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Stroke is the major cause of disability worldwide. A number of 
neurological functions are impaired by stroke; the most common 
impairment is motor disability contralateral to the stroke lesion side. 
Despite rehabilitation, the motor function outcome after stroke is 
often incomplete, and dexterity deficits are a considerable handicap to 
stroke survivors [1]. Motor recovery after stroke is related to neural 
plasticity, which refers to the ability of the brain to develop new 
neuronal interconnections, acquire new functions, and compensate 
for impairment [2,3]. Therefore, various strategies based on neural 
plasticity are developing that aim to enhance motor recovery [4,5]. 

In particular, many reports have shown that non-invasive brain 
stimulation (NIBS) techniques help improve the efficacy of rehabilitative 
strategies employed after stroke by using physiological peculiarity 
that can alter the cortical excitability. The idea is that modulation of 
cortical excitability may induce neural plasticity and/or interfere with 
maladaptive neural activation, which subsequently weakens motor 
function and limits motor recovery [3]. Repetitive transcranial magnetic 
stimulation (rTMS) and transcranial direct current stimulation (tDCS) 
are NIBS techniques that can alter excitability of the human cortex [6]. 
rTMS is defined as repetition of TMS; high-frequency rTMS increases 
cortical excitability, whereas low-frequency rTMS suppresses cortical 
excitability [6]. Theta burst stimulation (TBS) has also been reported 
as an effective rTMS method. It uses repeating bursts of very low-
intensity combined-frequency rTMS [7]. Each burst consists of 3 
stimuli (delivered at 50 Hz) repeating at 5 Hz. TBS can be used in 2 
ways: a continuous train is used to suppress cortical excitability and 
an intermittent pattern is used to enhance cortical excitability. tDCS 
is another commonly used NIBS technique. There are 2 types of tDCS: 
anodal tDCS increases the excitability of the stimulated cortex, whereas 
cathodal tDCS decreases the excitability of the stimulated cortex [8]. 

NIBS therapy for motor stroke aims to augment neural plasticity 
and improve motor function based on the interhemispheric 
competition model. The interhemispheric competition model proposes 
that motor deficits in stroke patients are due to reduced output from 
the affected hemisphere and excessive interhemispheric inhibition 
from the unaffected hemisphere to the affected hemisphere [9,10]. 
Therefore, using NIBS, improvement in motor deficits can be achieved 
by increasing the excitability of the affected hemisphere or decreasing 
the excitability of the unaffected hemisphere [11,12]. No relevant 
adverse effects of NIBS, such as epileptic seizure induction, have been 
reported to occur in stroke patients when current safety guidelines 
regarding the intensity, frequency, and time of stimulation are adhered 
to [13,14]. 

Inhibitory NIBS increases excitability in the ipsilesional motor 
cortex by reducing the excessive interhemispheric inhibition from the 
contralesional motor cortex [10,15]. Excitatory NIBS over the affected 
hemisphere directly increases the excitability of the ipsilesional motor 
cortex [16-18]. Excitability enhancement in the motor cortex appears 
to be required for motor learning [19]. It has been reported that use-
dependent plasticity is impaired in the affected hemisphere [20,21]. 
Therefore, NIBS can ameliorate impaired experience-dependent 
plasticity in stroke patients and induce motor recovery by directly or 
indirectly increasing the excitability in the ipsilesional motor cortex. 

As another mechanism, NIBS reduces hyperactivity in the primary 
and non-primary motor cortices in the unaffected hemisphere and 
neural coupling of both hemispheres [22,23]. Moreover, NIBS enhances 
neural coupling between the primary and non-primary motor cortices 
in the affected hemisphere [22]. In addition to facilitation of the 
ipsilesional primary motor cortex, excitability modulation in both 
hemispheres and reconstructed neural coupling between the primary 
and non-primary motor cortices in the affected hemisphere after NIBS 
contribute to motor recovery in stroke patients. These findings suggest 
that artificially modulating the cortical excitability by NIBS may induce 
a more suitable environment for neural plasticity. In fact, NIBS can 
be an important technique in the rehabilitation of stroke patients; 
providing motor training along with NIBS will help sustain the effect 
of NIBS and improve motor function [12,15]. Thus, it is important to 
impart additional motor training while NIBS modulates the neural 
network between both hemispheres and remodels the disturbed 
network in the affected hemisphere. 

An advantage of inhibitory NIBS over the unaffected hemisphere is 
that its response is more uniform than of stimulation over the affected 
hemisphere, because the unaffected site is less likely to be affected 
by neuronal loss or tissue damage [24]. Moreover, inhibitory NIBS 
over the unaffected hemisphere is expected to be safer with respect 
to any potential seizure risk (particularly in case of rTMS) or tissue 
damage [14]. However, it was noted that inhibitory NIBS reduces the 
interhemispheric inhibition that controls bimanual movement [25,26]. 
In fact, a recent study reported that inhibitory rTMS over the unaffected 
hemisphere deteriorated the performance in the anti-phase bimanual 
tapping task in stroke patients [27]. Therefore, inhibitory NIBS may 
deteriorate bimanual movement by reducing the interhemispheric 
inhibition that controls bimanual movement. 

Although excitatory NIBS over the affected hemisphere has the 
advantage that it does not inhibit the stimulation site, its effect is 
dependent on the anatomical changes in the affected hemisphere. 
Damaged brain tissue evolves into scar tissue and is replaced by 
cerebral spinal fluid (CSF) spaces (particularly in cortical damage) ; 
scar formation and large CSF spaces inhibit the effect of NIBS, because 
the conductance of the CSF is 4 to 10 times higher than that of normal 
brain tissue [28,29]. Therefore, careful modeling using a stereotactic 
system with integrated anatomical data is required to predict the effect 
of excitatory NIBS over the affected hemisphere [28,29]. 

A few studies have clarified which stroke patients are more 
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responsive to NIBS therapy [30,31]. Therefore, we must estimate the 
effect of NIBS therapy for stroke patients from studies that revealed 
the mechanism of NIBS therapy. Age is an important factor for effect 
of NIBS therapy. It has been reported that NIBS could improve motor 
recovery in adults as well as children [32]. However, the corpus callosum 
is not formed until 6–8 years of age [33]. Therefore, it is unlikely that 
inhibitory NIBS over the unaffected   hemisphere will improve the 
motor function of the paretic side in children younger than 6–8 years, 
because inhibitory NIBS improves motor recovery by reducing the 
excessive interhemispheric inhibition to the affected hemisphere [10]. 
In addition, NIBS therapy might be less effective for elderly stroke 
patients [31,34] because elderly patients have lower motor learning 
ability and neural plasticity induced by NIBS [34,35]. It is important 
to determine whether NIBS therapy is more effective in the acute or 
chronic stage after stroke. If NIBS therapy is more effective in acute 
stages, early modulation of cortical excitability may facilitate motor 
recovery and prevent development of maladaptive neural plasticity by 
rebalancing interhemispheric communication and normalizing neural 
activity within the motor areas of both hemispheres. Although it has 
been reported that both inhibitory and excitatory NIBS facilitates 
motor recovery in stroke patients at the acute stage [16,36,37], a recent 
study showed that inhibitory NIBS did not facilitate motor recovery 
in patients in acute stages of stroke [38]. Further investigations are 
required to determine whether NIBS in the acute stroke stage can 
promote the final motor function. The lesion site may also influence 
the effect of NIBS therapy. The common target of both inhibitory and 
excitatory NIBS is ipsilesional motor cortex activation. Therefore, NIBS 
therapy might be less effective for cortical stroke patients, particularly 
in the ipsilesional motor cortex. The evaluation of corticospinal tract 
integrity also may be useful to predict the benefits of NIBS. Thus, 
Clinicians must consider that clinical factors, including age, stroke 
duration, and lesion site, may influence the effects of NIBS therapy. 

NIBS can modulate cortical excitability, so NIBS might be an 
adjuvant therapy for developed neurorehabilitation strategies. 
Several studies showed that the combination of NIBS with specific 
neurorehabilitation techniques improved motor recovery [39-41]. 
However, the number of these combination studies is still small, and 
they are preliminary and controversial. Although it is likely that NIBS 
promotes the effects of developed neurorehabilitation strategies for 
stroke patients, future studies are required to determine the appropriate 
combination of methods for motor recovery. 

The common aim of inhibitory and excitatory NIBS is activation 
of the ipsilesional motor cortex and rebalancing both hemispheres. 
Therefore, considering the interhemispheric competitive model, it may 
be more suitable for motor recovery to stimulate both hemispheres 
using inhibitory and excitatory NIBS. Several recent studies have 
reported that compared to unilateral NIBS, simultaneous bilateral NIBS 
using rTMS and tDCS improves motor recovery more effectively in 
stroke patients [27,42]. Moreover, bilateral NIBS using rTMS induces 
disinhibition of ipsilesional motor cortex that contributes to neural 
plasticity by unmasking latent networks [12]. Therefore, bilateral 
NIBS may more effectively facilitate neural plasticity and induce 
motor recovery after stroke. In addition to motor recovery, bilateral 
NIBS can protect against the deterioration of bimanual movement 
caused by inhibitory NIBS over the unaffected hemisphere. Inhibitory 
NIBS might worsen the anti-phase bimanual movement by reducing 
the interhemispheric inhibition that controls bimanual movement 
[27]. However, a combination of inhibitory NIBS over the unaffected 
hemisphere and excitatory NIBS over the affected hemisphere 
could prevent this deterioration by decreasing the reduction of 
interhemispheric inhibition [27]. 

As mentioned above, recent studies have reported that bilateral 
NIBS can more effectively facilitate neural plasticity and induce 
motor recovery after stroke. However, the best NIBS pattern has not 
been established. Moreover, the frequency, intensity, and number of 
pulses are important factors for rTMS effects, and the amplitude and 
stimulation duration are important factors for tDCS effects. Although 
more researchers have begun to evaluate the effectiveness of different 
NIBS stimulation protocols for motor recovery after stroke, further 
well-designed studies in larger populations are required to identify the 
most effective types of NIBS from various protocols, including tDCS 
for stroke treatment. Therefore, at present, clinicians have to select the 
NIBS type by considering the advantages and disadvantages. 
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