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Introduction

Double-strand Oligo DeoxyNucleotides (ODNs) or hairpin ODNs
that mimic binding sites for transcription factors are effective cis-
element decoys. These short (15-30 mer) platforms are designed to
contain protein-binding consensus recognition sites or modified
sequences permissive for stronger protein–DNA interactions [1].
Transfected decoys bind construct-specific transcriptional effectors
effectively titrating trans-acting factors from their target promoters.
Sp1, AP-1, STAT3, and Ets-1 decoys inhibit expression of cancer-
associated genes as well as attenuate tumor cell growth and metastasis
[2-5]. Despite similarity in the consensus binding sequences between
STAT1 and STAT3, a decoy was developed that specifically sequesters
STAT3 but not STAT1 [6], demonstrating the feasibility of differential
discrimination among closely-related transcription factors. While
decoy delivery in vivo is major challenge for clinical applications,
recent findings highlight the utility and advantages of ODN
technologies in animal model systems [7,8] including specific
modifications (i.e., incorporation of phosphorothioate groups) to
increase stability. Recent advances include development of circularized
or “block” decoys which are chimeric constructs that target multiple
regulatory elements [9].

The USF/PAI-1 Axis as a Model
Upstream stimulatory factor-1 and -2 (USF1/2) are basic helix-

loop-helix/leucine zipper (bHLHLZ) E box-binding transcription
factors the functions of which are dependent on site-specific
phosphorylation. Dimer composition and recruited co-factors dictate
target gene expression [10-12]. USF1/2 regulate growth state-
dependent transcription of plasminogen activator inhibitor-1 (PAI-1,
SERPINE1) [11], a major TGF-β1-responsive and p53 target gene
[13,14]. PAI-1 controls pericellular plasmin generation and is a
prominent member of the “wound-response” transcriptome [15,16].
PAI-1 is required for TGF-β1-stimulated keratinocyte planar
migration and stromal barrier invasion likely via LRP1-mediated
engagement of the Jak/Stat pathway [14,17]. This SERPIN is a non-
structural Extracellular Matrix (ECM)- associated (matricellular)
protein [18] that promotes a mesenchymal-to-amoeboid transition
with activation of a intracellular signaling cascade required for
efficient 3-D “stromal” migration [19,20]. The consistent association
of PAI-1 expression with the global program of tissue injury [21]
suggests that this SERPIN integrates cycles of cell-to-substrate
adhesion/dis-adhesion with repair “scaffold” remodeling to meet the
requirements for effective cellular migration [22]. A recent assessment
of the transcriptional signature among the spectrum of wound healing
responses (i.e., non-scarring regenerative repair, scar formation,
chronic non-healing injuries) clearly indicated that PAI-1 partitioned
to the dysfunctional healing gene set repertoire [23] emphasizing its

candidacy as a translationally-important target in the context of tissue
repair anomalies associated with deficient or excessive PAI-1 levels
[21].

USF Involvement in PAI-1 Transcription
PAI-1 transcription is an early event in serum-stimulated quiescent

(G0) keratinocytes and fibroblasts. Chromatin ImmunoPrecipiation
(ChIP) confirmed that PAI-1 expression occurs prior to G1 entry and
involves a USF subtype switch (USF1→USF2) at the PE1/PE2 site E
box motifs (5’-CACGTG-3’) in the PF1 region (nucleotides -794 to
-532) of the PAI-1 promoter [11]. The PE2 E box, moreover, is 5’-
flanked by three SMAD-binding sites although mobility shift studies
indicated that these AGAC sequences are not likely required for USF
occupancy of a PE2 region E box target [11,24]. While USF1/2 binding
to PE1/PE2 targets in serum-stimulated cells was independent of
growth state (Figure 1), ChIP analysis confirmed USF1→USF2 dimer
replacement at the critical PE2 E box motif reflected induced PAI-1
expression indicating that promoter occupancy was distinct from
simple probe recognition [11].
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Figure 1: USF1/2 bind to PE1 and PE2 PAI-1 promoter region
DNA target probes.
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Double-stranded 32P-labeled PE1 or PE2 constructs (A; only top
strand is illustrated for both probes) were incubated with nuclear
extracts from proliferating (P), quiescent (Q) and 2 as well as 24 hour
(2,24) serum-stimulated human HaCaT II-4 keratinocytes. Antibodies
to the E box-binding USF1 and USF2 were added where indicated and
protein-probe complexes separated on non-denaturing
polyacrylamide gels. (−) =absence of nuclear extract; none=no
antibody added. Positions of the original protein-probe complex and
the USF antibody-induced supershift are indicated with arrows (B-D).
PE1/PE2 region probe recognition required phosphorylation as extract
pretreatment with Potato Acid Phosphatase (PAP) inhibited USF-
DNA complex formation as determined by standard electrophoretic
mobility shift (D) and biotinylated oligonucleotide pull-down (E)
assays.

P in (E) = PAP

APE2 Region Decoy Effectively Attenuates TGF-β1-
Induced PAI-1 Expression

PAI-1 transcriptional activation has important phenotypic
consequences. Several SERPINS (including SERPINE1 [PAI-1],
SERPINB1, SERPINB2) are prominent members of the “tissue repair”
transcriptome where they function in the integrated control of
focalized extracellular matrix restructuring, cell-to-substrate adhesion/
detachment, migration and proliferation [14,16,17,21,22]. PAI-1 limits
urokinase (uPA)-mediated pericellular plasmin generation to maintain
a supporting “scaffold” for cell movement [22] while also regulating
uPA-dependent growth factor activation attenuating, thereby, the
associated proliferative response [13]. Using the sequence restraints
for PAI-1 promoter-driven reporter activation [25] and DNA binding
[11], a double-stranded 45-bp PE2 DNA construct was designed based
on the requirements for an intact CACGTG motif for probe
recognition by USF [11,24]. Transfection of these double-stranded
USF binding, “decoys” effectively reduced both serum- and TGF-β1-
induced PAI-1 transcript levels in HaCaT II-4 keratinocytes (Figure 2).
This finding has important translational implications. A recent review
[21] highlighted the association of elevated PAI-1 with healing
anomalies including keloid development and hypertrophic scarring
while an increased uPA/PAI-1 ratio, favoring high uPA activity, is
characteristic of chronic ulcers. Excessive scarring at various tissue
sites consistently reflects augmented PAI-1 expression, a prominent
TGF-β1 target, further underscoring the clinical potential in the
development of PAI-1 decoys (Figure 2). Indeed, PAI-1 small
interfering RNAs effectively attenuate collagen levels in keloids and
implantation of polyvinyl alcohol sponges into PAI-1–/– mice resulted
in a significantly reduced fibrotic response. PAI-1 deficiency promotes
an accelerated skin wound healing response while plasminogen
stimulated the repair of acute and diabetic wounds [reviewed in 21].
More recently, small molecule PAI-1 functional inhibitors
demonstrated efficacy as anti-fibrotic agents in experimental models
of TGF-β1–induced pulmonary fibrosis and skeletal muscle repair.
The present findings suggest that PAI-1 PE2 region decoys may find
utility as novel, expression-regulating therapeutics.

0

5

10

15

20

25

30

35

40

Q FBS TGF-1 Q FBS TGF-1
ssDNA PE2 45-bp Decoy

R
el

at
iv

e 
PA

I -1
 E

xp
re

ss
io

n

0

5

10

15

20

25

30

35

40

Q FBS TGF-1 Q FBS TGF-1
ssDNA PE2 45-bp Decoy

R
el

at
iv

e 
PA

I -1
 E

xp
re

ss
io

n

Figure 2: Transfection of a 45-bp double-stranded PE2 decoy
construct attenuates PAI-1 expression in TGF-β1-stimulated cells.
Transfection of HaCaT II-4 keratinocytes cells with a double-
stranded USF-binding 45-bp PE2 region decoy construct markedly
decreased the levels of both serum- and TGF-β1-induced mRNA
PAI-1 transcripts. Graphed data is the mean+ SD of 3 independent
experiments. sDNA=sheared, double-stranded, control DNA.
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