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ABSTRACT

Objective: The mortality and morbidity rates associated with Pancreatic Cancer (PaCa) are extremely high. Various 
studies have demonstrated that pancreatic cancer will be the fourth cancer related death by 2030, raising more 
concern for scholars to find effective methods to prevent and treat in order to improve the pancreatic cancer 
outcome. Using bioinformatic analysis, this study aims to pinpoint key genes that could impact PaCa patients' 
prognosis and could be used as therapeutic targets.

Materials and methods: The TCGA and GEO datasets were integratively analyzed to identify prognosis-related 
differentially expressed genes. Next, the STRING database was used to develop PPI networks, and the MCODE and 
CytoNCA Cytoscape in Cytoscape was used to screen for critical genes. Through CytoNCA, three kinds of topology 
analysis were considered (degree, betweenness, and eigenvector). Essential genes were confirmed as potential target 
treatment through Go function and pathways enrichment analysis, a developed predictive risk model based on 
multivariate analysis, and the establishment of nomograms using the clinical information.

Results: Overall, the GSE183795 and TCGA datasets associated 1311 and 2244 genes to pancreatic cancer prognosis, 
respectively. We identified 132 genes that were present in both datasets. The PPI network analysis using, the centrality 
analysis approach with the CytoNCA plug-in, showed that, CDK2, PLK1, CCNB1, and TOP2A ranked in the top 
5% across all three metrics. The independent analysis of a risk model, revealed that the four keys genes had a Hazard 
Ratio (HR)>1. The monogram showed the predictive risk model and individual patient survival predictions were 
accurate. The results indicate that the effect of the selected vital genes was significant and that they could be used 
as biomarkers to predict a patient's outcome and as possible target therapy in patients with pancreatic cancer. GO 
function and pathway analysis demonstrated that crucial genes might affect the p53 signaling pathway and FoxO 
signaling pathway, through which meiotic nuclear division and cell cycle may have a significant function in essential 
genes affecting the outcome of patients who have pancreatic cancer.

Conclusion: This study suggests that CDK2, CCNB1, PLK1 and TOP2A are four key genes having a significant 
influence on PaCa migration and proliferation. CDK2, CCNB1, PLK1, and TOP2A can be used as potential PaCa 
prognostic biomarkers and therapeutic targets. However, experimental validation is necessary to confirm these 
predictions. Ours study comes into contributions to the development of personalized target therapy for pancreatic 
cancer patients.
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INTRODUCTION

Pancreatic Cancer (PaCa) ranks seventh in terms of cancer 
prevalence globally and the fourth most prominent cause of 
mortality due to cancer, with more than 30000 deaths annually 
[1]. Globally, over 400,000 new cases of pancreatic cancer are 
diagnosed annually, and the number of pancreatic cancer is still 

predicted to increase exponentially. High recurrence rates and 
metastasis following surgery are the most prominent causes of poor 
outcome in pancreatic cancer patients [2]. Many factors contribute 
to the minimal survival proportion of pancreatic cancer patients, 
such as those diagnosed at a late stage due to lack of a systemic 
screening. 
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Previous studies have identified responsive and efficient molecular 
markers that can significantly influence pancreatic cancer's 
biological initiation and progression. For instance, the Tumor 
Suppressor Gene (TSG) KRAS has been shown in studies to 
be mutated in more than 90% of pancreatic cancer cases [3]. 
Given the vital role of TSG KRAS in pancreatic cancer, it's now 
considered a potential therapeutic target of choice. Besides KRAS, 
TSGs such as TP53 have also been demonstrated by studies that it's 
a prognostic indicator that significantly influences the outcome of 
patients with pancreatic cancer [4]. These findings further research 
on molecular pathology and gene mutation-initiating pancreatic 
cancer development. Studies on pancreatic cancer biomarkers 
usually focused on single-gene patterns, whereas cancer typically 
involves several genes and biological processes. How to scientifically 
improve the prognosis of pancreatic cancer patients has been 
the focus for more and more scholars trying to understand and 
elucidate the molecular mechanisms behind pancreatic cancer 
initiation and progression to identify significant biomarkers and 
signaling networks. Bioinformatics has revolutionized biological 
data analysis and management, enabling research on large amounts 
of data in a short period. Bioinformatics is widely used to screen 
essential specific genes for specific cancer patients. These give the 
possibilities of personalized treatment plans for a cancer patient 
with specific drugs targeting a particular biomarker [5,6]. Large-scale 
cancer genomics projects like TCGA and GEO have advanced our 
understanding of cancer genetics, revealing a comprehensive view 
of pancreatic cancer-related genomic alterations and facilitating 
further research [7]. Using bioinformatics tools and techniques, 
common significant prognosis-related differentially expressed 
genes (prognosis-related DEG) of pancreatic cancer were identified 
between the GEO and TCGA databases. In addition, based on 
module and centrality analysis, we formed a protein-protein network 
to screen out essential genes in PR-DEGs, developed a predictive 
risk model, and verified and validated favourable vital genes. The 
present study establishes a solid platform for investigating the 
biological processes at the molecular level underlying pancreatic 
cancer development and identifying biomarker targets for clinical 
management. 

MATERIALS AND METHODS

Data collection

The gene expression profiles of PaCa patients were acquired from a 
GEO dataset (GSE183795). The sample size was 244 PaCa patients. 
Moreover, the expression profiles and clinical details of 182 cases 
of PaCa were also retrieved from the TCGA database. All original 
data were corrected, and only patients with all information were 
included in this study. 

Identification of prognostic related differentials gene 
expression

The pancreatic cancer expression profile was collected from 
the (GEO=189) and (TCGA=178) databases. Subsequently, the 
data underwent analysis using R software. The gene expression 
normalization of the pancreatic dataset in this study was generated 
through the Limma package, and the missing value was handled 
through the imput package. Using K-M analysis, we categorized 
the gene expression profile as high-expression and low-expression 
categories according to each gene's Median Value (MV) within 
the gene profile. Afterwards, the survival disparity among all the 

categories was assessed and validated. With a p-value (p<0.05) set as 
the criteria, the multivariate method and survival analysis using the 
proportional hazards model were conducted to analyze, confirm, 
screen, and identify genes that exhibited significant connection 
with the prognosis of pancreatic cancer patients. Finally, the GEO 
and TCGA datasets were used to verify these survival analysis-
filtered genes independently. We used the term prognosis-related-
DEGs to stand for the commonly significant prognosis-related 
differentially expressed genes. 

PPI network analysis and module centrality analysis

Protein-protein interaction prediction was made with the help 
of the online tool STRING, which allows the analysis of genetic 
interactions, both structural and functional. This network's 
connections had to have a confidence score of at least>0.15, and 
the disconnected nodes were left out of this study. The network 
was used to create a PPI network of prognostic DEGs. Cytoscape 
was used to map out the prognosis-related DEGs' PPI connections. 
The MCODE plug-in was used to determine and quantify the PPI 
network's functional modules and gene associations. If a module 
had a maximum score, its protein correlation was more substantial, 
and the top score module was taken as the findings of the MCODE 
assessment. Three topologies, degree, betweenness and eigenvector 
from the CytoNCA were used to conduct a centrality analysis. 
The degree of a node is a measure of its importance in a network 
since it indicates the number of edges that lead to that node. 
Finding the betweenness of two nodes is the fastest way to analyze 
them. However, the eigenvector considers both the node's and its 
neighbours' significance. The significance of CytoNCA's analysis 
is inferred from the genes represented by the top 5% of nodes in 
the three topology configuration. By integrating the MCODE and 
CytoNCA extension results, the crucial genes were found within 
the protein-protein network of prognosis-related DEGs.

Prognostic key genes verification

The MV of the critical gene profile was established as the threshold 
in the profile data analysis of gene expression in patients with 
PaCa from the TCGA and GEO, and the essential gene expression 
profile of patients with pancreatic cancer was categorized into high-
expression and low-expression key genes categories. Through R 
software applying the “survival” package, K–M assessment followed 
by multivariate Cox model testing was used to examine the disparity 
in total survival status between the crucial genes high- and low-
expression categories. The survival proportion and plot were then 
interpreted and graphed. Independent prognostic identification 
of individual and multiple gene merging of crucial genes was 
performed using the "survival" package, and the hazard ratio and 
graphs were plotted based on univariate and multivariate Cox 
model testing. Finally, the Risk Scores (RS) of crucial genes and all 
the available clinical and pathological parameters were associated 
with precisely predicting the survival outcome of pancreatic cancer 
patients. We calculated the risk score of the model using the 
following formula: 

Risk Score (RS)=Σ (Gene expression × weight)

The prognostic risk score was determined using K-M analysis, which 
classified PaCa patients into a low-group risk and high-group risk 
based on the Median Values (MV) of the RS of crucial genes in the 
expression profile of PaCa patients. The R language's "RMS" tool is 
then used to construct the nomogram according to the multivariate 
Cox model testing.
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Go and KEGG analysis of prognostic genes

Pancreatic cancer gene expression datasets from the GEO and 
TCGA repositories were categorized into two categories considering 
the median expression value of each essential gene, namely high-
expression and low-expression categories. The DEG was then 
identified between the two categories of crucial genes. Subsequently, 
the Go functional and the pathways enrichment analysis of each 
DEG were performed using Go and KEKK through R software 
packages, including limma," "clusterProfiler," "enrichplot," and 
"ggplot2." With criteria p<0.05 and log (fold-change) >0.5.

Statistics analysis

Data statistical analysis was conducted using R Software (2023 
version) and involved K–M method and Cox model testing 
(univariate and multivariate) to determine the essential genes. The 
"survival" package in the R software was used to create survival 
curves and forest plots for analyzing the prognostic significance of 
individual-gene or multiple-gene merging of crucial genes. With 
P<0.05 as the criteria. 

RESULTS

Identification of prognosis-related genes 

Using R software, we mined the TCGA-PAAD (n=178) and GSE-
183795 (n=189) databases for gene expression profile data from 
PaCa patients. The log transformation and normalization were 
performed using the 'limma' sets, and the K-M method was used to 
categorize genes into high-expression and low-expression categories 
in the gene expression matrix using the MV of each gene before 
comparing the two groups for significant differences. Multivariate 
and survival analysis were used through the proportional hazard 
model testing to identify DEGs within the gene expression datasets 
of GSE183795 (1311 genes) and TCGA (2244 genes) that were 
strongly associated with the prognosis of PaCa. Then, 132 shared 
prognostic DEGs were obtained using cross-validation of two 
datasets: 132 of 1311 genes from GSE183795 and 132 of 2244 
genes from TCGA-PAAD data (Figure 1A).

Module-centrality assessment of the prognosis-related 
genes

To systematically investigate the molecular mechanization that can 
alter the prognosis of PaCa patients, we constructed a PPI network 
of prognosis-related DEGs in STRING with a confidence score 
>0.15 while excluding unconnected nodes. The data shows that 
the PPI network comprised 131 nodes and 1665 edges. In addition, 
the modules for investigating even more closely linked genes within 
the PPI network were analyzed using the MCODE extension in 
the Cytoscape platform. Module 1, with a score of 48.500; Module 
2, with a score of 4.000; and Module 3, with a score of 3.333, 
were the three modules revealed by the analysis (Figure 1B). Since 
the first module's score was the highest and it was the section of 
the PPI network with the most interactions, this was taken as the 
outcome of the MCODE analysis. By inspecting each gene's degree, 
betweenness, and eigenvector scores, we could do a centrality 
analysis of the PPI network using the CytoNCA plug-in. Next, 
CDK2, PLK1, CCNB1, and TOP2A, rated in the top 5% across all 
three topologies and present in module 1, were chosen as crucial 

genes, all from module 1 (Figure 1C). 

Prognostic value of key genes in PaCa 

To figure out what roles essential genes play in the development of 
PaCa, we used the K-M method to look at the survival of our genes 
of interest. Survival curves were made for PaCa patients, who were 
put into two categories: Those with high expression and those with 
low expression. In the TCGA and GEO databases, the survival 
assessment for patients with PaCa demonstrated a close relationship 
between the frequency of specific genes and the length of time they 
survived. Based on survival analysis, the median overall survival 
of pancreatic cancer patients with decreased expression of CDK2, 
PLK1, CCNB1, and TOP2A was 1.79, 1.74, 1.90, and 1.92 years. 
In contrast, those with higher expression of CDK2, PLK1, CCNB1, 
and TOP2A had 1.36, 1.36, 1.45, and 1.33 years, respectively. 

Figures 2A and 2B shows that the patients (GEO, n=103; TCGA, 
n=90) whose essential genes were more active had a much worse 
prognosis. As shown by univariate and multivariate Cox model 
testing, crucial genes with hazards ratio >1, that were 1.75, 1.34, 
1.43, and 1.50, in corresponding order with a (p<0.05) in the 
GEO and TCGA repositories, can autonomously influence the 
prognosis of pancreatic cancer patients. The impact of crucial genes 
is significant and could be used as biomarkers to predict a patient's 
prognosis and as therapeutic targets for PaCa patients (Figure 3). 

GO and pathways enrichment analyses

To better understand how the essential genes impact the prognosis 
of pancreatic cancer, we conducted GO functional and pathways 
enrichment analyses. The GO functional analysis revealed that 
the majority of the enriched terms were associated with functions 
such as nuclear division, organelle fission, mitotic nuclear division, 
meiotic nuclear division and more. Additionally, the findings from 
the pathways analyses revealed significant enrichment of pathways 
such as p53 signaling pathways, FoxO signaling pathways, cell cycle, 
cellular senescence and others (Figures 4 and 5).

Key gene prognostic risk model construction and 
validation

Using univariate and multivariate Cox model testing, CDK2, 
PLK1, CCNB1, and TOP1A were combined to create a key 
gene prognostic risk model (Table 1). The risk score of key 
genes was determined as follows: HRCDK2 × expression value 
of CDK2+HRPLK1 × expression value of PLK1+HRCCNB1 × 
expression value of CCNB1+HRTOP2A × expression value of 
TOP2A. As per the prognostic risk model, the medical significance 
and prognostic importance of the available clinicopathology, 
namely the age, gender, and TNM classification, were used to 
construct a nomogram to validate the prognostic importance of 
the risk factors. The overall scores, the sum of the scores of each 
component, can be used to calculate the 1-year, 3-year, and 5-year 
survival probability represented in the nomogram. The monogram 
showed the prognostic risk model and individual patient survival 
predictions were accurate (Figure 6). To explore in more detail 
the validity of crucial genes, PaCa patients were categorized into 
high- and low-risk categories based on the risk score cutoff value 
derived using the maximally selected rank statistics approach in 
each database (TCGA and GEO). 
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Figure 1: Selection of key genes for pancreatic cancer patients, (A) In total, 132 common prognosis-related-DEGs were obtained from the overlapping of 
TCGA and GEO datasets, (B) Three modules 1-3, and a score ranked up in the top 5% in three topology from CytoNCA’s centrality analysis, (C) Key genes 
(CDK2, CCNB1, PLK1, and TOP2A, green in the picture) were obtained.

Figure 2 (A): Survival analyses of key genes CDK2, CCNB1, PLK1, and TOP2A, patients with high expression of key genes have a poor prognosis in the 
TCGA database (p<0.05). 
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Figure 2 (B): Survival analyses of key genes CDK2, CCNB1, PLK1, and TOP2A, patients with high expression of key genes have a poor prognosis in the 
GEO database (p<0.05). 

Figure 3: Independent prognostic analyses based on key genes in TCGA database.
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Figure 4: Go function and pathways enrichment analyses from the TCGA database.  
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Figure 5: Go function and pathways enrichment analyses from the GEO database.  
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Figure 6: Monogram based on risk model and clinicopathological parameters.  

Table 1: Univariate and multivariate analyses of overall survival in TCGA database.  

Variables
Univariate analysis Multivariate analysis

HR P-value HR P-value

Risk score 1.1167 0.0002 1.10163 0.00126

Age 1.02227 0.0346 1.01746 0.00897

Gender-Male 0.8324 0.375 0.90881 0.64695

T lower stage 0.5348 0.052 0.80397 0.51866

NN1 1.8378 0.0144 1.53677 0.09834
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The survival graph (Figures 7A and 7B) demonstrated that the 
category with higher risk had a poorer outcome than the category 
with lower risk. Both univariate and multivariate Cox model 
testing was done according to the gene expression profile data. The 
findings revealed that the RS for crucial genes were autonomously 

associated with the total survival proportion of PaCa patients. 
The findings suggest the key genes could be referenced as PaCa 
prognostic genes. The key genes (CDK2, TOP2A, CCNB1, and 
PLK1) can be used to plan the next treatment step. These genes 
could also be used to improve the prognosis of pancreatic cancer.

Figure 7 (A): Survival analyses of the risk score of key genes from the prognostic group from the TCGA database. 

Figure 7 (B): Survival analyses of the risk score of key genes from the GEO database. 
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DISCUSSION

In industrialized countries, pancreatic cancer will soon be the 
fourth leading cause of cancer death after lung cancer in the 2030s. 
With more than 30,000 deaths per year due to pancreatic cancer, 
this death rate goes hand in hand with the number of cases in these 
countries exponentially rising. There isn't yet a systematic way to 
screen for pancreatic cancer like some other types of cancer, such 
as breast and colon cancer, which can be screened early. Pancreatic 
cancer has the trait of being able to lie dormant for years. Usually, 
when symptoms show up, the disease is already at its late stage [8]. 
The development of pancreatic cancer is a slow molecular process 
described by a previous report to have more than 60 genetic 
mutations and abnormal molecular signaling pathways networks 
that can all play a crucial function in the development of pancreatic 
cancer [9]. 

Findings of unique prognostic biomarkers of pancreatic cancer 
in order to come up with a more specific treatment plan for 
cancerous pancreatic tissues have become the focus of more and 
more scholars. These problems show the importance of finding 
biomarkers with prognosis significance in pancreatic cancer. To 
date, big data platforms for screening gene expression have been 
broadly used in others to identify novel targets that can be used as 
new therapeutic strategies and predictive to create cancer. 

Studies have shown that crucial genes that can impact the initiation 
and proliferation of cancers tend to be in the modules with the 
top scores and obtain the top ranking in centrality assessment 
results. Those findings suggest that the MCODE and CytoNCA 
extensions in the protein–protein interactions network significantly 
contribute to identifying and selecting molecular biomarkers in 
many cancers, such as gastric and breast cancer [10]. Researchers 
have demonstrated that module analysis can improve the accuracy 
of many cancers' crucial gene screening [11]. CytoNCA, on the 
other hand, can assess the importance of each gene's connections 
over the whole PPI network and highlight those genes with the 
most significant links [12]. With MCODE and CytoNCA analysis 
methods, we were able to identify four genes (CDK2, CCNB1, 
PLK1, and TOP2A) that play crucial roles throughout the whole 
protein-protein interaction network. 

Previous studies have highlighted the effects of key genes in many 
cancers. First, CCNB1, a crucial protein essential for cell cycle 
division, particularly at the G2/M phase, significantly impacts 
tumour development and progression. For instance, multiple 
studies have shown that CCNB1 is overexpressed in many cancer, 
such as gastric and lung cancer, compared to normal tissues [13,14]. 
In addition, CCNB1 overexpression has also been reported by 
studies to be correlated with poor outcomes in some patients with 
cancer [15,16]. Moreover, overexpression of CCNB1 was also said to 
be associated with cancer metastasis and to have a poor outcome [16-
19]. Besides overexpression of CCNB1, reducing the level of CCB1 
can lead to DNA damage [20]. PLK1 has been reported by studies 
to be overexpressed in many cancer; it has also been associated 
with poor prognosis [21,22]. PLK1 plays a role in cell division, 
regulating stability in the cell division process and responding to 
DNA damage [23,24]. Silencing PLK1 can significantly impact 
cancer progression by inhibiting its proliferation and stopping 
tumour cell growth [25,26]. Previous research has shown that the 
overexpression of CDK2 deregulates the cell cycle and significantly 

impacts various cancer development [27,28]. The overexpression of 
one of The CDK2, known as cyclin E1, has been reported in many 
cancer [29,30]. Besides CDK2 overexpression, silencing CDK2 
inhibitors was associated with poor outcomes in various tumours 
compared to normal tissues [31,32]. The overexpression of TOP2A-
induced genomic deregulation and this mechanism has not yet 
been elucidated. For instance, previous research has shown that 
the overexpression of TOP2A is associated with poor outcome in 
various cancer parents [33]. Another study reported that TOP2A 
overexpressions could be independent predictive biomarkers for 
survival outcomes in patients with resected pancreatic cancer; 
at the same time, TOP2A expression combined with some other 
biomarkers can have a significant positive impact in various cancer 
patients [34]. Meiotic nuclear division is a protein involved in the 
meiosis process; it’s known to facilitate the pairing of homologous 
chromosomes and repair DNA double-strand [35]. In tumor cells, 
MND interacts with some homologous pairing protein, to facilitate 
the use of an alternative mechanism for lengthening telomeres 
when telomerase is not reactivated [36,37] this mechanism drives 
the development of cancer and boosts cell proliferation, thereby 
increasing the evolutionary capacity of cancer cells [38,39]. 
Previous research has demonstrated that the meiotic component 
can be a biomarker and therapeutic target in cancer patients [40-
43]. p53 signaling pathways consist of a complex network such 
as genes and their components that are activated in response 
to endogenous and exogenous stress signals. These signals can 
affect the mechanism that regulates DNA replication and cellular 
division, which are fundamental for maintaining cellular stability 
[44]. Previous studies reported that p53 is significantly elevated 
intracellularly to fixed abnormal intracellular function [45,46]. 
On the other hand, the activation of the FoxO signaling pathways 
is known to be initiated by P3IK/AKT pathways [47]; the FoxO 
signaling pathways play a fundamental role in controlling cellular 
functions such as cell proliferation and growth [48]. Various studies 
showed that the FoxO signaling pathways, known to be activated 
by the PI3K/AKT pathways, play a significant role in the initiation 
and development of many cancer, such as hepatocellular carcinoma 
[49,50]. In this research base on bioinformatics tools, we overlap 
the GEO and TCGA matrix data to extract and analyze high-
volume data to perform through the MCODE and CytoNCA the 
module and centrality assessment of the protein-protein network; 
based on all those techniques, we identified four essential genes 
(CDK2, CCNB1, PLK1 and TOP2A) who have a significant 
influence on the prognosis of pancreatic cancer patients. They can 
also be used as potential biological markers and targets for treating 
pancreatic cancer prognosis. We established a predictive risk model 
in accordance with the four essential genes to confirm that they 
play a crucial role in pancreatic cancer development.

CONCLUSION

The overlapping analysis of the GEO and the TCGA genes 
expression matrix has led us to identify 132 typical prognosis-
significant DEGs CDK2, CCNB1, PLK1 and TOP2A of the CPR-
DEGs can be considered prognosis biomarkers and therapeutic 
targets for pancreatic cancer patients. However, the results of these 
analyses should be confirmed through verification with laboratory 
experiments, even though this study supports similar findings in 
previous research on the development of personalized pancreatic 
cancer management.
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