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Abstract

Many evidences suggest that NK cells are effective in patrolling for and eliminating tumors in their onset phase,
but hardly limit the progression of large established solid tumors. Beside the transition of tumor cells towards a more
aggressive phenotype, the NK cell efficacy might be limited by a complex immunosuppressive milieu present in the
tumor microenvironment. Indeed, different mechanisms damping NK cell function have been shown in these last
years. These include a plethora of tumor-derived immunomodulatory soluble factors (TGF-β, MIF, adenosine, L-
Kynurenin, PGE2) as well as soluble ligands (MICA, ULBP-2, PVR, B7-H6) that compete with membrane-bound
tumor ligands for binding to activating NK receptors. During NK-tumor cell contact the NK cell function can also be
inhibited by the engagement on NK cells of different inhibitory receptors. The specific ligands might be either
constitutively expressed at the tumor cell surface (HLA-I, B7-H3, PVR) or de novo induced/up-regulated (PD-Ls) by
immunostimulatory factors (IFN-γ, TNF-α). These are largely released during the active phases of the immune
responses and exert an unwanted side effect called “tumor adaptive immune resistance”. This review aims to
summarize the best-known molecular mechanisms that, at various times and in different ways, can limit the efficacy
of the NK-mediated immune surveillance of tumors.
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INTRODUCTION
Natural killer cells (NK) are crucial cytolytic effectors belonging to

the family of innate lymphoid cell (ILC) [1,2]. Originally described as
cells exerting a “natural” cytolytic activity due to their capability to kill
the highly susceptible K562 eritroleukemia cell line, it is now well
established that they require activation to exert optimal effector
functions. Moreover, the susceptibility to NK-mediated killing of
established tumor cell lines is superior to that of tumors ex-vivo
isolated from patients, as occurs in bone marrow metastases that are
much more resistant to NK-mediated aggression [3]. This supports the
concept that an effective NK-mediated anti-cancer activity can’t
dispense with an optimal activation of endogenous or adoptively
transferred NK cells. It is also crucial to understand which NK cell
subset, once activated, can exert the most effective anti-cancer activity
in a particular immunotherapeutic setting. Indeed, it has been recently
stressed that a great heterogeneity in NK cell phenotype and functions
exists that goes beyond the classical CD56dim CD16high and CD56bright

CD16low/neg NK cell dichotomy [4]. Beside the identification and
description of CD56neg NK cells [5] that are particularly abundant in
peripheral blood of virus-infected donors, several studies highlighted
the great heterogeneity of peripheral blood CD56dim NK cells, which
include subpopulations characterized by different capabilities of being
activated by cytokines, antibodies or tumor contact [6,7]. Thus,
adoptive transferred NK cell-based therapeutic protocols should
combine optimal activation strategies, the selection of the best NK cell
subpopulation, consider the in vivo persistence of the in vitro activated

NK cells, and, last but not least, their chemokine receptor repertoire.
Indeed, the scarce attitude of cytotoxic CD56dim NK cells to reach and
invade the tumor parenchyma represents a major obstacle for the
effectiveness of NK cells, especially in the therapy of solid tumors [8,9].
This might occur also in a chemokine-rich tumor milieu, due to a
defective expression in NK cells of the chemokine receptors involved in
their migration toward peripheral tissues. This hypothesis matches
with the scenario described in neuroblastoma patients whose
peripheral blood CD56dim NK cells are characterized by an unusual
reduced expression of CX3CR1, the fractalkine (CX3CL1) receptor
[10]. Interestingly, CX3CR1 has been shown to be deeply down-
regulated by transforming growth factor beta 1 (TGF-β1), a pleiotropic
soluble factor released by most cell types including tumors that is
capable of modulating pivotal effector functions of different immune
cells [11,12]. TGF-β1 is one among the several soluble factors present
in the tumor microenvironment that recently emerged as potent
immune-modulators. Moreover, beside the classical HLA class I-
mediated inhibition of the NK cell activity, several additional
inhibitory signals have been recently described that, during NK-to-
tumor contacts, limit the NK-mediated immune-surveillance. Thus,
the choice of the most effective, activated NK cell subsets should not
disregard their profile in terms of the cognate inhibitory receptor-
ligand interactions. This review summarizes the best-known tumor-
derived soluble factors and tumor-associated surface molecules
exerting an immunomodulatory role in NK cells.
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Soluble Immunomodulatory Mediators

MIF, adenosine, L-Kynurenin, PGE2
In the past few years, many different tumor-associated regulatory/

suppressive mechanisms have been widely studied (Figure 1). Among
these, molecules shed from the tumor cell surface, such as the soluble
ligands of NKG2D [13-15], DNAM-1 [16] and NKp30 [17], activating
receptors crucial for T- and/or NK cell-mediated immune-surveillance
[18]. sMICA, sULBP-2, sPVR and sB7-H6 compete for binding with
the ligands expressed on the tumor cell surface, thus hindering the
efficient target recognition. Moreover, different tumor-secreted soluble
mediators have been shown to clearly suppress the efficacy of the
immune system. Among these, the macrophage migration inhibitory
factor (MIF, also known as Glycosylation-Inhibiting Factor) [19-21]
and adenosine, an endogenous purine nucleoside highly produced by
tumors expressing CD39 and CD73, ectonucleotidases converting ATP
to adenosine. Both MIF and adenosine have been demonstrated to
inhibit cytotoxicity and cytokine production in human NK cells, the
second mainly through the engagement of the adenosine receptor 2A
(AdoR2A), which is coupled to adenylyl cyclase via Gs protein [22,23].
In the mouse model the use of AdoR2A antagonist reduced the
metastatic potential of CD73+ tumors [24] that was further reduced by
blockade of AdoR2B. Since in vitro AdoR2B blockade had no
significant effects on NK cell cytotoxicity, the benefit observed in
tumor-injected mice treated with AdoR2 antagonist might depend on
both NK cell-dependent and -independent mechanisms. Along this
line, in mice selectively lacking AdoR2 expression in myeloid
compartment it has been shown that adenosine can indirectly
suppresses T and NK cell-mediated antitumor activity by shaping the
functions of different myeloid cells. In particular, in this mouse model,
a reduced melanoma growth was associated with a significant increase
in MHC class II expression and IL-12 release in tumor-associated
macrophages (TAM), features fitting with an M1-like pro-
inflammatory macrophage polarization. Moreover, AdoR2neg TAM,
dendritic cells (DC), and myeloid-derived suppressor cells (MDSC)
showed a clear reduction in IL-10 expression, a cytokine originally
described as a negative regulator of IL-12 production in LPS-
stimulated peripheral blood mononuclear cells [25]. To date IL-10
cannot be definitively included among the tumor-derived cytokines
limiting NK cell activity since both stimulatory and inhibitory effects
on NK cell functions have been described. On the contrary, a huge
number of data have demonstrated the immunomodulatory function
of L-kynurenine, the tryptophan catabolite derived from indoleamine
2,3-dioxigenase 1 (IDO1) pathway [26], and of Prostaglandin E2
(PGE2). Both factors deeply affect the cytokine-mediated upregulation
of the expression and function of different activating NK receptors
such as NKp46, NKp44 and NKG2D [27-29] a mechanism that seems
to involve the c-Jun N-terminal Kinase (JNK) pathway [29]. The extent
of in vivo suppression mediated by L-kynurenine and PGE2 might be
considerable since these factors are released by several cell types
colonizing tumor microenvironment, including the cancer-associated
fibroblasts (CAF) [30,31], MDSC and DC [32]. In particular, IDO-
expressing DC exert a deep immune-suppressive effect by affecting not
only proliferation and effector function of NK cells, but also by
inducing the conversion of CD4+ T cells into CD4+ CD25+ Foxp3+
regulatory T cell (Treg) [33]. Tumor-derived PGE2, via the EPA4
receptor [34,35] decreases human NK cells proliferation, granzyme B/
perforin content [36] and drives NK cells towards apoptosis [37].
Moreover, via the EPA2 and EPA4 receptors, PGE2 induces the release
of TGF-β1 by MDSC [38] that further inhibit NK cell activity. TGF-β1

represents a secretory immune-suppressive hallmark of several other
cells in tumor microenvironment including Treg and TAM [39].

TGF-β1
TGF-β1 is the prototypic tumor-derived immunomodulatory

soluble mediator, although many additional functions have been
described over the years, highlighting its pleiotropic activity. Different
studies reported a significant contribution of TGF-β1 in the epithelial
to mesenchymal transition (EMT), a process that allows tumors of
epithelial origin to acquire a less differentiated, invasive and pro-
metastatic phenotype [40,41]. TGF-β1 has been shown to suppress the
differentiation process and the effector functions of several immune
cells [12]. In particular, it represses the development of human NK
cells from CD34+ progenitors and inhibits differentiation of CD16pos

NK cells [42], TGF-β1 promotes the conversion of peripheral NK cells
to a decidual NK-like phenotype [43] and, as shown in mouse salivary
gland, it drives the differentiation of a particular ILC subpopulation
sharing NK and ILC1 features [43]. Released as a large latent complex,
TGF-β1 remains biologically unavailable until its activation in
inflammatory sites such as the tumor microenvironment by signals
including low pH, heat, proteases and members of the integrin
receptor family [11]. Once activated, TGF-β1 shows a potent inhibitory
effect on NK cells, both in vitro and in vivo, limiting the main NK cell
effector functions including IFN-γ production and cytotoxicity
[44-48]. In this context, in vitro conditioning of NK cells with
recombinant TGF-β1 (rTGF-β1) caused severe downregulation of the
surface expression of NKp30 and NKG2D, activating NK receptors
cooperating in recognition and killing of several tumor histotypes [44].
The same occurred with rTGF-β2 [10], although knockout mice
lacking TGF-β1 or TGF-β2 showed distinct phenotypic features
suggesting that the two isoforms could also have specific, non-
overlapping functions [49]. Interestingly, while the TGF-β1-mediated
downregulation of NKp30 occurred at the transcriptional levels no
significant changes in NKG2D transcript was observed in TGF-β1-
treated NK cells [44]. Accordingly, it has been shown that the reduced
NKG2D surface expression observed in the presence of TGF-β1 both
in vitro and in vivo, is due to its capability of downregulating at
transcriptional and translational level DAP10, the signaling subunit
associated with NKG2D [50-52]. Very recently it has been shown that
TGF-β1 also inhibits the IL-15-induced NK cell activation, particularly
by selectively and quickly repressing the mTOR pathway [53], a crucial
integrator of both pro- and anti-inflammatory signals. Recent data also
suggest that the tumor-derived TGF-β1 might modify the migratory
capability of NK cells. Indeed, it has been shown that neuroblastoma
(NB) cell lines spontaneously release amounts of TGF-β1 capable of
modulating the chemokine receptor repertoire of NK cells [10]. In
particular NB-derived TGF-β1 increases CXCR4 and CXCR3 surface
expression in all NK cells whereas it decreases that of CX3CR1 in the
CD56dim NK cell subset. Notably, unusual CX3CR1low CD56dim and
CXCR3high CD56bright NK cell populations were observed in peripheral
blood of patients with high risk NB (stage 4 or M) [10]. Thus, tumor-
derived TGF-β1 can affect the expression of chemokine receptors that
play a key role in the bone marrow homing, egress, interaction with
endothelium and recruitment into peripheral tissues of NK cells.
Recently, in a mouse model of pulmonary allergic responses, it has
been shown that TGF-β1 is crucial for the generation of allergic
response acting as chemotactic factor recruiting ILC2 and eosinophils
[54]. Importantly, it has been demonstrated that TGF-β1 modulates in
tumor cells, the expression of specific microRNAs and up-regulates B7-
H3 (CD276) [55], a molecule belonging to the family of immune
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checkpoint proteins, which acts as co-inhibitory factor and limits the
function of NK cells. Overall data suggest that TGF-β1 antagonists,
capable of overcoming or blocking its immunomodulatory effect might
represent a valuable adjuvant therapy in the cure of different tumors.
In this context, it has been recently shown that blocking of TGF-β1R in
combination with antibodies targeting the NB-associated antigen GD2,
potentiates the NK-mediated anti-NB activity leading to a reduced
tumor growth and increased survival of mice injected with NB cell
lines or patient-derived neuroblasts [56]. Moreover, ongoing clinical
trials will evaluate the benefit of TGF-β or TGF-βR blockade in
neoplastic patients (ClinicalTrials.gov NCT02452008; NCT02581787).
It is of note however that, due to the wide homeostatic regulatory role
of TGF-β, in order to obtain specific and restrained therapeutic effects,
light should be made on the signaling pathways mediated by the
different TGF-β isoforms and on the mechanisms regulating the
immunomodulatory effects.

NK-To-Tumor Contact Immunomodulatory Signals

KIRs/HLA-I and NKG2A/HLA-E
The most powerful inhibitory pathway affecting the NK cell activity

is represented by the interaction between HLA class I molecules (HLA-
I) on target and specific inhibitory receptors on NK cells (Figure 1).
These inhibitory receptors include Killer Ig-like Receptors (iKIRs),
clonally distributed receptors distinguishing among allotypic
determinants of the classical HLA-A, -B and - C, and the CD94/
NKG2A heterodimer specific for HLA-E [57-59]. Mature NK cells can
also express the activating counterpart of these HLA-I specific
inhibitory receptors, i.e. activating KIRs (aKIRs) and CD94/NKG2C
[60,61]. During NK cell maturation the engagement of inhibitory
receptors by their self HLA-I ligands confers functional competence to
NK cells, through a process referred to as “licensing” or “education”
that has been explained by different models [62-64]. Based on the
“rheostat” model, during NK cell education NK cell reactivity is tuned
by the strength of the inhibitory signal induced by self-HLA-I
molecules [65]. The inhibitory receptor repertoire acquired by NK cells
during maturation guarantees that in normal conditions inhibitory
signals prevail on the activating ones safeguarding HLA-I+ autologous
healthy cells from NK cell-mediated killing. The NK cytolytic activity
is unleashed in pathologic conditions such as virus infection or tumors
where transformed cells increase the expression of ligands for
activating NK receptors while downregulating that of HLA-I [66]. NK
cell reactivity can be limited when tumor cells retain high levels of
HLA-I expression, as occur in hematological malignancies such as
acute lymphoblastic leukemia (ALL). However, it has been shown that
in allogeneic settings such as in the context of haploidentical
hematopoietic stem cell transplantation (haplo-HSCT), the
differentiation of alloreactive NK cells from the donor, i.e cells
expressing KIRs specific for HLA-I molecules absent in the recipient,
strongly improve anti-leukemic surveillance [67,68].

The studies describing the beneficial graft versus leukemia (GvL)
effect of alloreactive NK cells in haplo-HSCT has inspired the design of
new immunotherapies aimed to enhance anti-tumor NK cell reactivity
by blocking the interactions between HLA-I and iKIR or CD94/
NKG2A. A fully human anti-KIR mAb (1-7F9, Lirilumab, IPH2101)
that recognizes iKIRs (KIR2DL1, KIRDL2 and KIR2DL3) has been
generated [69], which favors the NK cell-mediated killing of HLA-
matched tumor cells as documented in vitro and in vivo in phase I/II
clinical trials involving Acute Myeloid Leukemia (AML) and multiple

myeloma (MM) patients, [69,70]. Interestingly, Lirilumab has been
successfully combined with the anti-CD20 rituximab to augment NK-
mediated cytotoxicity against lymphoma cells in vitro [71]. Based on
the broad expression of HLA-E on both solid and hematological
malignances, a novel therapeutic approach has been designed to block
the CD94/NKG2A-HLA-E interaction, by using the humanized anti-
NKG2A Monalizumab, which is currently in a phase I/II clinical trial
[72].

Figure 1: Soluble and membrane-bound factors dampening NK-
mediated anti-tumor activity.

This novel approach was developed upon the observation that
NKG2A+ NK cells predominate in the early period of immune
reconstitution after HSCT, thus representing optimal targets to
potentiate NK cell-mediated anti-leukemic activity [73]. In addition,
NKG2A+ NK cells express higher levels of activating receptors such as
NCRs as compared to more differentiated KIR+ NKG2A- NK cells [6].
The high expression level could compensate the low cytotoxic potential
displayed by these less differentiated NK cells. KIRs, CD57 and LIR
represent phenotypic hallmarks of terminally differentiated NK cells,
which show a good cytolytic potential but poor responsiveness to
cytokines [74]. Interestingly, in individuals exposed to pathogens such
as cytomegalovirus (CMV), the mature NK cell population is
characterized by a very high percentage of cells expressing CD94/
NKG2C or aKIR [75-78], which show features similar to cells of
adaptive immunity including clonal expansion capability, strong
effector functions and longevity. This “memory-like” population
represents a powerful candidate for adoptive NK cell transfer therapy
in cancer patients [79]. Along this line it is crucial to define whether its
efficacy might be limited during NK-to-tumor contacts by additional
inhibitory or co-inhibitory signals, whose activity might be particularly
relevant in the context of HLA-Ilow or negative tumors.
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PD-1/PD-Ls, LAG-3/HLA-II and TIGIT/PVR
The PD-1/PD-Ls axis is a well-known immune

checkpoint, i.e. inhibitory pathways that physiologically
maintain self-tolerance and limit the duration and amplitude of T cell
immune responses, thus minimizing tissue damage [80-82]. The PD-1
receptor (CD279) has been demonstrated to limit T proliferation and
switch off the T cell functions mostly in peripheral tissues. More recent
reports show the presence of PD-1pos NK cells in both cancer patients
and in a relevant proportion of healthy donors who were serologically
positive for human CMV [83-86]. PD-1 expression is confined to
terminally differentiated NKG2AnegKIRposCD57pos NK cells and their
antitumor activity can be partially restored in vitro by antibodies
disrupting the interaction between PD-1 and its cellular ligands PD-L1
and PD-L2 [86,87]. PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC,
CD273) belong to the B7 family that consists of several members
including B7-H3 (see below) (Figure 1). PD-L1 is expressed in several
normal tissues, whereas PD-L2 is mainly restricted to antigen
presenting cells (APC) [80,81]. Importantly, both inhibitory ligands
can be expressed by tumor cells in response to immunostimulatory
factors such as IFN-γ and TNFα that are released by activated T and
NK cells [80,85,88]. This phenomenon called “adaptive immune
resistance” [88] is a mechanism of escape by which cancer cells adapt
their phenotype to the pressure of immune responses. Interestingly, it
has recently been shown that PD-L1neg metastatic cells purified from
bone marrow aspirates of high risk NB patients have different
capabilities of up-regulating PD-L1 in response to IFN-γ [85]. The lack
of PD-Ls upregulation in some patient might contribute to a reduced
clinical response to therapy with anti-PD-1. However, it should not be
disregarded that the therapeutic efficacy of anti-PD1 antibodies has
been observed also in patients who at the time of therapeutic decision
carried PD-L1neg tumors. Indeed, the clinical benefit might also
depend on the strengthening of the crosstalk between PD-Ls+ APC
and PD-1+ immune effectors including T or NK cells. IFN-γ is also a
potent inducer of HLA class II molecules that can be recognized by
LAG-3, an additional inhibitory mechanism that recently emerged in
human NK cells together with TIGIT/PVR and TIM-3/galectin-9
interactions (Figure 1) [89-92]. Interestingly, the heterogeneous
expression of the TIGIT inhibitory receptor observed in NK cells from
healthy individuals inversely correlates with their capability of
performing degranulation and IFN-γ release in response to IL-12
stimulation [91]. Moreover, low TIGIT expression has been described
in CMV-induced terminally differentiated NK cells that appear more
resistant to the inhibitory effect mediated by PVRpos MDSC. Since
studies explored the cytokine-induced expression of these co-
inhibitory receptors mainly in long term-cultured NK cell lines such as
NK92 [93], data on primary NK cells are required to better understand
the relative contribution of these inhibitory pathways and the kinetic
that regulates their emergence.

B7-H3R/B7-H3
Another interesting NK-to-tumor contact inhibitory pathway is

mediated by the B7-H3 ligand, a tumor-associated surface molecule,
also present in tumor-derived exosomes [94], which is endowed with
both immune-regulatory and pro-tumoral functions. B7-H3 is capable
of inhibiting the cytolytic activity of human NK cells against
neuroblasts purified from bone marrow aspirates of high risk NB
patients, which are characterized by reduced levels of HLA-I [18] and
adhesion molecules (unpublished observation). The B7-H3-mediated
inhibitory effect, which depends on its interaction with a still unknown

inhibitory receptor, is particularly evident when using xenogenic B7-
H3high transfectants [95]. This suggests that this inhibitory pathway
might require peculiar conditions to be unleashed, which could be
represented by poor engagement of potent inhibitory NK receptors
and/or by the presence of weak activating signals. It should be
mentioned that in mouse B7-H3 has been described as a “friend” in
tumor immunology [96]. In particular, intratumoral injection of an
expression plasmid encoding mouse B7-H3 led to a complete NK-
(and T-) mediated regression in approximately half of tumor-bearing
mice [97]. Interestingly, the mouse B7-H3 gene codes for a molecule
characterized by two Ig-like domains while human cell tissues
predominantly express a four Ig-like domains isoform resulting from
exon duplication [98]. While in human B7-H3 is still an orphan ligand,
an activating receptor has been identified in mice that is represented by
TREM-like transcript 2 (TREML2, TLT-2), expressed by activated T
cells and myeloid cells [99]. Importantly however, Leitner and co-
workers who extensively faced this issue did not find evidence for B7-
H3/TREML2 interaction in human [100]. Considering that B7-H3
belongs to the B7 family that includes members interacting with both
activating and inhibitory receptors, it can’t be excluded the existence of
a complex scenario resulting from the capability of B7-H3 to engage
receptors with opposite signal. However, to date most in vitro and in
vivo data lean toward a B7-H3 inhibitory role in human and the B7-
H3R/B7-H3 axis has been included among the immune checkpoints
[81,101,102]. An adjuvant therapeutic strategy in cancer might be
represented by antibodies disrupting the interaction between B7-H3
and its receptor/s. Different phase I Clinical trials are ongoing with
humanized anti-B7-H3 mAbs (NCT02628535; NCT02982941;
NCT02475213) [81] and encouraging results have been obtained in the
first in-human intrathecal injection of radioiodinated anti-B7-H3 Ab
(following standard therapy) in 21 neuroblastoma patients with
recurrent Central nervous system (CNS) metastasis [103]. It is of note
that the therapeutic efficacy of anti-B7-H3 mAbs might depend not
only by the strengthening of the NK- (and T-) mediated anti-tumor
responses, but also by the weakening of the direct pro-tumoral activity
of B7-H3. Indeed, studies in tumor of different histotype showed that
high B7-H3 expression drives tumor cell progression through different
molecular mechanisms. These include promotion of migration and
invasiveness [104] and reduction of sensibility to chemotherapy-
induced apoptosis, as demonstrated in breast [105] and pancreatic
carcinoma [106]. Accordingly, high expression of B7-H3 is a negative
prognostic factor in several tumors including neuroblastoma
[18,107-111]. In particular, in primary neuroblastoma high B7-H3
surface expression, in terms of both intensity and percentage of
positive cells, has been correlated with poor event-free survival also in
patients with localized disease (stage 1–3), suggesting that high B7-H3
expression might discriminate between low- and high-risk patients
who need a more careful follow-up.

Conclusions and Future Perspective
NK cell-based immunotherapy is becoming a promising approach

for the treatment of both hematological malignances and solid tumors.
However, recent published data show that the complexity of the
immune-suppressive milieu characterizing the tumor
microenvironment can’t be neglected. Indeed, different inhibitory
mechanisms represented by soluble factors or by tumor-associated
surface ligands could deeply reduce the NK cell activity against tumors.
Importantly, malignant cells can constitutively express some of these
ligands (HLA-I, B7-H3) or increase/de novo induce their expression
(PD-Ls) as an adaptive defense mechanism promoted by
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immunostimulatory factors (IFN-γ) that are released during effective
NK and TH1 cell-mediated immune responses. Thus, future
immunotherapeutic interventions should consider the possible onset
in patients of multiple, different immunosuppressive mechanisms
affecting the function of endogenous or adoptively transferred NK
cells. Also the chemokine receptor repertoire acquired by NK cells
during their in vitro-expansion needed for the adoptive transfer in
patients should not be neglected. Along this line, it might be relevant
to hinder the effects of factors (TGF-β1) capable of modifying, in
endogenous or infused NK cells, the expression of chemokine
receptors crucial for their extravasation and recruitment at the tumor
sites.

Executive summary

NK cells and cancer immunotherapy
NK cells are crucial cytolytic effectors in anti-tumor immune

responses.

NK cell-based immunotherapy is becoming a promising approach
for the treatment of both hematological malignances and solid tumors.

Ready to kill or killers who require to be armed?
Originally described as cells exerting a “natural” cytolytic activity it

is now well established that, to exert optimal effector functions, NK
cells require activation via immunostimulatory cytokines and tumor
contact.

NK cell population is heterogeneous and includes subsets
characterized by different capabilities of being activated and different
effector functions.

Once activated, NK cells need a chemokine receptor repertoire ideal
to their recruitment in inflamed tissues such as tumors.

How tumors may dump NK cell function in vivo?
Tumor cells purified from patients are less susceptible to NK-

mediated killing than established tumor cell lines commonly used in
vitro.

A complex immunosuppressive milieu is present in the tumor
microenvironment.

A plethora of tumor-derived immunomodulatory factors exists,
either soluble or membrane bound, that might limit the NK-mediated
immune-surveillance in vivo.

Soluble immunomodulatory mediators
Tumor cells may release soluble ligands (sMICA, sULBP-2, sPVR

and sB7-H6) that compete with membrane-bound tumor isoforms for
binding to activating NK receptors.

Different tumor-secreted soluble mediators (MIF, adenosine, L-
kynurenine, PGE2, TGF-β1) have been demonstrated to inhibit NK
cell function including proliferation, cytotoxicity and cytokine
production. These factors can be released by tumor cells as well as by
other cell types colonizing the tumor microenvironment (TAM, DC,
MDSC, CAF).

TGF-β1 is the prototypic tumor-derived immunomodulatory
soluble mediator. In NK cells, it represses development from CD34+

progenitors and differentiation, limits the main effector functions
(IFN-γ production and cytotoxicity), reduces the expression level of
activating receptors (NKp30, NKG2D) and alters the chemokine
receptor repertoire.

NK-to-tumor contact immunomodulatory signals
NK cell reactivity can be limited when tumor cells retain high levels

of HLA-I expression, as occur in hematological malignancies.

Tumor cells may express ligands (PD-L1, PD-L2, B7-H3) belonging
to the immune checkpoint family, i.e. inhibitory pathways that limit
the duration and amplitude of anti-tumor responses.

B7-H3 not only weakens the strengthening of the NK- (and T-)
mediated anti-tumor responses, but also exerts a direct pro-tumoral
activity.

Tumor cells can constitutively express inhibitory ligands or increase
their expression in response to immunostimulatory cytokines (IFN-γ,
TNF-α) that are released by activated NK (and T) cells, a phenomenon
called “tumor adaptive immune resistance”.

IFN-γ, besides inducing PD-Ls expression, is also a potent inducer
of HLA- II that can be recognized by LAG-3, an additional inhibitory
mechanism that recently emerged together with TIGIT/PVR and
TIM-3/galectin-9 interactions.

Future directions
When designing immunotherapies, we can’t neglect the complexity

of the immune-suppressive milieu characterizing the tumor
microenvironment. Thus, NK cell-based therapeutic protocols should
combine optimal activation strategies, the selection of the best NK cell
subpopulation, consider the in vivo persistence of NK cells, and their
chemokine receptor repertoire. Valuable adjuvants may include the use
of humanized mAb to disrupt immune checkpoints pathways and/or
to hinder the effects of soluble factors that in vivo may dampen the NK
cell activity against tumors.
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