Volume 2 • Issue 2 • 1000115J Geol Geosci
ISSN: 2329-6755 JGG, an open access journal

algorithm. As speedup is proportional to efficiency, for a given number
of processes, a higher efficiency correlates with greater speedup. When
developing a parallel algorithm, the algorithm is made to be as efficient
as possible when executed by multiple processes. Unexpectedly, when
the number of processes increases from 16 to 32, the efficiency increases
from 0.24 to 0.25, 0.27 to 0.38, and, amazingly, 0.34 to 0.67. This result
is mainly due to our special experimental environment. The cluster has
two nodes, each consisting of 16 cores. Within each node, 16 processes
share the same database, as well as other resources. The competition
for computing and storage resources results in additional overhead.
When the number of nodes (and databases) grows, the situation is well
relieved. In practice, this buffer algorithm and the gDOS-GIS aim for a
large cluster of commodity machines. The algorithm would most likely
fit into the commodity cluster very well, with each node having its own
database-serving processes, because the competition for the database
would be largely eased. It is reasonable to predict that the efficiency
would be better if Algorithm3 runs on the commodity cluster. In
summary, Algorithm3 had the most satisfying performance and could
successfully meet our needs for speedup and efficiency.

Conclusion
In this study, we designed a novel parallel solution consisting of a

points-based load-balanced method and a binary union tree method to
accelerate buffer generation. By comparing several parallel candidates,
the experimental results show that the new parallel algorithm achieves
much better performance and scalability. The speedup of the algorithm
reached 21-fold with 32 processes.

References

1. Healey RG, Minetar MJ, Dowers S (1997) Parallel Processing Algorithms for
GIS. Taylor & Francis Inc, Bristol, PA, USA.

2. Kerr N (2009) Alternative approaches to parallel GIS processing. Master’s
thesis, Arizona State University.

3. Wu H (1997) Problem of buffer zone construction in GIS. Journal of Wuhan
Technical University of Surveying and Mapping 22: 358-365.

4. Dowers S, Sloan T, Gittings B, Healey R, Waugh T (1992) Exploring GIS
performance issues. In: 5th International Symposium on Spatial Data Handling,
Charleston.

5. Longley PA, Goodchild MF, Maguire DJ, Rhind DW (2005) Geographic
information systems and science. Wiley.

6. Wang J, Chen Y, Cui C (2008) Review of buffer generation algorithm studies.
In: Proceedings of the 2008 Second International Symposium on Intelligent
Information Technology Application IITA, IEEE Computer Society, Washington,
DC, USA.

7. Elber G, Lee IK, Kim MS (1997) Comparing offset curve approximation
methods. IEEE Comput Graph Appl 17: 62-71.

8. Er E, Kilinc I, Gezici G, Baykal B (2009) A buffer zone computation algorithm
for corridor rendering in GIS. 24th International Symposium on Computer and
Information Sciences, Guzelyurt.

9. Wolff A, Knipping L, Kreveld MV, Strijk T, Agarwal P (2000) A Simple and
Efficient Algorithm for High-Quality Line Labeling. GeoComputation 11: 147-159.

10. Ren Y, Yang C, Yu Z, Wang P (2004) A way to speed up buffer generalization
by douglas-peucker algorithm. IEEE International of Geoscience and Remote
Sensing Symposium 5: 2916-2919.

11. Jiechen W, Qing Y, Yanming C (2009) A novel method of buffer generation
based on vector boundary tracing. Proceedings of the 2009 International 14
Manuscript Forum on Information Technology and Applications, Washington,
DC, USA.

12. Sorokine A (2007) Implementation of a parallel high-performance visualization
technique in GRASS GIS. Comput Geosci 33: 685-695.

13. Darling G, Sloan TM, Mulholland C (2000) The Input, Preparation, and
Distribution of Data for Parallel GIS Operations. Proceedings from the 6th
International Euro-Par Conference on Parallel Processing, London, UK.

14. Huang F, Liu D, Tan X, Wang J, Chen Y, He B (2011) Explorations of the
implementation of a parallel IDW interpolation algorithm in a Linux cluster-
based parallel GIS. Comput Geosci 37: 426-434.

15. Yao Y, Gao J, Meng L, Deng S (2007) Parallel computing of buffer analysis
based on grid computing. Geospatial Information 5: 1672-4623.

16. Pang L, Li G, Yan Y, Ma Y (2009) Research on parallel buffer analysis with
grided based HPC technology. IGARSS 4: 200-203.

17. Patel J, Yu J, Kabra N, Tufte K, Nag B, et al. (1997) Building a scaleable geo-
spatial dbms: technology, implementation, and evaluation. SIGMOD 26: 336-347.

http://www.amazon.com/Parallel-Processing-Algorithms-Richard-Healey/dp/0748405097
http://www.amazon.com/Parallel-Processing-Algorithms-Richard-Healey/dp/0748405097
http://www.nathankerr.com/projects/parallel-gis-processing/alternative_approaches_to_parallel_gis_processing.html
http://www.nathankerr.com/projects/parallel-gis-processing/alternative_approaches_to_parallel_gis_processing.html
http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHCH704.013.htm
http://en.cnki.com.cn/Article_en/CJFDTOTAL-WHCH704.013.htm
http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP001475.html
http://www.wiley.com/WileyCDA/WileyTitle/productCd-EHEP001475.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4739896
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4739896
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4739896
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4739896
http://dx.doi.org/10.1109/38.586019
http://dx.doi.org/10.1109/38.586019
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5291855&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5291855
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5291855&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5291855
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5291855&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5291855
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6970
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6970
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6970
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6970
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.6970
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5231702
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5231702
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5231702
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5231702
http://www.sciencedirect.com/science/article/pii/S0098300406002044
http://www.sciencedirect.com/science/article/pii/S0098300406002044
http://dl.acm.org/citation.cfm?id=646665.699125
http://dl.acm.org/citation.cfm?id=646665.699125
http://dl.acm.org/citation.cfm?id=646665.699125
http://www.sciencedirect.com/science/article/pii/S0098300410003225
http://www.sciencedirect.com/science/article/pii/S0098300410003225
http://www.sciencedirect.com/science/article/pii/S0098300410003225
http://en.cnki.com.cn/Article_en/CJFDTotal-DXKJ200701035.htm
http://en.cnki.com.cn/Article_en/CJFDTotal-DXKJ200701035.htm
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5417337&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5403226%2F5417310%2F05417337.pdf%3Farnumber%3D5417337
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5417337&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5403226%2F5417310%2F05417337.pdf%3Farnumber%3D5417337
http://dl.acm.org/citation.cfm?doid=253262.253342
http://dl.acm.org/citation.cfm?doid=253262.253342

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related Work
	Design of the Parallel Buffer Generation Algorithm
	Buffer generation and union operations
	Data decomposition for individual buffer generation
	Optimization of union operation

	Conclusion
	Table 1
	Table 2
	Table 3
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	References

