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Introduction
Free radicals are a group of extremely reactive species with one or 

more unpaired electrons that modify other biomolecules by capturing 
their electron(s). This makes the biomolecule to lose its electron(s) and 
to become a free radical itself triggering a chain reaction leading to a 
peroxidative damage disrupting living cells [1]. Human spermatozoa 
are particularly susceptible to this damage because they contain high 
concentrations of Polyunsaturated Fatty Acids (PUFAs), they have no 
capacity for membrane repair and they possess the ability to generate 
ROS themselves, mainly superoxide anion and hydrogen peroxide that 
are essential, in low quantity, to stimulate a number of events which 
are involved in capacitation, hyper activation, and sperm-oocyte fusion 
[2]. When for any reason the concentration of oxygen metabolites 
becomes elevated, sperm cells have a limited capacity to protect 
themselves from oxidative stress. A variety of defence mechanisms 
encompassing antioxidant enzymes (Superoxide Dismutase (SOD), 
catalase, glutathione peroxidase and reductase), vitamins (E, C, and 
carotenoids), and biomolecules (glutathione and ubiquinol) are 
involved in biological systems. A balance between the benefits and risks 
from ROS and antioxidants appears to be necessary for the survival and 
normal functioning of spermatozoa [3,4]. 

Transition metal ions can make electron donations to oxygen, 
forming superoxide or hydrogen peroxide, which is further reduced 
to an extremely reactive OH• radical that induces oxidative stress. 
Transition metals ions, mainly iron, are involved in Fenton’s reaction, 
which produces highly reactive hydroxyl radicals. The Fenton reaction, 

in the human, has its in vivo significance mainly in case of overload 
by iron, i.e., in the conditions of hemochromatosis, b-talassemia and 
hemodialysis. Apparently high amounts of “free available iron” can 
have deleterious effects [5].

Many studies documented that mutations in superoxide dismutase 
enzymes [6] and iron-uptake regulator [7] may lead to excess levels 
of superoxide anion radicals and iron overload. Such a condition 
leads to the possibility of redox active iron to participate in organic 
and inorganic oxygen radical reactions, such as stimulating Lipid 
Peroxidation (LP) and catalyzing the formation of damaging hydroxyl 
radicals with subsequent tissue damage [8].

The LP involves the continuous formation of hydro peroxides 
(LOOH) as primary oxidation products that may breakdown to a 
variety of nonvolatile and volatile secondary products [9,10]. The lipid 
hydroperoxide can be degraded by a Fenton-type reaction in presence 
of Fe2+ to another alkoxyl radical (LO•). This radical also promotes the 
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Abstract
Background: Transition metal ions, such as iron, can make electron donations to oxygen forming superoxide or 

hydrogen peroxide, which is further reduced to an extremely reactive hydroxyl radical that induces oxidative stress. 
The purpose of the present study was to design a system that could easily detect and reliably measure the ferrous 
oxidation associated to oxygen radical reactions in the sperm samples.

Methods: A total of 64 sperm samples from 11 men who had normal semen parameters and proven fertility and 
53 male partners of couple experiencing primary infertility, were included in the study. The semen samples from 
oligoasthenoteratozoospermic patients was divided on the basis of spermatic parameters into moderate, when the 
sperm concentration was ≥5 × 106/ml and in severe when the concentration was <5 × 106/ml. The evaluation of the 
ferrous oxidation was performed measuring the formation of iron complexes between ferric ions and thiocyanate 
anions by spectrofluorimetry. 

Results: The concentration of the ferric thiocyanate complex ions was significantly higher in pathological 
sperm samples (137.6 ± 10.8 μmol/l in moderate oligoasthenoteratozoospermic, 170.0 ± 25.4 μmol/l in severe 
oligoasthenoteratozoospermic and 155.4 ± 7.3 μmol/l in non-obtructive azoospermic men), when compared with 
both infertile noormozoospermic (92.4 ± 10.7 μmol/l) (P<0.015) and with samples from fertile men (76.3 ± 6.2 
μmol/l) (P<0.005). No significant differences were found in the concentration of ferric thiocyanate complex among 
the different pathological groups when compared to each other and in infertile noormozoospermic patients when 
compared with the samples from men of proven fertility (P=0.168). Accordingly, an inverse correlation was found 
between the concentration of the ferric thiocyanate complex and total motility, progressive motility and morphology.

Conclusions: This preliminary study shows that the method proposed detect quickly and reliably measures the 
ferrous oxidation associated to oxygen radical reactions in the sperm samples.
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chain reaction of LP [11]. Therefore, the peroxide value is an indicator 
of the initial stages of oxidative change [12]. 

A number of methods have been developed for determination 
of peroxide value, among which the chemical method based on 
the oxidation of ferrous ion (Fe2+) to ferric ion (Fe3+) in an acidic 
medium and the formation of iron complexes have also been widely 
accepted. This method spectrophotometrically measures the ability of 
lipid hydroperoxides to oxidize ferrous ions to ferric ions, which are 
complexed by either thiocyanate or xylenol orange [13-15].

The purpose of the present study was to design a system that could 
easily detect and reliably measure the ferrous oxidation associated to 
organic and inorganic oxygen radical reactions, in the sperm samples 
from infertile patients and men of proven fertility.

Materials and Methods
The patient population included a total of 64 sperm samples from 

men with normal semen parameters and proven fertility (n=11, age 
38.6 ± 6.0 years) and partners of couple experiencing primary infertility 
with normal (n=11, age 36.9 ± 4.3 years) and abnormal semen 
parameters (n=42, age 38.2 ± 6.2 years) undergoing assisted conception 
cycles in our clinic. Subjects whose ejaculates contained white blood 
cells concentration greater than 1.0 × 106/ml, infertility attributed to 
obstructive pathology, infection, medication or trauma, were excluded 
from the study. All patients signed a specific informed consent before 
entering this study that was approved by our Institutional Review Board 
(no. 20091123).

Microscopic sperm analysis

Standard sperm analysis was performed after sample’s fluidification, 
by assessing viscosity, volume, concentration, motility, vitality, 
morphology, leucocyte and erythrocyte count [16]. Morphology 
was classified according to strict criteria [17]. On the basis of semen 
parameters, the patients were grouped into normozoospermic (n=22), 
Oligoasthenoteratozoospermic (OAT) (n=38), and non-obtructive 
azoospermic (NOA) men (n=4) (Table 1). The semen samples from 
OAT patients was divided on the basis of spermatic parameters (count, 
motility and morphology) into moderate-OAT (m-OAT) (n=28) 
referred to samples where the cell count was ≥5 × 106/ml, while in 
severe OAT (s-OAT) (n=10) the sperm concentration was <5 × 106/
ml. All cell counts were performed by a Neubauer improved camera.
Morphology was analyzed by using the Papanicolau staining method
and the preparation was examined with an 100x oil-immersion
brightfield objective.

Analysis of Ferrous Oxidation in the Samples 
The evaluations of ferrous oxidation were performed 30 minutes 

after each sample ejaculation by measuring a complex between Fe3+ Ions 
and the thiocyanate anion (SCN-) by spectrofluorimetry (kit provided 
by Ferpharma, Diacron International). The Fe3+ ion binds to the SCN- 

anion and forms a coloured complex (Fe (SCN)2+), whose absorbance 
is directly proportional to the Fe2+ oxidized product of oxygen radical 
reactions into the seminal plasma. The kit used was made by three 
solutions: R1 (thiocyanate salt alcoholic solution), R2 (Fe2+ ion solution) 
and the standard (4 meq/l Cumene hydroperoxide).

At each measurement, the spectrofluorimeter (Free Carpe Diem, 
Diacron International) was calibrated by the standard solution. The 
Standard was diluted with distilled water (1:10) to obtain a final solution 

of 400 µeq/l and 10 µl were added to the same volume of R1 followed 
by the addition of 100 µl of R2. The final solution was introduced 
into a specific plastic cuvette (provided with the kit by Ferpharma, 
Diacron International) that was inserted into the spectrofluorimeter. 
After 4 minutes of incubation to 37°C, the instrument gave the value 
of concentration of the standard solution, expressed in meq/l. In this 
way it was possible obtain the K Factor (multiplicative factor) for the 
evaluation of concentration of the samples. At each measurement a 
sample blank is also performed to account for background interferences. 
The sample blank contains 1 ml of R1 and 100 µl of R2 without seminal 
fluid.

The evaluations of ferrous oxidation in the sperm samples, was 
determined by adding 10 µl of seminal fluid to 1.5 ml eppendorf tube 
contain 1 ml of R1, followed by the addition of 100 µl of R2. The final 
preparation was incubated at 37 °C for 2 minutes. After centrifugation at 
600g for 2 minutes, the sample was transferred into a plastic cuvette and 
the absorbance, due to production of a blood-red coloured complex, 
was measured by the spectrofluorimeter using an excitation wavelength 
of 505 nm. The values provided by the instrument are expressed in 
meq/l, and then converted to μmol/l by multiplying by 500. Each sperm 
sample was underwent at least three determinations.

Statistical Analysis
The Mann-Whitney U test was used to test whether the medians 

of two independent distributions were different. This test is non-
parametric, which means that the distributions can be of any shape. 
The statistical package PAST (Øyvind Hammer, PAleontological 
STatistics Version 3.0, available at http://folk.uio.no/ohammer/past/), 
was used for numeric calculations. This statistics software was also used 
to evaluate the Pearson’s correlation coefficient, r and the probability 
that two variables were not correlated [18-20]. Results were considered 
significant at P<0.05. For every group of study, the values of the 
concentration and the total quantity of ferric thiocyanate complex 
ions were presented as mean ± standard error of the medians of the 
determinations carried. The Cohen’s d was used to measure the effect 
sizes between the groups [21]. Cohen proposes the following categories 
for the interpretation of magnitude of d: < 0.2, no effect; 0.2 ≤ to < 0.5, 
small effect; 0.5 ≤ to < 0.8, medium effect; ≥ 0.8, large effect.

Results
No significant differences were detected for any of the assessed 

parameters between infertile normozoospermic patients and patients 
of proven fertility (P>0.05) (Table 1). 

As shown in Figure 1, the concentration of ferric thiocyanate 
complex ions was significantly higher in pathological sperm samples 
(137.6 ± 10.8 μmol/l, range 47.5-283.5 μmol/l in m-OAT; 170.0 ± 25.4 
μmol/l, range 83.0-314.0 μmol/l in s-OAT; 155.4 ± 7.3 μmol/l, range 
135.0-169.1 μmol/l in NOA) when compared with both infertile 
normozoospermic samples (92.4 ± 10.7 μmol/l, range 36.8-135.0 
μmol/l) (P<0.015) and with samples from fertile men (76.3 ± 6.2 μmol/l, 
range 37.0-106.5 μmol/l) (P<0.006). 

The Cohen’s d, used to measure the effect sizes comparing the 
m-OAT, s-OAT and NOA groups with infertile normozoospermic
and fertile groups, was >0.8 for all the groups. This means that the
magnitude of effect size was large in all the groups compared.

No differences were found between OAT moderate samples and 
OAT severe samples, OAT moderate samples and NOA samples and 
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OAT severe samples and NOA samples (P=0.289, P=0.292, P=0.724 
respectively) and in the infertile normozoospermic patients when 
compared with the samples from men of proven fertility (P=0.168). The 
Cohen’s d between the infertile normozoospermic and fertile groups 
was 0.6. The magnitude of effect size between these groups with equal 
sample size was medium.

The total quantity of ferric thiocyanate complex ions in the ejaculate 
was also calculated. The trend was similar to the concentration of ferric 
thiocyanate complex ions per ml, with the highest levels in pathological 
sperm (436.1 ± 50.2 nmol, range 57.0-1132.6 nmol, in m-OAT; 514.2 
± 89.6 nmol, range 245.3-1099.0 nmol, in s-OAT; 339.4 ± 61.6 nmol, 
range 219.9-512.0 nmol, in NOA) when compared with both infertile 
normozoospermic samples (281.7 ± 84.7 nmol, range 55.5-1060.4 
nmol) (P<0.02) and with fertile men (242.1 ± 50.1 nmol, range 55.5-
614.3 nmol) (P<0.02). No differences were found between fertile and 
normal infertile sample (P=0.92), between OAT moderate samples 
and OAT severe samples, OAT moderate samples and NOA samples 
and OAT severe samples and NOA samples (P=0.48, P=0.71, P=0.29 
respectively) (value not represent in the figure).

A significant inverse correlation was found between the 
concentration of ferric thiocyanate complex ions in the ejaculated 
samples and total motility (r=-0.39, P=0.0022, Figure 2A), progressive 
motility (r=-0.55, P=1.19E-05, Figure 2B) and morphology (r=-0.45, 
P=0.00034, Figure 2C).

Discussion and Conclusion 
The possibility that the peroxidative damage to sperm plasma 

membrane might be involved in those cases of infertility characterized 
by fertilization failure was suggested by studies indicating the increased 
production of ROS by spermatozoa as a possible cause [22,23]. Under 
such conditions, the main defence mechanism of human spermatozoa, 
the enzyme SOD, would be overwhelmed and the resulting combination 
of hydrogen peroxide and excess superoxide anion would favour the 
production of hydroxyl radicals, via the Haber-Weiss reaction [24,25]. 
The rate constant for this reaction is considerably enhanced by the 
presence of transition elements such as iron, the availability of which 
has been demonstrated in human seminal plasma [26]. The hydroxyl 
radicals formed as a result of the Haber-Weiss reaction are powerful 
initiators of lipid peroxidation and would be expected to impair human 
sperm function through peroxidation-induced changes in membrane 
fluidity and integrity [27,28]. It is also known that leukocytes, 
particularly neutrophils and macrophages in the seminal plasma are 
a source of ROS, whose production is further increased by lifestyle 
factors such as smoking and pollution with derived damage on sperm 
DNA integrity [29].

A practical method to estimate the ferrous oxidation in a sperm 
sample is represented by the quantification of ferric ions through the 
formation of the ferric thiocyanate complex ions (Fe(SCN)2+). The 
concentration of this substance, red in colour, is evaluated by measuring 
the absorbance via a spectrofluorimeter. By using this approach, we 
could confirm that the ferric thiocyanate complex ions concentration 
was increased in pathological samples when compared with 
normozoospermic, both infertile and fertile (Fig. 1), indicating a tight 
correlation between morphological and functional properties. This was 
furthermore confirmed by correlation studies that reported an inverse 
association of thiocyanate complex ions concentration with motility 
and morphology, although the correlation was moderate (Figure 2). 
However the Cohen’s d, used to measure the effect sizes comparing 
the pathological samples with infertile normozoospermic and fertile 
groups, was >0.8 for all the groups, indicating that the magnitude of 
effect size between these groups with different sample size was large.

Concentration 
No. sperm × 106/ml

M ± SD
(range)

Total motility
(%)

M ± SD
(range)

Progressive motility
(%)

M ± SD
(range)

Morphology
(%)

M ± SD
(range)

Fertile
n=11

111.4 ± 92.6a

(20-305)
50.4 ± 10.6b

(40-70) 
36.8 ± 15.4c

(15-60) 
16.4 ± 2.5d

(14-20) 
Infertile normozoospermic

n=11
 72.8 ± 27.4a

 (35-135)
53.2 ± 9.0b

(45-70) 
39.5 ± 10.1c

(30-60) 
16.6 ± 1.9d

(14-19) 
Infertile moderate-OAT

n=28 
42.0 ± 36.2
(5-131.6) 

36.4 ± 12.5
(20-65) 

23.0 ± 10.4
(5-45) 

9.8 ± 2.8
(4-16) 

Infertile severe-OAT
n=10

2.3 ± 1.6
(0.04-4.8) 

22.5 ± 15.1
(10-55) 

11.5 ± 13.8
(5-50) 

5.6 ± 2.5
(2-10) 

Infertile NOA
n=4 0 0 0 0

OAT: Oligoasthenoteratozoospermic; NOA: Non-Obtructive Azoospermic; a,b,c,dP>0.05.
Table 1: Sperm samples parameters of the studied patients. All figures in each column are significantly different (P<0.05) with the exception of the comparisons between 
fertile and infertile normozoospermic men (P>0.05).

Figure 1: Concentration of ferric thiocynate complex ions in fertile and 
infertile men. The values of the concentrations of ferric thiocynate complex 
ions are presented mean ± SE of the medians of the deterinations carried.
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This suggests that the statistical significance between these groups 
depend not only from the different concentration of ferric thiocyanate 
complex ions but also on the sample size. Furthermore also the absence 
of statistically significant differences between the concentrations of 
ferric thiocyanate complex ions in infertile normozoospermic and 
fertile groups could be depending on the sample size. In fact the Cohen’s 
d between the infertile normozoospermic and fertile groups was 0.6. It 
might be necessary increase the sample size in both fertile and infertile 
groups.

Excessive ROS levels are related to an increase in lipid peroxidation 
of the sperm plasma membrane [25]. Lipid peroxidation results in 
loss of membrane fluidity, which is essential for sperm motility and 
sperm oocyte fusion. Several studies have noted that levels of ROS 
correlate with motility. Motility is impaired either because adenosine 
triphosphate depletion in axons or lipid peroxidation of the sperm 
plasma membrane [30,31]. 

The our results show that the concentration of ferric thiocyanate 
complex ions in ejaculated samples was inversely correlated with total 
motility and progressive motility (Figure 2A and 2B), indicating that the 
production of thiocynate complex has associated with the presence in 
the severe semen samples of a high concentration of ROS; in particular 

with the presence of the radicals O2
- • and H2O2 that can generate the 

highly reactive hydroxyl radical, increasing the rate of cellular damage 
through peroxidation-induced change and in membrane fluidity and 
integrity, leading abnormal sperm function and infertility [32,33]. The 
concentration of ferric thiocyanate complex ions was also inversely 
correlated with the presence of morphologically abnormal spermatozoa 
(Figure 2C), another important source of ROS [31].

In the NOA samples the concentration of ferric thiocyanate 
complex ions was significantly higher with respect to fertile and normal 
infertile sample. Probably the origin of ROS in the NOA semen samples 
was associated to the presence of immature sperm cells, infiltrating 
macrophage and diminished antioxidant activity. Theoretically, cellular 
damage in the semen is the result of an improper balance between 
ROS generation and scavenging activities. The scavenging potential 
in gonads and seminal fluid is normally maintained by adequate levels 
of antioxidants Superoxide Dismutase (SOD), catalase, glutathione 
peroxidase and reductase [32,33]. This balance can be referred to as 
Oxidative Stress Status (OSS) and its assessment may play a critical role 
in monitoring sperm damage and infertility [34]. A situation in which 
there is a shift in this ROS balance towards pro-oxidants, because of 
either excess ROS or diminished antioxidants, can be classified in terms 
of positive oxidative stress status [34]. 

Figure 2: Correalation between concentration of ferric thiocynate complex ions and semen parameters total mobility (A), progressive motility (B) and morphology (C).
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The progression of lipid peroxidation can be monitored by measuring 
products of LP such as conjugated dienes, lipid hydroperoxides, 
aldehydes, aldehyde-protein adducts, alkanes or the depletion of 
substrates like PUFAs or antioxidants, besides chemiluminescence. 
The measurement of several oxidation products enables assessment at 
different stages of the oxidative pathway, providing detailed information 
of this dynamic process [35]. 

The most convenient, and widely used, assay of lipid peroxidation is 
the Thiobarbituric Acid (TBA) reaction for Malondialdehyde (MDA), 
a small carbonyl compound which is produced as an end product of 
lipid peroxidation, probably from cyclic peroxides or endoperoxides. 
The generation of MDA can be significantly enhanced by the addition 
of a ferrous ion promoter to the incubation system [27]. Have been 
demonstrated that ferrous ions catalyse the breakdown of pre-existing 
lipid hydroperoxides in spermatozoa and the subsequent propagation 
of a lipid peroxidation chain reaction through the generation of peroxyl 
and alkoxyl radicals [36-38]. 

The oxidative stress evaluation using our method was determined 
by the addition of ferrous ions to the sperm samples and measuring the 
complex between Fe3+ Ions and the thiocyanate anion. The concentration 
of ferric thiocyanate complex produced could be proportional to the 
quantity of pre-existing lipid hydroperoxides in the sperm plasma 
membrane with which to initiate the peroxidative chain reaction, but 
this assay is not specific for estimate the lipid peroxidation. 

In conclusion this preliminary study, show that the method 
proposed provide a quick (within 10 minutes) and reliable (overlapping 
values in the triplicates) method for the evaluation of the ferrous 
oxidation in the semen samples due to the oxygen radical reactions.
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