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Introduction
2-substituted indoles are important structural motifs present in

diverse biologically active molecules [1] and are precursors for a wide 
variety of alkaloids, such as vindoline [2], vindorosine [2], ellipticine 
[3], etc. Among them, 2-(1H-indol-2-yl)acetic acids constitute a 
valuable class of building blocks for natural product and natural 
product analogue syntheses (Figure 1) [4-7], combinatorial [8], 
diversity-oriented syntheses [9,10], and medicinal chemistry [11-18]. 
In addition, they can serve as highly attractive precursors for various 
chemical transformations, such as diazomethylation to 1-diazo-3-(2-
indolyl)-2-propanone [19] and reduction to 2-(2-hydroxyethyl) indole 
[20]. Therefore, the development of efficient synthetic methods for 
these compounds has received much attention.

Hydrolysis of ethyl 2-(1H-indol-2-yl) acetates is an important route 
to 2-(1H-indol-2-yl) acetic acids. Accordingly, the literature describes 
several preparations of ethyl 2-(1H-indol-2-yl) acetates. For example, 
Capuano et al. demonstrated that the intramolecular Wittig reaction 
of 2-[(ω-alkoxycarbonylacyl) amino] benzyltri-phenylphosphonium 
salts produced 2-(1H-indol-2-yl)-acetate with a 78% yield [21]. 
Furthermore, Moody et al. reported that reductive cyclisation of the 
ethyl 4-(2-nitropheny)-acetoacetate using titanium(III) chloride in 
aqueous acetone gave 2-(1H-indol-2-yl) acetate with a 75% yield [22]. 
Despite producing good yields, these methods suffer from indispensable 
multi-step pre-transformations of commercially available starting 
materials, and are therefore of limited synthetic scope [23]. Wilkens 
et al. described a one-pot reaction of N-phenylhydroxylamine, 
benzaldehyde and ethyl 2,3-butadienoate followed by hydrolysis-
mediated production of 2-(1H-indol-2-yl)acetate [24]. In spite of a 49% 
yield, this approach also had its drawbacks, including the use of unstable 
and relatively rare reactant (i.e. allenes) that might limit their broad 
applications. Osornio YM et al. and Guerrero MA et al. demonstrated 
that the direct intermolecular oxidative radical alkylation of indole 
under xanthate-mediated radical conditions afforded 2-(1H-indol-2-
yl) acetate in 60% yield [25,26]. Nevertheless, the radical mechanism of 
this approach might limit its broad synthetic applications. 

If indoles can be directly functionalized at the C2-position, the 
preparation of the target compound class would be more facile. Owing 
to the development of the transition-metal catalyzed C-H activation 
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Abstract
An efficient and convenient method was developed for the one-step synthesis of various substituted ethyl 

2-(1H-indol-2-yl) acetates via a palladium-catalyzed regioselective cascade C-H activation reaction. Importantly, this 
practical approach can be carried out with readily accessible starting materials and exhibits excellent functional group 
compatibility.

chemistry, methods for regioselective direct C2/C3-alkenylation [27-
33], alkynylation [34-41], cyano [42,43] and arylation [44-52] of indole 
nucleus have been well developed to date. However, regioselective C2-
alkylation of indole is more challenging.

The Catellani reaction, a palladium-catalyzed norbornene-
mediated cascade reaction, has been modified to achieve the direct 
functionalization of indoles [53-55]. Recently, Bressy et al. reported an 
intramolecular direct arylation of indoles based on modified Catellani 
conditions [56]. More recently, Jiao et al. reported a direct 2-alkylation 
reaction of indoles relying on a Pd(II)-catalyzed norbornene-mediated 
direct alkylation method for indoles, which regioselectively installs an 
alkyl group to the C2-position of free N-H indoles [57,58]. However, 
the original publication did not report the use of 2-bromoacetate as 
an alkylating reagent. To the best of our knowledge, a straight-forward 
approach for direct C2- alkoxycarbonylalkylation of indoles has not yet 
been well established. Given its high C2-regioselectivity and excellent 

Figure 1: Examples of 2-(1H-indol-2-yl) acetic acids-related natural products 
and natural product analogues.
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functional group tolerance, we envisioned to apply Bach’s method 
to the synthesis of 2-(1H-indol-2-yl) acetates by employing indoles 
and ethyl 2-bromoacetate as the starting materials. As part of our 
continuing effort to assemble indole-based drug scaffolds [59-61], we 
here present our findings on one-step synthesis of various substituted 
ethyl 2-(1H-indol-2-yl)acetates via a palladium-catalyzed regioselective 
cascade C-H activation reaction. Various substituents are tolerated in 
this system in moderate to good yields. Our protocol highlights a facile 
one-step transformation from easily available starting material and 
excellent functional group compatibility.

Experimental
Unless otherwise noted, the reagents (chemicals) were purchased 

from commercial sources, and used without further purification. Water 
was deionized before used. Analytical thin layer chromatography 
(TLC) was HSGF 254 (0.15-0.2 mm thickness). Compound spots 
were visualized by UV light (254 nm). Column chromatography was 
performed on silica gel FCP 200-300. NMR spectra were run on 300 
or 400 MHz instrument. Chemical shifts were reported in parts per 
million (ppm, δ) downfield from tetramethylsilane. Proton coupling 
patterns are described as singlet (s), doublet (d), triplet (t), quartet (q), 
multiplet (m), and broad (br). Low- and high-resolution mass spectra 
(LRMS and HRMS) were measured on spectrometer.

General procedure for synthesis of Ethyl 2-(1H-indol-2-yl) 
acetates

A vial equipped with a magnetic stir bar and a rubber stopper was 
charged with Pd(PhCN)2Cl2 (65 mg, 0.171 mmol), indole substrate 
(1.71 mmol), norbornene (321 mg, 3.41 mmol), NaHCO3 (574 mg, 6.84 
mmol) and capped with septa. The vial was evacuated and backfilled 
with argon and the process was repeated three times. A solution of 
water in DMF (0.5 M) was added via syringe as the solvent. Under 
argon, ethyl bromoacetate (0.41 mL, 3.41 mmol) was added via syringe, 
and then the resulting mixture was stirred at room temperature for 10 
minutes. After that, the reaction mixture was then placed in a preheated 
oil bath at 70°C for appropriate time and vigorous stirring was applied. 
The reaction was monitored by TLC. Upon completion, the reaction 
mixture was cooled to room temperature, diluted with ethyl acetate, 
washed with water (twice) and brine (once), dried over Na2SO4, and 
concentrated. The residue was directly submitted to flash column 
chromatography (by dry loading) to afford the ethyl 2-(1H-indol-2-yl) 
acetates products as yellow oils.

Results and Discussion 
We initiated our study by reacting indole with ethyl bromoacetate 

in the presence of norbornene and Pd(MeCN)2Cl2. However, the direct 
application of the reported optimized reaction conditions yielded 
diethyl 2,2’-(1H-indole-2,3-diyl) diacetate, a 2,3-disubstitued-indole 
product, as the major product.

According to the postulated catalytic cycle of Bach’s approach 
[57,58], and distincts from the previous Catellani reaction, the 
arylpalladium(II) species in the terminating step undergoes proto-
depalladation (i.e. hydrogenolysis), instead of a further palladium 
catalyzed carbon functionalization, such as Heck, Suzuki and 
Sonagahira reactions. Consequently, we speculated that for more 
active alkyl halide substrates, such as ethyl bromoacetate, it might be 
possible to quench the further substitution reaction and improve the 
yields of mono-2-substitued-indole products by the use of different 

combination of solvent and base. Furthermore, we postulated that the 
phosphine ligands might have an effect on the rate of the substitution 
process as well. 

With the aforementioned considerations in mind, we screened 
different reaction conditions for optimal results (Table 1). We 
conducted the first runs (Table 1, entries 1-6) employing the reported 
optimized Pd source [Pd(OAc)2], base (K2CO3), reaction temperature 
(70˚C) and time (14 hours) in different solvents (Table 1, entries 
1-3). Notably, the higher water content in the solvents was found 
to significantly increase the selectivity for the mono-2-substitued-
indole product 1 (Table 1), but led to a compromised conversion rate. 
These results suggest that water might serve as the hydrogen source 
in the catalytic system, which accelerates the norbornene-mediated 
cascade reaction by hydrolysing the final arylpalladium(II) species. 
As DMF/5 M water produced a better yield than the other solvents, it 
was selected as the solvent in the following tests. The effect of the Pd 
source was then investigated (Table 1, entries 7-10). Palladium species 
other than Pd(MeCN)2Cl2 and Pd(PhCN)2Cl2 were substantially less 
effective. Further screening of catalysts did not lead to better yields and 
demonstrated that the reaction may not proceed well in the presence 
of phosphine ligands which may reduce the palladium(II) species to 
palladium(0) species and interferes the normal palladium(II-IV) 
catalytic cycle [62]. Pd(PhCN)2Cl2 was chosen as the preferred catalyst 
because it provided higher conversion rates than the other catalysts. 
Given the possibility that excessive water in the solvent might hydrolyse 
the arylpalladium(II) species formed in the first oxidative addition step 
and lower the solubility of the intermediates, resulting in a cessation 
of the catalytic cycle and undesired conversion rate, we switched the 
solvent back to DMF with 0.5M H2O. Finally, a brief screen of bases 
showed an interesting correlation between the alkalinity of the base and 
the yield of the 2,3-disubstitued-indole byproduct 2 (Table 1, entries 
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aGeneral reaction conditions: Pd (0.171 mmol), indole (1.71 mmol), norbornene 
(3.41 mmol), base (6.84 mmol), ethyl bromoacetate (3.41 mmol), solvent (8 mL, 
total), 70 oC, 14 h. bIsolated yield. cMonitored by LC-MS and TLC

Table 1: Optimization of the catalysis conditionsa.

Entry Pd Source Solvent Base
Yield (%)b

1 2
1 Pd(OAc)2 DMA / 0.5 M H2O K2CO3 tracec 56
2 Pd(OAc)2 DMF / 0.5 M H2O K2CO3 7 62
3 Pd(OAc)2 DMA / 5 M H2O K2CO3 19 26
4 Pd(OAc)2 DMF / 5 M H2O K2CO3 34 0
5 Pd(OAc)2 DMF / 2 M H2O K2CO3 24 10
6 Pd(OAc)2 CH3CN / 5 M H2O K2CO3 15 21
7 Pd(Ph3P)2Cl2 DMF / 5 M H2O K2CO3 tracec 0
8 Pd(dppf)2Cl2·CH2Cl2 DMF / 5 M H2O K2CO3 tracec 0
9 Pd(MeCN)2Cl2 DMF / 5 M H2O K2CO3 46 0
10 Pd(PhCN)2Cl2 DMF / 5 M H2O K2CO3 52 0
11 Pd(PhCN)2Cl2 DMF / 0.5 M H2O K2CO3 8 79
12 Pd(PhCN)2Cl2 DMF / 0.5 M H2O KHCO3 tracec 67
13 Pd(PhCN)2Cl2 DMF / 0.5 M H2O NaHCO3 85 7
14 Pd(PhCN)2Cl2 DMF / 0.5 M H2O KOAc 58 0
15 Pd(PhCN)2Cl2 DMF / 0.5 M H2O NaOAc 42 0
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11-15). Specifically, the yields of the 2,3-disubstitued-indole products 
increased significantly as the alkalinity of the base increased, with 
NaHCO3 affording the target products in desirable yields. On the other 
hand, insufficient basicity led to undesired conversion rates (Table 1, 
entries 14 and 15). Thus, DMF with 0.5M H2O as the solvent, NaHCO3 
as the base, a reaction temperature of 70˚C, and a reaction time of 
14 hours were selected as the optimal conditions. It was noteworthy 
that in all tests, the other possible substituted byproducts, N- and 
3-substituted products 3, 4 (Table 1) were not detected. 

Encouraged by these initial results, we next proceeded to 
examine the general utility of the Pd(PhCN)2Cl2/norbornene cataly-
tic system for synthesis of a wide range of ethyl 2-(1H-indol-2-yl)
acetates (Table 2). Indoles with electron-donating and electron-
drawing substituents at the various positions smoothly participated 
in the C2-ethoxycarbonylmethylation reaction. Four regioisomeric 
methylindoles effectively participated in the cascade reactions to afford 
equally good levels of yields (Table 2, entries 1-4). The reaction worked 
well with different halogens on various positions on the benzene ring 

(Table 2, entries 6-12), which has three main advantages. First, halogen 
substituents could be used to adjust the polarity, lipophilicity, and 
metabolic stability of dyes or pharmaceuticals. Second, halogens allow 
further modification using cross-coupling reactions for the elaboration 
of molecule libraries. Third, halogen substituents on various positions 
can serve as invaluable building blocks for enrichment of Structure-
Activity Relationships in medicinal chemistry. It was noteworthy to 
mention that 5-iodoindole, a potential substrate for classic Catellani 
reaction, was readily tolerated in our catalytic system and gave the 
desired product 6l in good yield. Interestingly, electron-deficient 
indoles reacted better than their electron-rich counterparts to give 
good yields of 2-(1H-indol-2-yl) acetates under the optimal conditions 
(Table 2, entries 6-15). Moreover, the reaction could be extended to 
functionalized azaindoles to give the expected product 6o in modest 
yield. We also noted that a more bulky 3-position blocked the substrate, 
3-methyl-indole, produced the desired product 3 in a 35% yield (Table 
2, entry 16). Control experiment showed that this catalytic system did 
not work in the absence of norbornene. By contrast, N–methylindole 
failed to participate in the reaction and remained mostly unchanged 
even after extension of reaction time (Table 2, entry 17). These results 
are consistent with Bach and Jiao’s latest work regarding the mechanism 
of regioselective Pd-catalyzed, norbornene-mediated alkylation of 
indoles. It has been proved that N1-norbornene type palladacycle 
rather than originally proposed C3-norbornene type palladacycle is 
formed as the key intermediate in this catalytic cycle [58].

On the basis of above observations, recent publications on the 
mechanism of the Catellani reaction [63] and extensive mechanistic 
work by Jiao et al. [58], a plausible mechanism for the observed 
reaction is proposed in Scheme 1. The norbornene-mediated cascade 
C-H activation process proceeds as follows: a. N1-position direct 
palladation; b. syn-aminopalladation of norbornene; c. irreversible 
palladacycle formation, leading to C2-position ortho-C−H palladation; 
d. oxidative addition with an alkyl halide to generate palladium 
IV species; e. reductive elimination of the palladium IV species; f. 
norbornene expulsion; and g. release of the 2-alkyl indole product and 
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aReaction conditions: Pd(PhCN)2Cl2 (0.171 mol), indole (1.71 mmol), norbornene 
(3.41 mmol), NaHCO3 (6.84 mmol), ethyl bromoacetate (3.41 mmol), DMF with 0.5 
M H2O (8 mL, total), 70 oC, 14 h. bIsolated yield. cMonitored by LC-MS

Table 2: Palladium-catalyzed synthesis of various ethyl 2-(1H-indol-2-yl) acetatesa.

Entry R1 Product Yieldb

1 4-Me (5a) 6a 67%
2 5-Me (5b) 6b 71%
3 6-Me (5c) 6c 69%
4 7-Me (5d) 6d 65%
5 5-OMe (5e) 6e 80%
6 4-F (5f) 6f 75%
7 5-F (5g) 6g 83%
8 6-F (5h) 6h 82%
9 7-F (5i) 6i 78%
10 5-Cl (5j) 6j 85%
11 5-Br (5k) 6k 84%
12 5-I (5l) 6l 71%
13 5-CN (5m) 6m 89%
14 5-NO2 (5n) 6n 91%

15
N N

H

Br

 (5o)
(5o)
(5o)
(5o)

N N
H

CH2COOEt
Br

 6o 58%

16
N
H

 (5p)
N
H

CH2COOEt  6p
35%

17
N

 (5q)
N

CH2COOEt6q tracec

Scheme 1: Postulated Catalytic Cycle for a Direct 2-alkoxycarbonyl-
alkylation of Indole by a Norbornene-Mediated Cascade C-H Activation.
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regeneration the Pd(II) species (Scheme 1). The 2-monosubstituted 
product of this catalytic cycle might undergo further electrophilic 
substitution process [56] to afford the 2,3-disubstitued-indole product.

Conclusion
To conclude, a practical Pd(PhCN)2Cl2/norbornene catalytic 

system for the versatile and one-step synthesis of ethyl 2-(1H-indol-
2-yl)acetates has been developed. This practical method features 
the ability to rapidly and efficiently synthesize various substituted 
ethyl 2-(1H-indol-2-yl)acetates as precursors to a class of valuable 
synthetic building blocks, 2-(1H-indol-2-yl)acetic acids. In addition, 
the protocol exhibits excellent functional group compatibility, leading 
to valuable derivatives that are not readily available by conventional 
methods. The present reaction also enables a new access to 
2,3-dialkoxycarbonylalkylated indole derivatives which can be applied 
to indole fused heterocycles and indole alkaloid synthesis. 
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