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Abstract
In eukaryotic cells, DNA damage repair occurs on a template DNA that is organized with histones to form 

nucleosomes and chromatin structures. As such, chromatin plays an important role in DNA damage repair. In this 
review, we will use “chromatin damage repair” as a framework and highlight recent progress in understanding the role 
of chromatin, chromatin modifiers, chromatin binding effectors (e.g., the PWWP domain proteins), and the p53 tumor 
suppressor. We view chromatin as an active participant during DNA damage repair. 
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Introduction
Chromatin structure and organization

In eukaryotic cells, the nucleosome is the basic structural unit of 
chromatin. It is composed of a 147 bp of DNA tightly packed around a 
core histone octamer, which contains an H3-H4 tetramer and two H2A-
H2B heterodimers [1,2]. With the help of about 20 to 60 base pairs of 
linker DNA, nucleosomes are further packed into an approximately 11-
nm “beads-on-a-string” fiber, which defines the first level of chromatin 
structure [2]. At the second structural level, 30-nm chromatin fiber is 
organized by further packing of nucleosome arrays with linker histone 
H1 [3]. Furthermore, the chromatin fibers are folded into higher 
order structures by looping and further folding during interphase. 
At last, chromatin is further compacted into condensed metaphase 
chromosome during mitosis. 

The interphase chromatin can be divided into two categories due 
to various degrees of chromatin condensation and composition. While 
chromatin in a less condensed conformation is termed as euchromatin 
that is usually related to active transcription, heterochromatin is 
known as gene-poor region with tightly packed chromatin [4]. 
Constitutive heterochromatin consists of some structural elements, 
such as, telomeres, centromeres, non-coding and small repetitive 
regions. Besides, facultative heterochromatin can be converted from 
euchromatin due to differentiation, X-chromosome inactivation and so 
on [5]. Although the mechanism of higher-ordered chromatin structure 
formation is still not completely clear, it is known that the regulation 
of chromatin structure dynamics is dependent on many factors, 
including DNA methylation, histone variants, histone modifications, 
and binding of non-histone chromatin architectural proteins and 
protein complexes [6]. From yeast to human, regulation of eukaryotic 
chromatin organization has vast significance in regulating many 
DNA-dependent cellular activities, such as transcription, replication 
and DNA damage repair. In the following parts, chromatin structure 
modulation during DNA damage repair in the mammalian system will 
be further discussed.

DNA damage response signaling network

Genome stability is critical for biological functions and cell 
viability. However, genome is continuously under threats from various 
exogenous or endogenous DNA damaging stresses. External ionizing 
radiation, UV irradiation and environmental chemicals can cause 
DNA damages. Internal metabolic products, such as Reactive Oxygen 
Species (ROS), and spontaneous errors during DNA replication alter 
the genetic information stored in the DNA double helix [7]. These 
threats cause several types of DNA lesions, including base damages and 
mismatches, bulky adduct intra-and inter-strand crosslinks, as well as 
single and double strand breaks [8]. 

To counteract several harmful cellular outcomes of DNA lesions, 
a defense system called DNA damage response (DDR) follows, which 
is essential for anti-cancer and anti-aging processes [9]. DDR is an 
integrated network of highly ordered signaling cascades. When facing 
DNA insults, some protein complexes called “sensors or mediators”, 
are recruited to DNA damage sites, which can be observed as nuclear 
foci under microscope. Next, the sensors activate “transducers”, such 
as a protein kinase ATM/ATR, to transfer and amplify signaling to 
downstream “effectors”. Many effectors play a key role in deciding the 
cell fate. In order to survive, cells with transient cell-cycle arrest may 
resume cell proliferation after successful DNA repair, whereas others 
may enter permanent cell-cycle arrest and senescence with unrepaired 
DNA damages. In the worse scenarios, programmed cell death or 
apoptosis occurs when DNA damage is too severe. Additionally, 
some other effectors also establish a feedback loop to control the DDR 
signaling pathways to maintain the homeostasis of cell survival and 
death after DNA damage [10,11].

As mentioned above, DNA repair is a crucial mechanism to rescue 
cells from DNA damage stress. According to the different types of DNA 
damage produced, there are at least six distinct DNA repair pathways 
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evolved to deal with DNA lesions during DDR: Nucleotide excision 
repair (NER), base excision repair (BER), mismatch repair, cross-link 
repair and double-strand break (DSB) repair [12]. DSB repair can be 
divided into two different pathways: non-homologous end joining 
(NHEJ) and homologous recombination (HR) [13]. 

DNA double-strand break (DSB) is the most lethal type of DNA 
damage due to a complete breakage of DNA backbone. Nonetheless, 
the molecular mechanisms described below for DSB repair are also 
found to participate in DDR initiated by other DNA damage. DSB 
repair in mammalian cells is a coordinated signaling pathway initiated 
with immediate activation of the MRN (mre11-rad50-nbs1) complex 
and the kinase ataxia telangiectasia mutated (ATM). DSB stress-
activated ATM kinase phosphorylates H2AX on Ser139 (also called 
γH2AX) at damage sites. Then, γH2AX spreads along the chromatin 
up to hundreds of kilobases from initial site with help of the ATM-
MRN-MDC1 (mediator of DNA damage checkpoint protein 1) 
complex [14,15]. This amplified signal recruits massive number of 
proteins to contribute to the repair process or regulating the cell-cycle 
checkpoints. 

For actual repair, NHEJ is a predominant repair mechanism that 
directly rejoins the broken DNA ends. Since it utilizes single stranded 
overhangs at DSB ends, NHEJ can be done at anytime but favored 
in G1 phase of the cell cycle. Although it is a fast way to response to 
DSB, NHEJ has higher chance to induce mutagenesis by generating 
deletions or chromosome translocations. During NHEJ in mammals, 
Ku70/80 heterodimer with DNA dependent kinase catalytic subunit 
(DNA-PKcs) bind to DSB site for end tethering, then recruit Artemis 
and DNA polymerases μ and λ for gap filling. Finally, ligation step is 
triggered by DNA ligase IV complex and scaffold proteins, such as 
X-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-
like factor (XLF) [16,17]. 

Compared to error-prone NHEJ, HR can guarantee high fidelity of 
repair but require more steps and more protein effectors. Specifically, 
the MRN complex recognizes DSB sites and generates single-strand 
DNA intermediates by CtBP-interacting protein (CtIP) mediated 
resection during HR [18]. Replication protein A (RPA), RAD51 and 
RAD52 bind single-stranded ends, and direct synapsis and strand 
invasion to the homologous template. The DNA synthesis and ligation 
are completed finally to restore disrupted genetic information [19]. 
Because HR requires homology searching of sister chromatids as 
accurate template in error-free repair, it only occurs in S and G2 phases 
[20].

Dynamics of chromatin structure regulates DDR
Given that DNA is organized into the chromatin structure, it is not 

surprising that chromatin structure influences multiple steps during 
DDR. Usually, less condensed chromatin regions are more sensitive to 
DNA-damaging agents than those with a higher level of compaction 
[21,22]. In addition to chromatin’s natural barrier function, the 
dynamics of chromatin organization affects DDR as well, which was first 
described in a model termed “access-repair-restore” (ARR) (Figure 1) 
[23,24]. This model elucidates three main steps after DNA damage: (1) 
the site of damaged chromatin is detected and become more accessible; 
(2) reorganization of chromatin structure allows processing of DNA 
repair factors; (3) changes in chromatin organization is restored after 
repair has finished [25,26]. Previously, the “access” step was always 
thought that proteins are mainly removed from the chromatin to 
increase accessibility. Recently, this is renamed as the “prime” step, 

which involves both adding-in and taking-out of chromatin factors at 
this initial stage of DDR [27].

In general, there are three major mechanisms involved in the 
regulation of nucleosome/chromatin organization: post-translational 
histone modifications, ATP-dependent chromatin remodeling, and 
ATP-independent chromatin modulation [28]. These three types of 
machineries function in coordinated manner throughout the ARR 
process of DNA damage repair.

Post-Translational Histone Modifications 
Diverse post-translational modifications, such as methylation, 

acetylation, phosphorylation, citrullination, ubiquitylation, 
sumoylation and poly ADP-ribosylation, preferentially occur at 
histone tails [29-34]. These histone modifications could alter chromatin 
structure, by changing histone-DNA and histone-histone contacts or 
recruiting different chromatin factors [35]. It has been proposed that 
covalent histone modifications work sequentially or in combination 
to form a “histone code” and define various downstream biological 
outcomes like DNA transcription, replication and repair [36]. Recently, 
more and more published work indicates that DSB repair is a new hot 
target to decipher stepwise DNA-damage-induced histone code [37].

Poly ADP-ribosylation

As the earliest modification detected at DNA damage sites, poly 
ADP-ribosylation is produced by poly ADP-ribose polymerases (PARP) 
and erased by poly ADP-ribose glycohydrolase (PARG) [38,39]. NuRD 
(nucleosome remodeling and deacetylase) and Polycomb complexes 
are recruited to poly ADP-ribose (PAR) chains at lysine residues 
within the N-terminal tail of histones. These chromatin regulators 
help to temporarily form condensed repressive chromatin, inhibiting 
any possible DNA breakage from RNA polymerase interruption and 
further transcription [40]. Intriguingly, chromatin at DSB site also has 
an increased accessibility by association with ATPase motor containing 
chromatin remodeler complexes (e.g. ALC1, amplified in liver cancer 
1) in PAR-dependent manner [41]. Thus, poly ADP-ribosylation 
perhaps performs a critical role in immediate damage sensing and 
pilots downstream DDR events. 

Phosphorylation

Phosphorylation of H2AX Ser139 (γH2AX) was first discovered in 
1998 and serves as a primary marker of DDR signaling activation [42]. 
The histone H2AX variant exists in different cell lines with genomic 
occupancy ranging from 2% to 20% of the total amount of H2A [42]. 
A ChIP-seq analysis shows that the distribution of H2AX is enriched 
at euchromatin regions other than heterochromatin [43]. Moreover, 
H2AX knockout mice are more sensitive to ionizing radiation and 
show defects in DNA repair and genome integrity maintenance [44].

As mentioned before, the MRN complex binds to DSB sites, 
recruits and activates ATM. ATM in turn induces γH2AX, providing a 
binding site for MDC1 [45-47]. The MDC1 protein docks more ATM-
MRN complexes to promote the propagation of γH2AX markers from 
the original break points to a region that could be as far as 2 megabases 
away [14,15,17]. Using 2D and 3D confocal microscopy and ChIP 
analyses, it is revealed that γH2AX shows high densities near DSB 
sites and weaker signals at distant sites [48] . Although the mechanism 
underlying γΗ2AX expansion is not fully understood, it is known that 
nuclear diffused ATM may trigger long-distance γΗ2AX formation via 
MDC1-independent manner during V(D)J recombination in pre-B 
cells [49]. In addition to MDC1, BRIT1/MCPH1 (microcephalin) was 
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identified as a docking protein to recognize γΗ2AX [50]. It can recruit 
SWI-SNF chromatin remodeling complex to enhance chromatin 
accessibility [51].

At the final “restore” stage, γΗ2AX must be removed to resume 
previous local chromatin status. Several protein phosphatases such 
as PP2A, PP4 and PP6 have been discovered to target γH2AX [52-
54]. WIP1 was a recently identified enzyme to dephosphorylate not 
only γH2AX but also some other ATM/ATR substrates [55]. Since 
wild-type p53-induced phosphatase 1 (WIP1) is upregulated by p53, 
there is a p53-mediated feedback loop to restrain DNA damage signal 
amplification by an increase in γH2AX phosphorylation levels. 

In addition to γH2AX, phosphorylation of H2AX Tyr142 serves 
as an important marker for undamaged status of the whole genome. 
The phosphorylation of this adjacent site to Ser139 is constitutively 
maintained by Williams syndrome transcription factor (WSTF) under 
unstressed conditions, and then is removed by eye absent homologue 
1/3 (EYA 1/3), accompanied with γH2AX generation [56,57]. This 
conserved phosphorylation of H2AX is also important in cell fate 
decisions in concert with γH2AX.

Acetylation

Histone H4 acetylation is important in forming chromatin 
structure related to active transcription [58]. Especially, acetylated H4 
Lys16 can perturb the ionic interaction between the N-terminal tail of 
histone H4 and H2A-H2B dimer of an adjacent nucleosome to prohibit 
further package of the 30 nm chromatin fiber [59,60]. After binding to 
chromatin via γH2AX-dependent manner, the docking protein MDC1 
rapidly recruits a multiple subunit histone acetyltransferase (HAT) 
complex, NuA4, whose Tip60 subunit acetylates H4K16 [61]. Similar 
to γH2AX, H4 acetylation also spreads out from DSB sites to a region 
as far as hundreds of kilobases away. Disruption of Tip60 activity can 
abolish H4K16 acetylation and promote compaction of chromatin 
[62]. Conversely, H4K16 acetylation can be removed by histone 
deacetylases, HDAC1/2, which may prevent Ku complex sliding and 
dissociation from DNA ends especially in NHEJ pathway [63].

Ubiquitination

Besides the NuA4 complex, MDC1 also serves as a platform for 
sequential recruitment of ubiquitin ligases RNF8 and RNF168 [64]. 
On one hand, the RNF8-RNF168 cascade triggers ubiquitination of 
H2A, H2AX and H2B for chromatin structure relaxation. On the other 
hand, the ubiquitination is required for binding of other chromatin 
factors such as breast cancer type 1 susceptibility protein (BRCA1) 
and p53 binding protein 1 (53BP1) [65,66]. Additionally, H2B mono-
ubiquitination mediated by RNF20-RNF40 heterodimer directly leads 
to chromatin decompaction at DSB sites [67].

Methylation

Similar to ubiquitination, histone Lys methylation facilitates 
recruitment of repair factors during DDR. The tudor domain of 
53BP1 recognizes H3K79me2, a methylation site that is normally 
embedded within the body of nucleosomes and becomes exposed upon 
DNA damage mediated conformational changes [68]. Furthermore, 
the interaction between 53BP1 and H4K20me2 is enhanced by DSB 
[69]. Interestingly, to maintain genome integrity, a quite high level of 
H4K20me2 (>80%) is constitutively present. After DSB, H4K20me2 
may be further exposed, or established from unmodified histone H4 
with de novo methylation by a methyltransferase MMSET [70,71]. This 
increasing H4K20me2 level is crucial for 53BP1 recruitment and a 
cascade of downstream regulatory events.

ATP-dependent Chromatin Remodeling
Besides covalent histone modifications, ATP-dependent 

chromatin remodeling is another important mechanism for chromatin 
reorganization. Chromatin remodelers utilize ATP hydrolysis to affect 
chromatin structure by either replacing histones with corresponding 
variants, or repositioning (sliding or removal) of nucleosomes [72]. At 
least three remodeler families have been found to play a role during 
DSB repair in mammals: Swr1-like, Snf2-like and Rad54-like families 
[73]. And these chromatin remodelers regulate different stages of DSB 
repair. For example, ION80 complex, a member of Swr1-like family, 
is recruited to DSB sites by its ARP8 subunit, and facilitates H2AX 
phosphorylation expansion by its ARP5 subunit at the “access” step 
[74,75]. Another example is the human NuA4 complex, which contains 
Tip60 acetyltransferase and the p400 ATPase motor protein. Once DSB 
stress occurs, histone H2A is replaced with H2A.Z variant by p400, and 
H4K16 acetylation is triggered by the TRRAP-Tip60 subunits. Both 
events result in the formation of relaxed chromatin [76].

ATP-independent Chromatin Modulation
Histone chaperones are histone-binding proteins that contribute 

to both assembly and disassembly of nucleosomes without using the 
ATP energy. Given their roles in chromatin structure regulation, it is 
anticipated that histone chaperones are involved in ARR as well. The 
FACT (facilitating chromatin transcription) complex is a heterodimer 
of Spt16 and SSRP1 (structure specific recognition protein-1), which 
is known in the regulation of transcription elongation [77,78]. Its 
function is inhibited by PARP1 mediated poly ADP-ribosylation 
during “repair” [79]. At the “restore” step, however, FACT complex 
replaces γΗ2AX-H2B with unmodified H2AX-H2B or H2A-H2B 
dimers thereby facilitating the removal of DNA damage markers [80]. 
In addition, Asf1 (anti-silencing function 1) and CAF-1 (chromatin 
assembly factor 1) synergize to exchange histones H3/H4 with newly 
synthesized H3/H4 during the “restore” step. The newly synthesized 
histone H3 is acetylated at Lys56, a modification important for the 
nucleosome reassembly process. However, it is rapidly removed by 
HDACs (hSIRT2/3) to allow chromatin condensation [81,82]. It is 
still unknown whether histone chaperones capture displaced histones 
during the initial “access” step [83].

In sum, histone modifications, ATP-dependent and -independent 
chromatin mechanisms play important roles at all steps of DDR. The 
crosstalk among these mechanisms is indispensable to trigger spatially 
and temporally coordinated events for DNA damage repair (Figure 1).

PWWP Domain-containing Proteins are Involved in 
DDR

Despite of the primary regulatory machinery of chromatin 
described above, some chromatin-associated proteins also serve as 
effectors to modulate DNA damage pathways. The PWWP domain 
containing proteins were recently found to play important roles in 
DDR (Table 1). In the following section, we will further discuss the 
role of this family of proteins serving as chromatin binding factors and 
DDR effectors.

The PWWP domain in DNA and methyl-histone binding

The PWWP domain is a member of the “Royal family” protein 
domains, including the PWWP-, Tudor-, chromo- and MBT-domains 
[84]. The PWWP domain features a conserved Pro-Trp-Trp-Pro 
core motif. It was firstly identified in the Wolf-Hirschhorn syndrome 
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candidate 1 (WHSC1) protein and was predicted to mediate protein-
protein and protein-DNA interactions [85]. So far, there are more than 
60 proteins that have been discovered to have PWWP domain [86]. 
Since PWWP domain shares significant sequence similarity with Tudor 
domain and other members, it was postulated to recognize methylated 
histone residues [84]. The bromodomain and PHD finger-containing 
protein 1 (BRPF1) binds to a histone H3K36me3 peptide using its 
PWWP domain [87]. Recently, the Dr. Min’s group systematically 
studied several representative human PWWP domains in biochemical 
and crystallization studies (Wu et al., 2011). A typical PWWP domain 
has three structural motifs: a N-terminal β-barrel, an insertion between 
the second and the third β-strands, and a C-terminal α-helix bundle 
[88]. The PWWP domain recognizes histone Lys methylation with an 
aromatic cage [88]. Meanwhile, the PWWP domain is also known as a 
non-specific DNA-binding module due to its DNA-interacting surface 

with basic electrostatic features. It is reported that the PWWP domain 
of DNA methyltransferase Dnmt3b targets the enzyme to pericentric 
heterochromatin [89]. The PWWP domain of mutS homolog 6 
(MSH6), is another example showing affinity to double stranded DNA 
during DNA mismatch repair [90]. 

The HRP subfamily of PWWP-domain containing proteins

The hepatoma-derived growth factor (HDGF) is a nuclear protein, 
which was initially identified as a protein with mitogenic activity 
[91,92]. HDGF and other HDGF-related proteins (HRPs), including 
HDGF-related proteins HRP-1, -2, -3, -4 and lens epithelium-derived 
growth factor (LEDGF) form a subfamily of proteins that contains the 
PWWP domain. Members of HRP subfamily share a highly conserved 
N-terminal region containing the PW(H)WP domain but differ from 
their diverse C-termini. 
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Figure 1: Chromatin structure alterations in the ARR model. According to the ARR model, when DNA double-strand breaks occur, conformational changes in chromatin 
allow the DNA repair machineries to access, repair, and restore the chromatin structures. At the “access” step, DNA damage sites are sensed and labeled with histone 
modifications as damage markers. The chromatin around breakage points becomes less condensed via nucleosomes sliding or eviction, which provides accessibility for 
DNA repair machinery. At the “repair” step, damage signaling of histone modifications spreads and maintains along the chromatin. DNA damage is repaired by NHEJ or HR. 
At the “restore” step, histone markers are removed, new histones are deposited, and the chromatin structure is resumed to pre-damage state. Many chromatin regulation 
mechanisms are involved, such as chromatin modifiers, ATP-dependent remodelers and ATP-independent histone chaperones.

Effectors Homologs PWWP Domain
Histone 

methylation 
recognition

Histone 
modifier 
activity

DNA damage 
stimuli

Role in DNA 
damage repair Role in DDR

Pdp1 Fission Yeast Residue 52-1124 H4K20me Not found UV, ionizing radiation Yes Set9 recruitment (damage 
signaling transduction)

MUM1/
EXPAND1

Human, mouse, 
rat, bovine Residue 411-472 Not found Not found Ionizing radiation, 

neocarzinostatin Yes Recruited by 53BP1; chromatin 
relaxation (NHEJ repair)

MMSET 
(WHSC1) Human, mouse Residue 222-286;

Residue 890-942 H4K20me Methylate 
H4K20 Ionizing radiation Yes 53 BP1 recruitment (damage 

signaling transduction)

LEDGF (PSIP1/
p75)

Human, mouse, 
rat, bovine Residue 1-63 H3K36me3 (PSIP1/

p52) Not found
Ionizing radiation, 

camptothecin 
mitomycin C

Yes CtiP recruitment (HR Repair)

Table 1: The role of the PWWP domain proteins in DNA damage reponse.
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As a prototype protein of this family, HDGF is highly expressed 
in certain tissues during development [93], and the over-expression 
of HDGF was detected in many human cancers [94]. HDGF protein 
interacts with C-terminal binding protein (CtBP) via a “PKDLF” motif 
within the PWWP domain to repress the SET and MYND domain 
containing 1 (SMYD1) gene expression [95]. Although most PWWP 
domain-containing proteins bind to DNA via non-specific manner, 
it is found that HDGF associates with a 37 bp DNA showing certain 
degree of sequence conservation on the SMYD1 promoter through 
its PWWP domain [96]. LEDGF is the alternative splicing isoform 
p75 of PC4 and SF2 interacting protein 1 (Psip1) [97]. It consists of a 
N-terminal PWWP domain, an AT hook-like motif and a C-terminal 
HIV integrase binding domain (IBD) [98,99]. LEDGF can bind to HIV-
1 integrase via its IBD. This prevents HIV-1 integrase from degradation 
by proteasome, and bridges viral genome integration to the host 
genome [100,101]. LEDGF is also shown to bind to MLL (myeloid/
lymphoid or mixed-lineage leukemia), an H3K4 methyltransferase, 
via Menin in transformed myeloid progenitors [102]. A short splicing 
isoform p52 of Psip1 is able to recognize H3K36me3 specifically via its 
PWWP domain and regulates alternative splicing [103]. Furthermore, 
HDGF2 (alias of HRP-2), which also contains a C-terminal IBD, plays 
an accessory role in LEDGF-mediated HIV integration [104]. Although 
extensive literature documents studied the potential biological function 
of HDGF and LEDGF, biological functions of HDGF2 and other 
members of this protein family remain still largely unknown.

PWWP domain-containing proteins in DDR

The PWWP domain-containing proteins function as chromatin-
associated factors and contribute to various biological events using 
DNA as a template, such as transcription and DNA replication. How 
the PWWP domain-containing proteins are involved in DNA repair 
process is a field of increasing interest. Four proteins with PWWP 
domain were shown to regulate DDR at various steps. 

The PWWP domain-containing protein (Pdp1) protein in fission 
yeast is a PWWP protein with no clear homologous protein found 
in higher eukaryotes [105]. Pdp1 prefers to recognize H4K20me1 
via its PWWP domain and facilitates histone methyltransferase Set9 
to further produce di- and tri-methylation of H4K20. Pdp1 is also 
critical for Crb2 (53BP1 homologous in yeast) accumulation and 
phosphorylation under DNA damage stress [105]. Depletion of Pdp1 
disrupts DNA repair pathway and makes yeast more sensitive to 
DNA damage treatment [105]. Moreover, the Pdp1 PWWP domain 
was found to bind both H4K20me3 peptides and double-strand DNA 
fragments simultaneously in biochemical and crystal studies [106].

The human melanoma associated antigen mutated 1 (MUM1/
EXPAND1) shares homology with proteins in mammals (mouse, rat 
and bovine) [107,108]. The PWWP domain of EXPAND1 locates at its 
C-terminal region. Although no histone methylation binding affinity 
has been found yet, EXPAND1 is a chromatin-bound factor recruited 
to damage sites by interacting with 53BP1 and enhances further 
chromatin decondensation upon DNA damage stress [107,108].

MMSET (also called WHSC1 or NSD2) containing a SET domain, 
has been studied to generate several histone methylations (H3K4me3, 
H3K27me3, H3K36me2, H3K36me3) and regulate transcription 
[109-113]. However, its function in DNA repair regulation was 
discovered only recently [70]. MMSET is phosphorylated by ATM 
and then accumulated at DNA damage sites depending on the 
H2AX-MDC1 protein complex. As a SET domain-containing histone 
methyltransferase that harbors a PWWP domain, MMSET induces di 

and tri-methylation of H4K20 accumulated at DSB sites and facilitates 
recruitment of 53BP1 [70]. Strikingly, MMSET seems to mediate 
crosstalk among multiple modifications, including phosphorylation, 
ubiquitination and methylation, during DDR [70].

Most recently, the Jäättelä group reported that LEDGF (Psip1/
p75) plays an important role in DSB repair in addition to its well-
known functions, such as promoting HIV integration and modulating 
alternative splicing [114]. LEDGF helps to defend genotoxicity 
and protect survival of cells under DNA damage by enhancing the 
recruitment of CtIP at DNA break sites especially [114]. Deficiency in 
LEDGF results in impaired DNA end resection during HR repair. 

To sum up, these PWWP proteins bind to chromatin and maintain 
genome stability in physiological conditions. Once DNA damage 
occurs, they react immediately to promote recruitment of DNA repair 
factors like 53BP1 and CtIP, and regulate chromatin condensation 
during DDR signaling (Table 1). It is anticipated the underlying 
correlation between the PWWP domain and DNA repair mechanism 
will be studied further with more identified PWWP proteins. 

p53 is a Key Effector after the Initiation Stage of DDR
Unlike less-characterized PWWP proteins, p53 is much more 

versatile as a “molecular node” that effects in multiple facets of DDR 
[115,116]. p53 was first discovered as an oncogene in 1979, but was later 
recognized as a tumor suppressor protein at the hub of an intriguing 
signaling network in mammalian cells [117-119]. Structural studies 
found that p53 contains an N-terminal transactivation and proline-
rich domain (residues 1-92), a DNA binding domain (residues 100-
300), a tetramerization domain (residues 307-355), and a C-terminal 
regulatory domain (residues 356-393) [120]. It is reported that p53 
gene is altered in more than 50% of human cancers, and the mutations 
predominantly occur within its conserved DNA binding domain 
[121,122]. Since tumor development always leads to accumulation of 
genetic DNA lesions, p53 plays a very critical role in guarding genome 
stability in DDR and preventing tumorigenesis [123,124].

Activation of p53 upon DNA damage stress

Under unstressed conditions, murine double minute 2 homolog 
(MDM2) exerts E3 ubiquitin-protein ligase activity to ubiquitinate p53. 
p53 upregulates MDM2 transcription to establish a negative feedback 
loop [125,126]. In addition, MDM4 (also known as MDMX) is 
identified in a heterodimer with MDM2 to facilitate p53 ubiquitination, 
and MDM4 alone can repress p53-mediated transcription [127,128]. 
p53 turnover is also controlled by other proteins such as DAXX (death-
domain associated protein) and HAUSP (herpersvirus-associated 
ubiquitin-specific protease), which reduce MDM2 auto-ubiquitination 
and further enhance p53 degradation [129,130]. In this way, p53 is kept 
at very low levels in a latent form in cells without DNA damage stress 
[128,131,132]. 

When DNA damage stimuli are detected, activation of p53 can be 
achieved by several steps (Figure 2) [120]. First, p53 is stabilized by 
decreasing its ubiquitination mediated by the MDM2 pathway. The 
phosphoatidylinositol-3 kinase-like kinase family members, ATM and 
ATR (ataxia-telangiectasia and Rad3-related) phosphorylate MDM2 
and disrupt MDM2-DAXX-HAUSP complex thereby inducing p53 
accumulation by preventing its ubiquitination [133]. 

Accumulated p53 is further modified to its active form with 
multiple post-translational modifications. Overlapping with the 
stabilization step, ATM, ATR and DNA-PK kinases phosphorylate 
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Ser15 of p53 [134-137]. Thr18 of p53 is phosphorylated by casein 
kinase 1 (CK1) [138]. The checkpoint kinase 1/2 (Chk1/2), which are 
the substrates of ATM and ATR, phosphorylate Ser20 of p53 [139]. 
These key phosphorylation sites within transactivation domain are 
crucial for the dissociation of p53 from MDM2/MDM4, and guide a 
range of modifications in an intricate but ordered way. The covalent 
modifications tailor p53 with enhanced activities in DNA binding 
ability, tetramerization and gene activation. For example, the HAT 
p300/CBP, which is recruited to p53 after S15/37 phosphorylation, 
acetylates lysine residues 373 and 382 at the C-terminal regulatory 
domain to increase the association of p53 to the p21 promoter region 
[140]. In addition, acetylation of K120 and K164 within DNA-binding 
domain by HATs MOF/Tip60 and p300/CBP, respectively, promotes 
specific binding of p53 to the p21 and PUMA promoters [141,142]. 
Further, methylation of p53 at C-terminal residue K372 contributes to 
the p21 gene activation by increasing the affinity between p53 and the 
p21 promoter [143]. After these activation steps, p53 binds to its target 
genes with specific recognition elements and recruits various cofactors 
to fine-tune transcription, which may lead to diverse downstream 
events such as cell-cycle arrest, apoptosis and DNA repair (Figure 2) 
[144]. 

Interestingly, p53 can recognize DNA fragments via non-specific 
manner to participate in DNA repair process [145]. Moreover, p53 itself 
may translocate to cytoplasm and facilitate transcription-independent 
apoptosis [146]. Since the different roles of p53 are important in 
deciding different cellular outcomes, it will be discussed with more 
details in the following paragraphs.

p53-mediated pathways with different cell fates

As a cellular gatekeeper, p53 is always accountable for answering 
the question about “to be or not to be”, i.e., the choice between to live 
or to die after DNA damages [124].

Cell-cycle arrest: Upon activation by DNA damages, p53 serves as 
a transcriptional factor to regulate the expression of genes involved in 
the cell-cycle arrest. The cell cycle includes four distinct stages, the G1, 
S, G2 and M phases. Multiple checkpoints are involved in the whole 
cell cycle to guarantee the accuracy of the cell division [147]. The G1/S 
checkpoint blocks DNA synthesis if DNA damage is detected. If there 
is no DNA damage present, several cyclin/cdk complexes sequentially 
work to phosphorylate the tumor suppressor pRb, leading to the 
dissociation of transcription factor E2F from pRb and the activation of 
genes important for DNA replication initiation [148] p53 controls the 
G1/S cell cycle arrest by activating p21, which inhibits cyclin E/cdk2 
and cyclin A/cdk2 complexes [149]. 

Another important DNA damage checkpoint occurs at the G2/M 
phase transition. The cyclin B/cdc2 complex is the main target for the 
G2/M phase checkpoint. p53 upregulates p21 and GADD45, which 
in turn induce the dissociation of cdc2 from cyclin B [150,151]. 14-
3-3σ, another p53 target, promotes sequestration of cdc2 complex in 
cytoplasm [152,153]. Meanwhile, p53 can directly repress Cdc25C, 
which dephosphorylates the cdc2 complex for activation [154]. In sum, 
p53 maintains cell cycle arrest by regulating its target genes related 
to the DNA damage checkpoints at the G1/S and G2/M transitions. 
On the other hand, p53-deficient cells have failures in pausing at the S 
phase and mitosis checkpoints [155-158]. 

DNA damage repair: Since cell-cycle checkpoints always postpone 
progression of the cell cycle under DNA damage conditions, it is 
considered as a surveillance mechanism to allow enough time for DNA 
repair. Although p53 is not a primary sensor of DNA damage stresses, 
it functions as a critical effector through transcriptional regulation 
or association with certain DNA repair factors. At the p53-depenent 
transcription aspect, xeroderma pigmentosum group C (XPC) is a 
p53 target gene and the protein senses pyrimidine dimers and recruits 
TFIIH complex to the DNA damage sites during NER [159-161]. As 
mentioned before, p53 transactivates WIP1, which can remove DNA 
damage marker γH2AX to restore the chromatin to pre-damage status 
[55]. In addition, p53 is able to directly interact with some proteins 
involved in DNA repair. For example, p53 dimethylated at K370 and 
K382 after DNA damage has higher affinity to 53BP1, which may 
enhance the involvement of p53 during the repair process [162]. 
More strikingly in HR repair, p53 can inhibit heteroduplex formation 
mediated by RAD51 due to their direct association [163-165]. p53 is 
found to recognize several DNA structures including single-strand 
DNA, DSB ends, DNA with holiday junctions, DNA duplex with 
insertion-deletion-lesion mismatches, DNA with single-stranded gap, 
and triple-stranded DNA [145]. These DNA structures usually appear 
as the intermediates of DNA damage and repair, and associate with p53 
via non-specific sequence binding manners [145]. Additionally, p53 
is reported to facilitate reannealing and end-joining at DNA damage 
sites during NHEJ [166,167]. However, the direct roles of p53 in these 
damaged DNA structures are yet to be explored.

Apoptosis: When DNA repair machinery is helpless to recover 
from extensive DNA damages, p53 triggers apoptosis via transcription-
dependent or –independent pathways, to terminate those cells that 
may do damage to the whole organism. On one hand, p53 is known 
to induce expression of pro-apoptotic genes, such as PUMA (p53 
upregulated modulator of apoptosis), BAX (Bcl2-associated protein 
X), and BAK (Bcl-2 antagonist/killer) [168-170]. PUMA and some 
other factors lead to the release of BAX and BAK from anti-apoptotic 
proteins. Activated BAX and BAK then increase the permeability 
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Figure 2: The role of p53 in DNA damage repair and cell fate 
determination. DNA damage stress activates kinases, such as ATM, ATR, 
Chk1/2, which stabilize and release p53 from its negative regulator the MDM2 
protein complex. Activated p53 are further modified by various modifications, 
including phosphorylation, acetylation, methylation, etc. Modified p53 triggers 
cells to undergo cell-cycle arrest, either to proliferation after successful DNA 
repair or senescence without repair. Moreover, p53 can lead to apoptosis 
when the chromatin damage is too severe.
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of mitochondria membrane, and induce cytochrome c release and 
apoptosis [171,172]. On the other hand, p53 itself can be targeted to 
and accumulate in mitochondria for apoptosis [173,174]. The p53R72 
polymorphism has been shown to have greater ability in mitochondria 
localization and apoptosis induction than the p53P72 allele [175]. 
Although there is no mitochondria-targeting sequence identified in 
p53, some references reveal that Tid1 (tumorous imaginal discs 1) or 
OKL38 (ovary, kidney and liver protein 38) may help to regulate p53 
mitochondrial translocation [176,177]. 

In short, p53 functions as a “cellular rheostat” [115], which can 
receive and gauge the upstream signals, transfer them to downstream 
effectors with more specific cellular functions leading cells to their 
unique fates and destinations (Figure 2). 

Summary and Perspectives
The DNA damage response signaling cascade is initiated by 

detection of DNA breakage sites (Figure 3). The sensors pass the 
damage messages to transducers that are mainly kinases, which pass 
on the signals to modulate chromatin structures by many factors, 
such as histone modification enzymes, chromatin remodelers, histone 
chaperones. The altered chromatin structure facilitates and coordinates 
many events critical for repair of the damaged chromatin. Chromatin 
binding proteins, such as the PWWP domain containing proteins, 
are effectors recruited to the DNA damage sites to facilitate the 
repairing process. However, these proteins can further crosstalk with 
the chromatin modifiers via feedback loops to reinforce the function 
of the DNA damage repair machineries. Furthermore, the p53 tumor 
suppressor can regulate the expression of downstream target genes 
to determine the cellular outcomes after DNA damage, including cell 
cycle arrest, senescence or apoptosis. It is notable that cytoplasmic p53 
plays a direct role in apoptosis via a mitochondrial mediated pathway. 
In sum, chromatin maybe viewed to play a pivotal role in organizing 
the entire DNA damage response and facilitating the cellular fate 
determination after DNA damages.
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