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Commentary
Since the cloned sheep “Dolly” was born in 1997, somatic cell nuclear 
transfer (SCNT) has been achieved in many species, however, to date, 
the overall cloning efficiency is still low, and this limits the large-scale 
application in basic research, agriculture and medicine, etc [1-3]. It is 
generally believed that low cloning efficiency is mainly due to aberrant 
epigenetic reprogramming [4]. In cloned embryos, DNA methylation, 
histone modifications and genomic imprinting, etc, are usually 
disrupted, and these incomplete epigenetic reprogramming causes 
continuous expression of tissue specific genes, no effective activation of 
genes related to early embryo development, and aberrant transcription 
of imprinted genes, etc, thereby leading to poor cloning efficiency [5-7].

Previous studies have displayed that incomplete epigenetic 
reprogramming in cloned embryos is due to the disrupted expression 
patterns of genes related to epigenetic modifications [4,8,9]. Recently, 
long noncoding RNAs (lncRNAs) have been shown to interact 
with epigenetic modification related enzymes and further regulate 
epigenetic reprogramming [10]. LncRNAs are non-protein coding 
transcripts longer than 200 nucleotides, once considered as dark matter, 
and confirmed to take part in diverse epigenetic regulatory progresses, 
including DNA methylation, histone modifications, genomic 
imprinting, etc [11-13].

It is known that DNA methylation reprogramming is regulated by DNA 
methylation and demethylation related enzymes, thus, lncRNAs-guided 
DNA methylation reprogramming includes the interplay between 
lncRNAs and these enzymes [10,12,14]. For gene activation, promoter-
associated noncoding RNAs (pancRNAs) are typical lncRNAs during 
the progress of lncRNAs-mediated DNA demethylation, and pancRNAs 
can recruit DNA demethylation related enzymes, such as ten eleven 
translocation enzymes (Tets), to regulate DNA demethylation [15,16]. 
Similarly, Dnmt1-interacting RNAs and TARID also inhibit DNA 
methyltransferases (Dnmts) to block DNA methylation, or recruit 
DNA demethylation related enzymes to carry out DNA demethylation, 
thereby promoting gene expression [17,18]. When gene silence, 
lncRNAs, Dum as an example, interact with Dnmts to establish and 
maintain DNA methylation [19], and, increased levels of lncRNAs, 
such as HOTAIR and POU3F3, also promote DNA methylation 
[20,21]. During the progress of lncRNAs-guided histone modifications, 
HOTTIP has been shown to recruit Trithorax group (TrxG) proteins, 
and promote H3K4me3 and gene expression [22], while HOTAIR 
silences the Hoxc locus through the recruitment of Polycomb group 
(PcG) proteins and H3K9me3 and H3K27me3 catalyses. Also, other 
lncRNAs, such as Air and Kcnq1ot1, can recruit epigenetic silencing 
complexes to inhibit gene expression [23,24]. Thus, lncRNAs mediate 
histone modifications through TrxG and PcG proteins and regulate 
gene expression. Overall, the emerging links between lncRNAs and 
epigenetic modifications confirm that lncRNAs are key epigenetic 
regulators [10,13,25].

During cellular reprogramming, genome-wide epigenetic dynamics 
are necessary, and lncRNAs exert critical functions in reprogramming 
cell fate [26-28]. In induced pluripotent stem cells, lncRNAs have been 
shown to promote or inhibit somatic cell reprogramming [29,30]. In 

cloned embryos, H19 and Xist, the best studied lncRNAs, are also 
known to participate in embryo development, and their disrupted 
expression patterns result in low cloning efficiency [31,32]. However, 
due to the limited number of SCNT embryos resulting from the 
complicated production and poor developmental competence, only a 
small number of lncRNAs have been identified. In view of the critical 
role of lncRNAs in the development of cloned embryos, methods for 
detection at the single-embryo level or at the level of a small number 
of embryos are needed to identify and characterize lncRNAs required 
for cellular reprogramming. Currently, available technologies to reveal 
the functions of lncRNAs in scarce materials, such as early embryos, are 
coming, and more surprises are to emerge [15,28]. Overall, lncRNAs 
are a “rich ore” to be mined, and panning for these “treasures” would 
enhance the developmental competence of cloned embryos.

In conclusion, disrupted epigenetic modifications cause low cloning 
efficiency, and lncRNAs can regulate epigenetic reprogramming, thus, 
to reveal the functions of lncRNAs in nuclear reprogramming induced 
by SCNT will broaden our knowledge of the mechanism underlying 
cellular reprogramming, and further improve cloning efficiency.
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