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INTRODUCTION

Selective oxidation of alcohols to their corresponding carbonyl 
compounds is one of the most important research fields in 
organic synthesis processes and is widely used for the production 
of drugs, vitamins and fragrances, perfumery and pharmaceutical 
industries [1-6]. Various oxidants such as NaClO, Na

2
Cr

2
O

7
, 

KMnO
4
 and MnO

2
 have been used for oxidation of alcohols [7-

12]. However, these oxidants are commonly hazardous or toxic 
and heavy-metal waste produces from these oxidants. Moreover, 
the reactions are often performed in undesirable solvents 
such as chlorinated hydrocarbons. So, for oxidation of alcohol 
suggested and developed ecofriendly techniques [13]. Therefore, 
for achieving to better condition conversion of different alcohols 
into corresponding aldehydes and ketones was performed with 
different catalyst. In this manner, variety of homogeneous 
catalysts has been reported for oxidation of alcohol [14-20]. But 
the homogeneous catalysts have disadvantages such as difficulty 
in the catalyst recovery and also contamination of the reaction 
media with metal species. Application of heterogeneous catalysts 
instead of homogeneous ones can solve the above mentioned 

problems and heterogeneous catalysts have favorable structural 
properties, high chemical stability, activity, selectivity and etc., 
[21-25]. Graphene is a one of supports among the supported 
catalysts. Graphene is a single atom thick sheet of carbon atoms 
with a two-dimensional hexagonal lattice structure material, has 
attracted extensive interest since the discovery of the material 
in 2004, because of the properties such as chemical, electrical, 
mechanical, optical and thermal, the grapheme has become 
an innovative material [26-30]. Graphene can be used in many 
applications such as gas sensors, biosensors, energy production, 
transistors, energy conversion and photocatalysis [31-36]. The 
lattice defects, vacancies, impurities, dopants and chemical 
modifications are widely considered as main objective to enhance 
the catalytic activity, catalytic selectivity, recovery and reusability 
of graphene based catalysts [37,38]. The development of new 
heterogeneous catalysts on various supports is necessary to search 
of more efficient ways to provide a promising solution taking 
into account environmental considerations and fabrication of an 
efficient catalyst [39,40]. Recently, growing interest has emerge 
in graphene supported metal catalysts (Au, Ag, Pd, Pt, Co, Rh) 
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which have been mainly applied in the liquid phase hydrogenation 
reactions in various applications reactions and exhibit enhanced 
catalytic activity [41-45].    

Industrially, oxidation of alcohols is very important due to their 
use as starting materials for a variety of ketones, aldehydes, 
acids, etc., required to produce many of synthetic substances like 
plastics, detergents, paints, cosmetics, food additives and drug 
intermediates [46]. Indeed, catalytic reaction of inexpensive and 
widely available chemicals to produce high value added chemicals 
remains a significant task in many important current industrial 
and fine chemical processes [47]. Here we wish to report the 
preparation, characterization and investigation of catalytic activity 
of copper-thiazole supported on grapheme oxide functionalized 
with a 3-chloropropyl trimethoxy silane in the oxidation of 
alcohols with tert-BuOOH (Figure 1).

MATERIALS AND METHODS

All the reagents used were obtained from Fluka and Merck 
chemical companies. The FT-IR spectra were confirmed by 
a Bruker Vector 22 spectrometer. The SIGMA VP-500 Field 
Emission Scanning Electron Microscope (FE-SEM) was used for 
achieving the morphological features and also used from Energy 
Dispersive X-ray Analysis (EDXA) detector. Elemental analysis 
was performed on a LECO, CHNS-932 analyzer. The amount 
of copper in catalyst was determined by double beam Atomic 
Absorption Spectrophotometer (AAS), Varian AA 240, USA. 
The Thermal Gravimetric Analysis (TGA) curve was approved 
on the STA 1500 instrument at a linear heating rate of 5°C/
min-1 from 30°C to 800°C. XRD pattern was verified using a 
PANalytical X-Pert diffractometer. Gas Chromatography (GC) 
investigates was achieved with a Shimadzu GC-16A instrument 
using a 2 m column packed with silicon DC-200 or Carbowax 
20 m.

Synthesis of Graphene Oxide-Chloropropyltrimethoxysilane 
(GO-CPTMS)

Synthesis of Graphene Oxide (GO) was achieved by the Hummers 
method [48]. After that, the graphene oxide (2.0 g) was dispersed 
in 40 mL of toluene and then 3-chloropropyltrimethoxysilane 
(CPTMS) (10 ml) was gradually added into the prepared mixture. 

The reaction suspension was refluxed for 24 h. After end of the 
reaction, the achieved GO-CPTMS was filtrated and dried under 
vacuum at 110°C for 12 h.

Preparation of catalyst

The GO-CPTMS (500 mg) was dispersed in 60 ml of N,N-
Dimethylformamide (DMF) with stirring for 30 min. Then, the 
prepared 3,5–bis(2-benzothiazolyl) pyridine (BTP ligand) (80 mg) 
was added to the resulting sample and refluxed for 24 h [49]. 
Then, the resulting solid was filtrated and washed carefully with 
DMF and Et

2
O. Finally, the GO-CP-BTP (200 mg) was dispersed 

in methanol (20 mL) and CuBr2 salt (100 mg) was added to 
this solution. The mixture was refluxed for 24 h. After stirring, 
the catalyst was filtered and washed with methanol to remove 
unreacted CuBr

2
 and dried at 60°C (Figure 2).

Catalytic studies of catalyst for oxidation of alcohols

A mixture of 0.25 mmol of alcohol and 0.5 mmol of tert-butyl 
hydroperoxide in H

2
O (3 ml) at room temperature was prepared. 

Then, the adequate amount of catalyst (100 mg of catalyst, 0.17 
mol% Cu) was added to the solution. The progress of the reaction 
was monitored by Gas Chromatography (GC). At the end of the 
reaction, the catalyst was separated by simple filtration, washed 
with H2O and dried in the oven.

RESULTS AND DISCUSSION

Synthesis and characterization of [Cu(II)Br2-BTP@GO] 
catalyst

FT-IR spectroscopy: The FT-IR spectra of GO, GO-CP, GO-
CP-BTP, [Cu(II)Br

2
-BTP@GO] and reused catalyst are presented 

in Figures 3 and 4a.  The FT-IR spectrum of  GO shown in 
Figure 3, exhibited a strong band in the region of 1726 cm-1 is 
revealed to carboxylic acid (C=O) group, and the C-O (epoxy), 
C-OH and C=C groups were shown at 1051, 1223 and 1618 
cm-1 respectively [50,51]. Also, a broad band in the region of 
3429 cm-1 attributed to O-H stretching absorption.  Figure 4a 
exhibited characteristic bands at 1108 and 1025 cm-1 for Si-O-Si 
and Si-O-C bonds, respectively. Aliphatic C-H bonds presented 
at 2890 and 2937 cm-1 due to the GO modification. The FT-
IR spectra of GO-CP-BTP exhibited a peak at 1648 cm-1 which 
is attributed to stretching vibration of imine group. This band 
imine group in Figure 4b at 1670 cm-1 shifted to lower frequency 
(1514 cm-1) in [Cu(II)Br

2
-BTP@GO] catalyst, which confirmed 

that coordination of copper was successfully completed onto 
the surface of GO-CP-BTP. Additionally, the FT-IR spectrum of 
recovered catalyst was shown in Figure 4a. As can be seen the 
structure of the catalyst does not change after the 5th reaction run 
(Figures 3 and 4a-4c).

X-ray Diffraction analysis (XRD): The XRD patterns of GO, 
prepared catalyst and reused catalyst are shown in Figure 5. 
For graphene oxide as shown in Figure 3, has a sharp peak at 
2𝜃=10.86° resultant to (001), which is due to the oxidation of 
graphite powder. In Figure 3, a new broad peak represented 
at around 2𝜃=23°-28°, which is related to the major oxygen 
functional groups of graphene oxide have been effectively 
functionalized (Figures 5a-5c).

Figure 1: Alcohol oxidation reaction with [Cu(II)Br
2
-BTP@GO] 

catalyst.
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Figure 2: Preparation of catalyst.

Figure 3: The FT-IR spectra of Graphene Oxide (GO).

Figure 4: The FT-IR spectra of (a): GO-Cl; (b): GO-Cl-BTP; (c): [Cu(II)Br
2

-BTP@GO] catalyst.
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Figure 5: XRD of (a): Graphene oxide; (b): [Cu(II)Br
2
-BTP@GO] catalyst.

in Figure 9. For measured of the amount of copper on the surface 
of the catalyst used from Atomic Absorption Spectrophotometer 
(AAS) analyzer and the amount of copper was 0.087 mmol g-1.  
Moreover, CHNS analysis determined the nitrogen content and 
the amount of ligand on the grapheme oxide is 1.03 mmol g-1 
(Figures 7-9).

Thermogravimetric Analysis (TGA): TGA curve of grapheme 
oxide and copper catalyst were examined in the range of 
25°C-600°C temperature. For the catalyst two degradation 
phases were displayed in Figure 6a between 25°C-235°C first loss 
(about 17%) was related to water adsorbed on graphene oxide 
and unreacted supporting material. Between 235°C and 414°C 
the second loss (about 24%) belonged to the decomposition of 
organic groups (Figures 6a and 6b).

FE-SEM, EDX and mapping analysis: The surface morphology 
of the copper catalyst was investigated by Field Emission Scanning 
Electron Microscopy (FE-SEM) as shown in Figure 7. Scanning 
Electron Microscopy (SEM) images showed rod-like shapes with 
uniform structures. The FE-SEM images approve the presence 
of copper nanoparticles. The Energy Dispersive X-ray (EDX) 
analysis of catalyst confirmed the presence of copper and other 
atoms on the surface of obtained catalyst as shown in Figure 8. 
Additionally, the elemental mapping showed all of the atoms have 
been distributed regularly in the surface of the catalyst as shown 

Figure 6: TGA of (a): Graphene oxide; (b): [Cu(II)Br
2
-BTP@GO] 

catalyst.

Figure 7: SEM images of [Cu(II)Br
2
-BTP@GO] catalyst.

Figure 8: EDX spectrum of [Cu(II)Br2
C: Carbon; Br: Bromine; S: Sulphur; Cu: Copper; O: Oxygen; N: 
Nitrogen; Cl: Chlorine; Si: Silicon 

-BTP@GO] catalyst. Note: 
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Catalytic studies

In this work, the [Cu(II)Br
2
-BTP@GO] catalyst’s performance was 

examined by oxidation of benzyl alcohol to benzaldehyde. The 
best conditions for the amount of catalyst, time of reaction, type 
of oxidant and solvent were measured. The effect of the catalyst 
amount [Cu(II)Br

2
-BTP@GO] were investigated on the oxidation 

procedure of benzyl alcohol, after than the room temperature 
was selected as best temperature. In the absence of the catalyst 
the yield was negligible and when the amount of the catalyst was 
increased from 0.02 g to 0.03 g the yield did not change. The 
best result was attained with 0.17 mol% (0.02 gr) of the catalyst 
as shown in Table 1, entry 5. In this reaction the effect of time 
was studied and the best time was 3 hour. For investigation of 
the effect of solvent, different solvents were examined such as 
acetonitrile; acetonitrile/H

2
O and H

2
O, amongst them the 

water was are found an appropriate solvent for achieving the 
best reaction condition. Various oxidants such as Na

2
CO

3
, tert-

BuOOH, H
2
O

2
, K

2
CO

3
, Et

3
N and NaIO

4
 were investigated for 

the oxidation of benzyl alcohol and tert-BuOOH was showed the 
best results (Table 1). 
Table 1: Optimization of conditions in the oxidation of benzyl alcohol 
catalyzed with Cu(II)Br2-BTP@MNPs.

Entry Catalyst (mol%) Oxidant  Time (h) Solvent Yield (%)

1 0.17 NaIO
4

12 H
2
O 60

2 0.17 Na
2
CO

3
12 H

2
O 20

3 0.17 K
2
CO

3
12 H

2
O 15

4 0.17 H
2
O

2
12 H

2
O 65

5 0.17 TBHP 3 H
2
O 90

6 0.17 TBHP 3 CH
3
CN 50

7 0.17 TBHP 3
CH

3
CN/

H
2
O

75

8 0.087 TBHP 3 H
2
O 65

9 0.26 TBHP 3 H
2
O 90

11 - TBHP 12 H
2
O Trace

12 GO TBHP 12 H
2
O Trace

13 Fe3O
4

TBHP 12 H
2
O Trace

Finally, under optimized reaction conditions, oxidation of 
different alcohol was evaluated with tert-BuOOH as oxidant at 
25°C in water and with the use of Cu(II)Br2-BTP@MNPs catalyst, 
and results show that the [Cu(II)Br

2
-BTP@GO] catalyst was better 

than Cu(II)Br2-BTP@MNPs catalyst. Various alcohols reacted to 
their corresponding aldehydes and obtained results showed that 
the nature of substituent on the phenyl ring has no obvious effect 
on the yield of the product. And linear and cyclic alcohols were 
successfully oxidized to their corresponding carbonyl compounds 
(Table 2).
Table 2: Optimization of conditions in the oxidation of benzyl alcohol 
catalyzed with Cu(II)Br2-BTP@MNPs.

Entry Alcohol Carbonyl compound Yield (%) TOF (h-1)

1 Benzyl alcohol Benzaldehyde 88 172.5

2
4-Methylbenzyl 

alcohol 
4-Methylbenzaldehyde 90 176.4

3
4-Chlorobenzyl 

alcohol
4-Chlorobenzaldehyde 90 176.4

4
2-Chlorobenzyl 

alcohol
2-Chlorobenzaldehyde 86 168.6

5
3-Nitrobenzyl 

alcohol 
3-Nitrobenzaldehyde 85 166.6

6
4-Nitrobenzyl 

alcohol
4-Nitrobenzaldehyde 86 168.6

7 1-Octanol 1-Octanal 70 137.2

8 Cinnamyl alcohol Cinnamaldehyde 79 154.9

Reusability of catalyst: Recyclability and reusability are two main 
advantages for heterogeneous catalyst. These parameters are 
important from environmental, economic and industrial points 
of view. Therefore, the reusability of the [Cu(II)Br

2
-BTP@GO] 

catalyst was investigated in oxidation of benzyl alcohol with tert-
BuOOH under the optimized reaction conditions. After each 
catalytic run, the catalyst was separated by centrifugation and 
then washing with H

2
O and Et

2
O, and drying in an oven at 60°C, 

and then used in the next run. The results are shown in Figure 
10, exhibited that the catalyst could be reused several times in 
catalytic reactions without noticeable loss of activity. The copper 
content of the catalyst after fourth run was measured by Atomic 
Absorption Spectrophotometer (AAS), which showed a value of 
about 0.075 mmol/g (about 95% of the initial Cu content), for 
the catalyst was used in the oxidation of benzyl alcohol (Figure 
10 and Table 3).

Figure 9: Elemental Mapping of [Cu(II)Br
2
-BTP@GO] catalyst. 

Note: ( ): Bromine (Br); ( ): Cu (Copper); ( ): Cl (Chlorine); 
( ): S (Sulphur); ( ): N (Nitrogen); ( ): C (Carbon); ( ): O 
(Oxygen); ( ): Si (Silicon)
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epoxidation of styrene by novel chiral ruthenium (II) Schiff base 
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17.	Enthaler S, Junge K, Beller M. Sustainable metal catalysis with iron: 
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crystal structure of a chiral molybdenum porphyrin and its catalytic 
behaviour toward asymmetric epoxidation of aromatic alkenes. J 
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immobilized into montmorillonite as catalyst for the epoxidation of 
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Table 3: Comparison of this work with other published works.

Entry Catalytic system Time (h) Yield (%)

1 (L3=(2-C
5
H

4
N)CH

2
N)Cu(OAc) 2 90 

2 CuII ( 8-hydroxyquinoline-imine) complex 8 90 

3
N-heterocyclic carbene complex (Cu-

NHC@Pyrm-OMS)
8 97 

4
Cu(I)-iodide-2,2’-dipyridylamine (dpa) 

catalyst
24 99 

5
CuII (4-bromobenzoate/2,2-

dipyridylamine) complex 
24 100 

CONCLUSION

In this study, we have synthesized a catalyst from thiazole ligand 
by immobilization of CuBr

2
 onto the surface of graphene oxide. 

Graphene oxide was used as supporting material to increase the 
catalytic properties of copper. The XRD indicates the presence 
of copper (cu) and graphene oxide in the synthesized samples. 
Moreover, the SEM and TEM results confirmed that the Cu 
nanoparticles strongly deposited on the surface of GO nanosheets. 
Additionally, the present work shows that the oxidation of benzyl 
alcohol to benzaldehyde can be achieved with a [Cu(II)Br

2
-BTP@

GO] (0.02 g weight, RT and TBHP as the oxidant). Finally, the 
catalyst recovered and reused at least six times.
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