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Abstract 
A buffer generation algorithm that identifies areas of a given distance surrounding geographic features is one of 

the most frequently used functions in GIS. With the increase of scale and precision in geographic data, the efficiency 
of the buffer generation algorithm has been of great concern. This study presents a novel integrated solution consisting 
of a points-based, load-balanced method and a binary union tree method to accelerate the buffer generation. By 
comparing several parallel candidates, the experimental results show that our new parallel algorithm achieves greater 
performance and scalability, and its speed increases by 21 times with 32 processes.
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Introduction
Over the past two decades, GIS has become an important 

technology, deployed across a range of application areas to investigate 
and understand our world. With the growing amount of data, the 
processing time required to perform GIS analysis has increased. 
Although computational performance has been unhindered thus far, 
the large data volumes and the growing sophistication of analysis 
procedures suggest that performance will increasingly become a 
serious concern in GIS [1,2]. The traditional methods of performing 
GIS processing on desktop computers are quite insufficient in terms of 
performance. Parallel computing offers a potential solution to solve the 
problem. Massive numbers of parallel computers provide a huge amount 
of memory and computation power to accelerate GIS simulation and 
analysis. However, traditional GIS algorithms may not run effectively 
in a parallel environment, so the utilization of parallel technology is 
not entirely straightforward. Processing algorithms must be reworked 
to allow for this collaboration between computers. Buffer analysis is the 
core function of spatial analysis in GIS; thus, the method for generating 
buffer zones effectively plays a pivotal role in the software development 
of GIS. Buffer analysis is used to identify areas with a given distance 
surrounding geographic features. In other words, polygons are created 
at a certain distance around the input features and are stored in the 
database as geographic layers, e.g., rivers, roads, Contour lines, etc. 
Irrespective of the type of input geographic features, buffer polygons 
can delineate geographic spatial proximity. As one of the fundamental 
functions of GIS, buffer polygons have significant applications for 
environmental and ecological protection, decision support, automatic 
procession of structural geo-data, etc [3]. Buffer generation itself is 
computing-intensive and time-consuming. Large-scale geographic 
data have further curbed the speed of buffer generation. For these 
reasons, real-time reactions of the trends in modern GIS are not able to 
be met. This paper focuses on the current strategies used by scientists 
and engineers for the development of this crucial algorithm for 
parallel computing and GIS. An implementation case study involving 
a parallel buffer generation algorithm is included and is based around 
a parallelization GIS problem, which illustrates some of the principles 
involved in [4]. This paper proposed a number of methods, including 
a points-based load-balance and a binary union tree, to implement 
parallel optimization. The experimental results show that our parallel 
algorithm has good performance and scalability. The algorithms 
speed increases by 21-fold with 32 processes, and its efficiency is well-
maintained with the increase in process number. The rest of the paper is 
organized as follows. The next para describes the work related to buffer 
generation for GIS, followed by introduction of the detailed algorithm 

of our parallel buffer generation and the experimental results and 
analysis, and conclusions are provided at the end.

Related Work
In general, the sequential buffer generation algorithm can fall into 

two categories: raster-based algorithms and vector-based algorithms 
[5]. The main difference between the two categories is that the former 
thickens entities in the raster and records a new border, while the latter 
sets up double parallel lines and circular arcs around the entities and 
then smoothes their borders. Wang et al. [6] analyzed the existing 
buffer generation algorithms systematically and re-viewed their 
characteristics, performance, and applicability, among other aspects.

Traditional raster-based algorithms are relatively easier to 
understand and to implement than vector-based algorithms. The 
earliest foundation of raster-based algorithms is laid by primitives 
of dilation and erosion in mathematical morphology, which can 
explain how pixels expand or contract the raster shape. Raster based 
algorithms dilate raster points, lines, areas, etc., to a target cell in the 
distance and then identify their borders to compute the buffer zones. 
The precision of buffer rendering relies on the resolution of the raster, 
which is measured by the size of the raster. However, high resolution 
raster exhaustively consumes memory resources. A trade-off between 
speed and resolution must be made. On the contrary, vector-based 
algorithms can handle the precision problem rather well. Nevertheless, 
they are more complex for dealing with curve intersection, arc-segment 
cutting and recombination, inclusion relation judgment, etc. A vector-
based algorithm consists of three main steps: simple parallel lines are 
drawn for each line-segment, cusp-smoothing correction is performed, 
and finally, self-intersection is tackled. A large number of strategies have 
been proposed to optimize the second and the third procedures. For 
example, Elber et al. [7] compared offset curve approximation methods. 
Er et al. [8] defined and implemented a corridor rendering algorithm 
with variable leg buffer distances. A corridor is defined by a path and 
two distances for each leg to yield a buffered zone around the path. 
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Wolff et al. [9] created an algorithm to calculate curved labels and to 
run in O(n2) time, where n is the number of points of a polyline. Ren 
et al. [10] took advantage of the Douglas-Peucker algorithm to remove 
non-characteristic points on curves and to extract characteristic points. 
Jiechen et al. [11] designed a novel method of buffer generation based 
on vector boundary tracing. This method could avoid complex vector 
calculations while retaining the high precision of existing vector-based 
algorithms. The emergence of parallel computing further improved 
the speed of buffer computation. Sorokine [12] introduced a parallel 
high-performance visualization technique in GRASS GIS. Darling 
et al. [13] reported the performance of a prototype parallel data 
partitioning algorithm for the input of vector-topological data into 
parallel processes. Huang et al. [14] proposed and designed a specific 
parallel IDW interpolation algorithm, incorporating single processes, 
multiple data and master/slave frameworks. Yao et al. [15] presented a 
parallel algorithm for buffer analysis, featuring a task-assignment based 
on the map layer and geographic spatial area. Their algorithm consists 
of four parts: task division, communication analysis, task union, and 
task assignment. They adopted a client/server architecture in which the 
servers generate buffer zones and the client collects and combines the 
results from these servers. Their experimental results showed that this 
parallel algorithm achieved speed increases of 1.8x, 2.7x, and 3x with 
2, 3, and 5 nodes, respectively. Pang et al. [16] analyzed the sequential 
buffer generation algorithm and advanced a parallel mechanism by 
establishing a master/slave cluster. They distributed N entities to M 
computing nodes, each of which could process N/M entities. Finally, the 
master simultaneously combined the results. A case study showed that 
the authors achieved a greater than 1.5x performance increase with 10 
nodes. Obviously, there is still great potential for improving efficiency 
in existing solutions. In fact, sequential buffer generation has evolved 
to a certain degree of maturity. Tools such as GRASS GIS, Quantun 
GIS, etc., have matured technologies in sequential buffer generation. 
Additionally, for processing large-scale geographic data, GIS is usually 
flooded by the number of features in databases, instead of the number of 
entities in one feature. Considering the granularity of the input, parallel 
solutions without the need for re-implementing the existing sequential 
algorithms have been considered. However, there is no need to 
reinvent the wheel. In the following sections, we will mainly discuss the 
optimization of vector based buffer analysis algorithms because gDOS-
GIS is based on vector-based geographic data structures. gDOS-GIS is 
a cluster-based GIS service developed by the Institute of Geographic 
Sciences and Natural Resources Research (IGSNRR) of the Chinese 
Academy of Sciences (CAS). We believe some parallel principles in our 
vector-specific algorithm can also be applied to raster-based algorithms.

Design of the Parallel Buffer Generation Algorithm
Buffer generation and union operations

To generate the sequential buffer algorithm in gDOS-GIS, the 
pseudo code is shown in table 1. Essentially, there are two operations 
required for parallel buffer analysis. The first operation is buffer 
generation stage, where the raw geographic data are computed to 
generate separate buffer zones. The second operation is buffer union 

stage, where the separate buffer zones are combined, with refinements, 
to produce a final result. To accelerate the buffer generation algorithm, 
we mainly aimed to optimize these two operations. We assume the total 
consumption time for the serial program to be Ts(n), where n is the 
number of features. The individual parts of buffer generation and union 
are Tbuffer (n) and Tunion (n), respectively, yielding the following equation:

Ts(n) = Tbuffer(n) + Tunion(n)                     (1)

To evaluate the relations between each operation in buffer analysis, 
we conducted eleven experiments with different numbers of rivers (i.e., 
features or layers) and points from a random set of geographic data 
consisting of 208,637 features provided by IGSNRR. The rivers are 
stored in the database as features, and a river feature may contain many 
points. Table 2 shows how execution time is related to the number of 
features and points. Direct manipulation of the points is not permitted 
in the database. To make the results more comprehensible, figure 1 and 
2 were created. Figure 1 shows the relationship of the execution time 

1. fetch data from the database
2. generate buffer zones as features // buffer generation
3. for each feature // buffer union
4. merge current feature with previous features
5. end for each
6. store the result feature into the database

Table 1: The pseudo code of the buffer generation algorithm.

ID Number
of Features

Number
of Points

Tbuffer
(Seconds)

Tunion
(Seconds)

E1
E2
E3
E4
E5
E6
E7
E8
E9
E10
E11

11,840
30,128
52,611
72,078
88,985
103,797
112,963
126,439
144,375
169,131
187,788

196,659
393,351
590,004
786,656
983,305
1,181,160
1,377,917
1,574,599
1,771,258
1,968,152
2,164,802

7.96
15.25
21.94
29.16
36.40
43.98
55.64
63.72
72.27
77.92
84.25

11.79
32.82
58.12
85.94
109.04
124.64
156.16
179.42
207.35
240.16
273.93

Table 2: The execution time for buffer generation and union in eleven experiments.
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Figure 1: The execution time for buffer generation and union in different 
experiments.
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Figure 2: The percentage of time for buffer generation and union in different 
experiments.



Citation: Huang X, Pan T, Ruan H, Fu H, Yang G (2013) Parallel Buffer Generation Algorithm for GIS. J Geol Geosci 2: 115. doi: 10.4172/2329-
6755.1000115

Page 3 of 5

Volume 2 • Issue 2 • 1000115J Geol Geosci
ISSN: 2329-6755 JGG, an open access journal

to the number of points in the different experiments. Figure 2 displays 
the distribution of time, as a percentage, for the union and buffer 
generation parts in the different experiments. From figure 1 and 2, we 
can see that in most of the experiments, the union operation takes up 
75% of the total execution time, while buffer generation only takes up 
25% of the total execution time. A linear relationship exists between the 
execution time and the number of points. In the following sections, we 
will describe the optimization methods for buffer operation and union 
operation. 

Data decomposition for individual buffer generation

In a serial program, if we divide a dataset into small data chunks, 
in which the number of chunks is p, perform a buffer operation on 
each chunk, and finally perform a union operation on their results. The 
equation 1 becomes:

Ts (n,p) = p. Tbuffer(n/p, p) + Tunion(n, p)                    (2)

These data subsets do not need to communicate with one another. 
Therefore, the buffer operation could be ideally computed using a 
parallel data method. Assuming that there are p processes and the 
execution time for the parallel program is Tp (n), it is easy to achieve 
the following:

Tp (n, p) = T buffer (n/p, p) + T union(n, p)                     (3)

Next, we must define how to partition the data and assign tasks 
in parallel. Because the GIS data are always stored in databases as 
features and are processed by features, it is natural to allocate different 
layers to different computing units. The computing units do not need 
to communicate when processing different features. However, as the 
entities included in each feature are uncertain, we cannot confirm that 
every task allocated to every computing unit can finish synchronously. 
Thus, it is hard to keep a good load balance using this feature-based 
parallel method; it is too coarse-grained. The area-based parallel method 
[17] is another choice. This method divides the area covered by all of the 
features in the database among the computing units. Each computing 
unit is responsible for all of the records that exist in that geographical 
region. However, for most existing GIS systems, proper map size 
evaluation and map division are too complicated. Thus, this area-based 
method is too difficult to implement, as the basic data structure usually 
does not support the method. Moreover, a feature may appear in several 
sub-maps repeatedly, which will lead to redundant computing. Based 
on the above analysis, we designed a points-based parallel method to 
achieve fine-grained parallelization. As we have discussed previously, 
the execution time of individual buffer operations is defined by the 
number of points. To achieve the maximum performance for buffer 
operation, the best way is to allocate all computing tasks evenly. As 
there were no direct data that showed the number of points included 
in all of the features, we had to iterate all of the data in the database to 
map the number of points in each feature to compute the total number 
of points. Furthermore, we needed to divide all of the features into 
smaller groups to align the number of points in each group to be closer 
to the average span. This process adds extra overhead to the points-
based parallel method, whose execution time is acceptable as discussed 
in the following section 4. Its pseudo codes based on MPI (Message 
Passing Interface) are shown in table 3. The most important feature of 
this algorithm is the ability to compute a specific span to ensure that 
each participating computing unit is responsible for approximately the 
same number of points.

Optimization of union operation

In this section, we will discuss the optimization method for the 

union operation. The classical parallel method utilizes a split-map-
reduce scheme as shown in figure 3. The master process splits and 
assigns tasks to slave processes. Each slave process executes buffer 
operations and union operations individually. Finally, the master 
process gathers results from slaves and combines them into one final 
feature. This classical method has been deployed in current gDOS-GIS 
systems. An obvious bottleneck of this method is the reducing phase. 
In the reducing

phase, the master process has to collect each union result from 
the slave process and execute the final union operation. Because the 
data waiting for combination are large and are not parallel, the final 
union step is very slow. To address this problem, we designed a binary 
union tree for parallel buffer generation and the union algorithm. This 
method is shown in figure 4. There are no differences among the master 
processes and the slave processes. Every process follows the same steps: 
retrieval part of a portion of the geographic data and execution of the 

1. initialize MPI
2. if (master process){
3. map the number of points in each feature to an array
4. get the number of total points
5. calculate the average span of the number of points
6. iterate the array and compute the specific span for each node
7. broadcast the specific span information
8. } else {
10. receive the specific span information
11. generate the buffer zone for specific span
12. }
13. finalize MPI

Table 3: The pseudo code of parallel buffer operation based on MPI.

Master P0

Slave P1

Buffer

Union Union

Union

Output

Union Union

Buffer Buffer Buffer

Slave P2 Slave P3 Slave PM

Preprocess: Load Balance
Split

Map

Reduce
Master P0

Figure 3: The split-map-reduce method.

Preprocess: Load Balance

Buffer Buffer Buffer Buffer BufferBuffer

P0 P1 P2 P3 P4 P5

Map

Reduce

Union

Union

Union

output

Union Union

Union Union

Union Union Union

Figure 4: The binary union tree method.
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buffer operation and the union operation. Subsequently, one combined 
buffer feature is pulled by another process and then merged with the 
counterpart buffer feature in that process. Every pair of buffer zones 
is combined until only one bu_er zone exists. The union process is 
entirely parallel. This binary union tree method can decrease the time 
complexity of union operations from O(N) to O(logN).

Experiments and Analysis
Based on the analyses presented above, our points-based load 

balance and binary union tree strategies are predicted to be much 
better than the existing work. The following experiments and results are 
presented to illustrate the advantage. The results display the uniqueness 
of our algorithm compared to the different candidates. All of the 
programs run on a two-node cluster. It is noteworthy that the nodes 
do not directly send data with MPI; instead, the nodes save the data 
in the local database, send IP addresses, and fetch data from remote 
databases. In fact, data Structures (or memory models) in geodata do 
not fully support parallel computing, and MPI is unable to serialize 
and send data represented as points in a geographic object in C++. For 
comparison, we implemented three algorithms in C++ to evaluate the 
binary union tree and points-based load balance. The first algorithm, 
named Algorithm1, highlights a features-based load balance and a one-
by-one union operation conducted by the master. Every slave inputs 
the same number of features, conducts buffer generation (including a 
buffer function and a union function), and saves its result into the local 
database. Finally, the master process retrieves data from the databases 
in all slaves and combines them one at a time. The second algorithm, 
named Algorithm2, differs from the previous algorithm by replacing 
the one-by-one union with the binary union tree. Every slave inputs 
the same number of features, conducts buffer generation (including 
a buffer function and a union function), and saves its result into the 
local database. The features in every two processes are combined until 
there is only one output, as shown in figure 4. The third algorithm, 
named Algorithm3, is our integrated design. It replaces the features-
based load balance mentioned above with the points-based load 
balance. The remaining part is the same as Algorithm2. To prove that 
parallel buffer generation, highlighting a points-based load balance and 
binary union tree, has a better performance and a higher efficiency, we 
conducted experiments in which three algorithms were run on 1, 2, 4, 
8, 16, or 32 processes. The data set contains over 200,000 features. The 
experimental results are shown in figure 5, 6 and 7. These figures show 
the execution time, speedup and efficiency of the three algorithms with 
the various numbers of processes. The execution time is the actual time 

for executing the GIS program. Speedup is defined as the ratio of Ts, the 
execution time for the single-process algorithm, to Tp, the execution 
time for the parallel algorithm: S=Ts / Tp 

Efficiency is defined as the ratio of speedup to P, the number of 
processes executing the algorithm: E =S/P The closer the efficiency is to 
1, the greater the efficiency of the parallel algorithm. For Algorithm1, 
the single-process algorithm spends 381.9 s in buffer generation. While 
utilizing 32 processes, the parallel algorithm reduces the execution 
time to 47.52 s. The maximum speedup is 8.04. However, as the 
number of processes increases, the efficiency decreases to 0.25 with 
32 processes. The low efficiency is largely caused by union operation 
in the master process. As we have mentioned before, when the master 
process combines the generated buffer zones, other processes are 
idle. For Algorithm2, the speedup reaches 12.07 with 32 processes. 
Algorithm3 surpasses the other two algorithms in both speedup and 
efficiency. Algorithm3 decreases the execution time from 395.51 s 
with the original single process to 18.47 s with 32 processes, arriving 
at a speedup of 21.41. Similar to Algorithm1 and Algorithm2, the 
overall execution time of Algorithm3 also decreases substantially. This 
result confirms that the overall computation time of Algorithm3 is at 
a minimum when the buffers are combined by every two processes. 
Figure 5 also reveals that when the number of processes is low, 
Algorithm 3 is not the optimal method, as its load balance goes through 
an additional iteration of each source feature. In general, Algorithm 
3 was the most outstanding choice when the number of processes is 
greater than 4. Figure 7 reveals the trends of efficiency among the three 
algorithms. Efficiency is an important criterion for developing a parallel 
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algorithm. As speedup is proportional to efficiency, for a given number 
of processes, a higher efficiency correlates with greater speedup. When 
developing a parallel algorithm, the algorithm is made to be as efficient 
as possible when executed by multiple processes. Unexpectedly, when 
the number of processes increases from 16 to 32, the efficiency increases 
from 0.24 to 0.25, 0.27 to 0.38, and, amazingly, 0.34 to 0.67. This result 
is mainly due to our special experimental environment. The cluster has 
two nodes, each consisting of 16 cores. Within each node, 16 processes 
share the same database, as well as other resources. The competition 
for computing and storage resources results in additional overhead. 
When the number of nodes (and databases) grows, the situation is well 
relieved. In practice, this buffer algorithm and the gDOS-GIS aim for a 
large cluster of commodity machines. The algorithm would most likely 
fit into the commodity cluster very well, with each node having its own 
database-serving processes, because the competition for the database 
would be largely eased. It is reasonable to predict that the efficiency 
would be better if Algorithm3 runs on the commodity cluster. In 
summary, Algorithm3 had the most satisfying performance and could 
successfully meet our needs for speedup and efficiency.

Conclusion
In this study, we designed a novel parallel solution consisting of a 

points-based load-balanced method and a binary union tree method to 
accelerate buffer generation. By comparing several parallel candidates, 
the experimental results show that the new parallel algorithm achieves 
much better performance and scalability. The speedup of the algorithm 
reached 21-fold with 32 processes.
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